
Citation: Zhai, J.; Li, B.; Lv, S.; Zhou,

Q. FPGA-Based Vehicle Detection

and Tracking Accelerator. Sensors

2023, 23, 2208. https://doi.org/

10.3390/s23042208

Academic Editor: Ikhlas

Abdel-Qader

Received: 1 January 2023

Revised: 4 February 2023

Accepted: 10 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FPGA-Based Vehicle Detection and Tracking Accelerator
Jiaqi Zhai 1 , Bin Li 1,2,* , Shunsen Lv 1 and Qinglei Zhou 1

1 School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
* Correspondence: iebinli@zzu.edu.cn

Abstract: A convolutional neural network-based multiobject detection and tracking algorithm can be
applied to vehicle detection and traffic flow statistics, thus enabling smart transportation. Aiming at
the problems of the high computational complexity of multiobject detection and tracking algorithms,
a large number of model parameters, and difficulty in achieving high throughput with a low power
consumption in edge devices, we design and implement a low-power, low-latency, high-precision,
and configurable vehicle detector based on a field programmable gate array (FPGA) with YOLOv3
(You-Only-Look-Once-version3), YOLOv3-tiny CNNs (Convolutional Neural Networks), and the
Deepsort algorithm. First, we use a dynamic threshold structured pruning method based on a scaling
factor to significantly compress the detection model size on the premise that the accuracy does not
decrease. Second, a dynamic 16-bit fixed-point quantization algorithm is used to quantify the network
parameters to reduce the memory occupation of the network model. Furthermore, we generate a
reidentification (RE-ID) dataset from the UA-DETRAC dataset and train the appearance feature
extraction network on the Deepsort algorithm to improve the vehicles’ tracking performance. Finally,
we implement hardware optimization techniques such as memory interlayer multiplexing, param-
eter rearrangement, ping-pong buffering, multichannel transfer, pipelining, Im2col+GEMM, and
Winograd algorithms to improve resource utilization and computational efficiency. The experimental
results demonstrate that the compressed YOLOv3 and YOLOv3-tiny network models decrease in
size by 85.7% and 98.2%, respectively. The dual-module parallel acceleration meets the demand of
the 6-way parallel video stream vehicle detection with the peak throughput at 168.72 fps.

Keywords: FPGA; vehicle detection; accelerator architecture; YOLO; DeepSort

1. Introduction

As urbanization accelerates, new infrastructure is empowering the development of
smart cities while providing new impetus to the postepidemic economy. Satisfying the need
for smooth traffic flow and improving traffic efficiency (reducing the number of vehicles
on the road and increasing vehicle occupancy) are the goals of intelligent transportation
systems. To achieve these goals, Bilal et al. [1] used Hadoop and Spark to design a model
that analyzes transportation data in real time to publish road traffic conditions for citizens
in real time; Lin et al. [2] proposed a public vehicle system with edge computing to improve
traffic efficiency by arranging ride-sharing among travelers; Wang et al. [3] proposed a
rerouting system to help drivers make the most appropriate choice of the next road to avoid
congestion; Tseng et al. [4] proposed a dynamic rerouting strategy based on real-time traffic
information and decisive weights to effectively solve the road congestion problem. These
studies provide an intelligent decision basis for intelligent transportation from various
perspectives, such as road command and dispatch, traffic signal control changes, and traffic
guidance, which are all based on traffic information in real situations.

Many detection algorithms have emerged for traffic information collection. Traditional
detection algorithms such as optical flow [5] and background modeling [6] have a high
algorithmic complexity and are difficult to accelerate using parallel devices, thus resulting
in poor real-time detection. Methods based on the collaborative deployment of multiple

Sensors 2023, 23, 2208. https://doi.org/10.3390/s23042208 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042208
https://doi.org/10.3390/s23042208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9767-812X
https://orcid.org/0000-0003-3455-4901
https://orcid.org/0000-0003-4719-2719
https://orcid.org/0000-0002-1156-1108
https://doi.org/10.3390/s23042208
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042208?type=check_update&version=2

Sensors 2023, 23, 2208 2 of 26

sensors, such as LiDAR, GPS, and camera devices for vehicle detection are better, but
deployment is costly and influenced by environmental factors [7,8]. With the advanced
development of convolutional neural networks, network architectures such as R-CNN
(region-based convolutional neural network) [9], Faster-RCNN (faster region-based con-
volutional neural network) [10], SSD (single shot multibox detector) [11], and YOLO [12]
and other new network architectures have emerged and are applied to image classification,
object detection, and other fields [13]. Compared with two-stage networks such as R-CNN
and Faster-RCNN, the single-stage YOLO series of networks treats object detection as a
regression problem to solve; thus, it has higher detection speed [14].

FPGAs are semicustom circuits that have a lower latency and higher parallelism
capability than CPUs and have a lower power consumption and lower cost than GPUs.
Compared to ASIC, they have a shorter design cycle, are more iterable, and are less costly.
With the rapid development of deep learning frameworks, FPGAs are the best platform for
the deep learning model forwarding inference acceleration [14].

There are still many challenges in FPGA hardware acceleration. The performance
of hardware acceleration is directly related to the on-chip resources of FPGAs. How to
use limited hardware resources to design an efficient hardware acceleration architecture
is a very important research problem. For the application of the YOLO series neural
network, which is computationally intensive and has huge parameters, a high memory
access frequency, and complex control logic, improving the acceleration performance
involves two difficulties: optimizing the computing process and optimizing the memory
exchange. In order to improve the accuracy and quantity of vehicle detection, networks
with higher accuracy are needed. However, due to the huge amount of network parameters
and computation, these networks will bring high resource and computation costs [15]. How
to reduce the parameter amount and algorithm complexity to improve the acceleration
performance becomes one of the difficulties. In addition, in the process of data exchange
between the on-chip and off-chip, due to the lack of the effective organization of data, the
utilization of bandwidth resources is insufficient and the efficiency of parallel reading and
writing is low, thus becoming a bottleneck that restricts efficient computing [16]. Optimizing
the data organization and memory exchange strategy to reduce the communication cost
between the on-chip storage and off-chip memory is another optimization route.

There have been many studies focusing on the FPGA-based convolutional neural
network acceleration. However, the research of transplantation optimization for large
models remains in theoretical research and fails to combine with specific scenarios for
application deployment. Therefore, taking vehicle tracking and counting as the specific
application scenario, we study the deployment of the YOLO series network acceleration
on the FPGA side from the two aspects: the neural network compression and hardware
accelerator design. In addition, we retrain the appearance feature extraction network of
the Deepsort algorithm based on the self-generated dataset for vehicle tracking. The main
contributions of this work are summarized as follows:

• We trained the YOLOv3 and YOLOv3-tiny networks using the UA-DETRAC dataset [17].
Then, we incorporate the dynamic threshold structured pruning strategy based on
binary search and the dynamic INT16 fixed-point quantization algorithm to compress
the model.

• A reidentification dataset was generated based on the UA-DETRAC dataset and used
to train the appearance feature extraction network of the Deepsort algorithm with a
modified input size to improve the vehicle tracking performance.

• We designed and implemented a vehicle detector based on an FPGA using high
level synthesis (HLS) technology. At the hardware level, optimization techniques
such as the Im2col+GEMM and Winograd algorithms, parameter rearrangement, and
multichannel transmission are adopted to improve the computational throughput
and balance the resource occupancy and power consumption. Compared with the
other related work, vehicle detection performance with higher precision and higher
throughput is realized with lower power consumption.

Sensors 2023, 23, 2208 3 of 26

• Our design adopts a loosely coupled architecture, which can flexibly switch between
the two detection models by changing the memory management module, optimizing
the balance between the software flexibility and high computing efficiency of the
dedicated chips.

The rest of this paper is organized as follows: Section 1 reviews the background
knowledge and related work on the simplification of deep neural networks (DNNs) and
the convolutional neural network acceleration based on FPGAs. Section 2 introduces our
strategies of neural network compression and accelerator optimization. Section 3 presents
our experiments and analysis. Finally, we conclude the paper in Section 4.

2. Background and Related Work
2.1. YOLO

YOLO was proposed by Joseph Redmon et al. in 2016. Compared with other networks
in the YOLO series, YOLOv3 and YOLOv3-tiny achieves a good balance in accuracy and
detection speed, and is easy to transplant to hardware.

Figure 1 shows the network structure of YOLOv3-tiny. The network has a total of
24 layers, including 13 convolutional layers, 6 max-pooling layers, 2 routing layers, 1 up-
sampling layer, and 2 output layers. The size of the convolution kernel of the convolution
layer is 3× 3 and 1× 1. The model input uses RGB images with a size of 416× 416× 3.
The prediction branches are predicted using two scales, 13× 13 and 2626.

Figure 1. Network structure of YOLOv3-tiny.

The network structure of YOLOv3 is similar to that of YOLOv3-tiny, except that it
does not use max-pooling layers and uses the residual network, thereby constructing
DarkNet-53 as the backbone with deeper network layers and one more prediction branch
than YOLOv3-tiny, with a scale of 52× 52.

2.2. Deepsort

Deepsort [18] is an online multitarget tracking algorithm. It considers both the detec-
tion frame parameters of the detection result and the appearance information of the tracked
object, combining the relevant information of the previous frame and the current frame for
prediction without considering the whole video at the time of detection. In the first frame
of the video to be detected, a unique track ID is assigned to the detection frame of each
target. Then, the detection object in the new frame is associated with the previously tracked
object using the Hungarian algorithm [19] to obtain a global minimum of the assignment
cost function. The cost function contains the spatial Mahalanobis distance [20] d(1), which
measures the difference between the detected frame and the position predicted based on
the previously known position of the object, and a visual distance d(2), which measures
the difference between the appearance of the currently detected object and the previous
appearance of the object. The cost function for assigning the detected object j to track i

Sensors 2023, 23, 2208 4 of 26

is shown in (1), the spatial martingale distance is shown in (2), and the visual distance is
shown in (3). The meanings of the parameters in the formula are shown in Table 1.

Ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j). (1)

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi). (2)

d(2)(i, j) = min(1− rT
j r(i)k |r

(i)
k ∈ Ri). (3)

Table 1. Meanings of the variables.

Variables Meaning

λ
The parameter for regulating the effect of the spatial Mahalanobis distance
and visual distance on the cost function.

yi The state vector of the i-th prediction frame.

Si
The covariance matrix of the average tracking results between the detection
frame and track i.

dj Detection box j.
ri The appearance descriptor extracted from detection box j.
Ri The last 100 appearance descriptor sets associated with track i.

2.3. Simplification of the DNN

Neural networks used in object detection, such as vehicle detection, usually require
deeper network layers and more complex network structures. Therefore, such large-
scale parameters and high computational complexity pose a challenge to the end-to-end
deployment of DNNs.

Many studies have proposed various methods for neural network compression and
simplification, including network pruning, weight quantization, approximated computing
and low-rank decomposition of the weight matrix. Han et al. [21] first proposed fine-
grained neural network pruning based on the finding demonstrating that removing weight
parameters with neural network median values close to 0 does not affect the network perfor-
mance. Such unstructured pruning granularity for a single neuron generates many sparse
matrices. However, sparse matrix operations cannot use the existing mature BLAS library to
obtain additional performance gains. To keep the model in a regular computational pattern
after pruning, attention has been given to structured pruning, which achieves compression
by filtering out the channels and convolution kernels below a certain threshold according
to a custom condition. Hao et al. [22] proposed a method for pruning filters by estimating
the ability of filters to affect the network using the L1 paradigm, but the pruning caused a
large loss in detection accuracy. Yang et al. [23] treated the determination of the pruning
ratio as a search problem and used a search algorithm to calculate the pruning ratio for each
layer as a way to reduce the loss due to pruning. Liu et al. [24,25] proposed and improved
a channel pruning method based on sparse training that compresses the coefficients of the
batch normalization (BN) layer by sparse training and then determines and removes the
unimportant channels according to the coefficient . After the pruning is completed, the
model is fine-tuned to recover the accuracy, which greatly reduces the model parameter
redundancy while minimizing the loss. Qiu et al. [26] proposed a dynamic precision data
quantization method to quantify the weight values, bias values, and intermediate results
into fixed points of different precision. Cardarilli et al. [27] showed that using approximate
computing techniques can reduce power consumption in neural networks.

2.4. CNN Accelerator Based on an FPGA

There has been much research focusing on the FPGA-based acceleration of convo-
lutional neural networks. Ma et al. [28] improved the performance of the accelerator by
performing quantitative analysis and optimizing CNN loops to reduce memory access and

Sensors 2023, 23, 2208 5 of 26

data exchange, but their accelerator did not validate the acceleration performance for large
networks. Zhang et al. [29] proposed optimizing the on-chip cache using ping-pong opera-
tions to hide the data transfer latency and designed it to search the accelerator optimization
space using the roofline model. However, they only designed the hardware architecture.
Lu et al. [30] first used the Winograd algorithm in CNN operations to reduce the convolu-
tional computational complexity and proposed row buffers to achieve efficient data reuse.
Later, in the literature[31], the Winograd algorithm was proposed to be combined with the
CNN sparsity to improve accelerator performance, but the model used in its evaluation was
simple. Bao et al. [32] used a fixed-point quantization approach to reduce FPGA resource
consumption and proposed a buffer pipeline approach to further improve the accelerator
efficiency while reducing the resource and power overhead. Wang et al. [33] introduced
a new unstructured sparse convolution algorithm using a lower quantization method
and an end-to-end design space search sparse convolution dedicated circuit architecture,
which achieved high computational efficiency, but its performance-to-power ratio was
relatively low.

The above studies have made great contributions to deploying AI directly on edge
devices, but as the models become more complex, research on the optimization of large
models remains in theoretical studies and fails to be deployed in conjunction with specific
scenario applications.

The neural network acceleration contains complex operators and memory manage-
ment modules, so using HDL (Hardware Description Language) to directly describe the
framework has a long development cycle, making it difficult to explore the design space.
HLS uses C/C++ to describe the framework from a high level. It greatly improves develop-
ment efficiency due to the rapid conversion of high-level code to FPGA implementation [34]
. Many studies on neural network acceleration have been implemented based on HLS, and
the HLS tools for neural network acceleration have been improved and expanded to make
development easier and faster. We designed and implemented a vehicle detector based on
an FPGA using HLS.

3. Optimization and Implementation of the Vehicle Detector

Combined with the background knowledge in Section 1, when designing the vehicle
detector, we use the special vehicle detection dataset UA-DETRAC to conduct basic training
for the models. Then, we use a binary search-based dynamic threshold structured pruning
method to reduce the number of model channels. After pruning, the model was quantified
into 16-bit fixed points. Meanwhile, we generate a vehicle tracking dataset REID-UA-
DETRAC from the UA-DETRAC dataset and use it to train the appearance feature extraction
network in the Deepsort algorithm to improve the tracking performance on vehicles. In
terms of hardware optimization, we improve the detection speed of video streams from the
perspectives of optimizing the memory transmission and algorithm complexity.

3.1. Model Compression
3.1.1. Structured Pruning Based on Dynamic Threshold of Binary Search

Model pruning is still the most effective method of neural network compression
thus far, and it reduces the storage space and inference time required for the model by
eliminating parameters from the model that have little impact on the detection effect [35].

The workflow of the structured pruning based on the dynamic threshold of the binary
search adopted in this paper is shown in Figure 2. It can be described as multiple iterations
of the following process on the base-trained model. Sparse training is first performed
using a sparse regularization algorithm. Then, we determine the max pruning threshold
based on the distribution of scale factors to remove channels whose contribution values
are less than the threshold. In order to compress the model as much as possible, we used
the binary search method when determining the pruning threshold in each round, and
performed multiple iterations with 50% as the starting point to achieve the best balance

Sensors 2023, 23, 2208 6 of 26

between pruning rate and accuracy. Finally, the knowledge distillation strategy is used to
fine-tune the network accuracy.

Basic

Training

Sparse

regularizati

on training

Trim small

factor

channels

Fine-tuning
Simplify

the network

Binary search

pruning

thresholds

Figure 2. Strategy of dynamic threshold pruning.

Sparse regularization training first introduces a scaling factor for each channel, which
is used to multiply with the output of that channel. The scaling factors are trained jointly
with the network weights and are sparsely regularized during the training to identify
insignificant channels. The objective function of the sparse regularization training is shown
in (4), where (x, y) represents the input and target of training and W represents the trainable
weight. The first term represents CNN training losses, g(·) is the sparse penalty function for
the scaling factor, and g(s) = |s|. λ is used to balance the effect of two terms as the result.
We use the subgradient descent algorithm to optimize the nonsmooth L1 penalty term.

L = ∑
(x,y)

l(f (x, W), y) + λ ∑
γ∈Γ

g(γ). (4)

The structure of the network after sparse regularization training is shown in Figure 3a.
We prune the channels whose contribution value is less than the threshold value to obtain
the network structure, as shown in Figure 3b.

Cin

Ci4

Ci3

Ci2

Ci1

0.768

...

0.001

0.578

0.002

0.285

Cj2

Cj1

Cin

Ci3

Ci1

0.768

...

0.578

0.285

Cj2

Cj1

Pruning

i-th conv-layer
Channel scaling

factors

(i+1)=j-th
conv-layer

(a) (b)

i-th conv-layer
Channel scaling

factors

(i+1)=j-th
conv-layer

Figure 3. Strategies for sparse regularized channel pruning. (a) Structure before pruning. (b) Structure
after pruning.

3.1.2. Dynamic 16-bit Fixed-Point Quantization

When the model is trained in the GPU, it usually uses a 32-bit floating point to express
the weight, gradient, and activation value of the network. Using floating-point operations
increases the overhead of the computational unit; thus, currently, lower bit-width fixed-
point numbers are usually used for the inference process of neural networks. We carried out
the dynamic 16-bit fixed-point quantization for weight bias parameters, feature mapping,
and intermediate results in three quantization stages [36]. The conversion of fixed-point
and floating-point numbers is shown in Equations (5) and (6), where xq is a fixed-point
number, x is a floating-point number, and Q is used to specify the base point position of the
fixed-point number.

xq = (int)x ∗ 2Q. (5)

Sensors 2023, 23, 2208 7 of 26

x = (f loat)xq ∗ 2−Q. (6)

For a given fixed-point number, its actual floating-point value is a function of the bit
width w and the exponent character Q, as shown below:

Vf ixed = f (w, Q) =
w−1

∑
i=0

Bi · 2−Q · 2i, Bi ∈ 0, 1. (7)

In the stage of quantifying the weight values and bias values, the optimal Q values are
analyzed for each layer dynamically using the approach shown in Equations (8) and (9), so
that the absolute error sum of the original value of the weight bias and the quantized value
is minimized. W l

f loat and bl
f loat are 32-bit floating-point values of the l-th layer weights and

biases, respectively, and W l
f ixed(w, Q) and bl

f ixed(w, Q) are 16-bit fixed-point values of the
l-th layer weights and biases, respectively.

Qd = argmin
Q

∑ |W l
f loat −W l

f ixed(w, Q)|. (8)

Qd = argmin
Q

∑ |bl
f loat − bl

f ixed(w, Q)|. (9)

In the stage of quantization of inputs and outputs between layers, we find the optimal
Q value for each layer of the input–output feature map, and the optimal Q value is calcu-
lated as shown in Equations (10) and (11). For example, the RGB value of the input image
is scaled to the [0,1] interval in the preprocessing stage, and Q = 14 can be used to quantize
the input of the first layer when the bit width w = 16.

Qd = argmin
Q

∑ |Il
f loat − Il

f ixed(w, Q)|. (10)

Qd = argmin
Q

∑ |Ol
f loat −Ol

f ixed(w, Q)|. (11)

In the stage of quantifying the intermediate results, we find the best Q value for each
layer of intermediate data by using the approach shown in (12).

Qd = argmin
Q

∑ |Interl
f loat − Interl

f ixed(w, Q)|. (12)

By quantifying in the above way, the model size can be further reduced to 50% after pruning,
reducing the consumption of computing, memory, and bandwidth resources.

3.2. Self-Generated REID-UADETRAC Dataset

The Deepsort algorithm uses a small CNN to extract the appearance features of the
detected target. For each detected frame, the similarity of the detected target in the current
frame is compared with the appearance features previously saved. The original network is
used to extract the appearance features of pedestrians; thus, the default width×height of
the input is 64× 128. To ensure no distortion of the input feature information, we changed
it to 128× 128 to better conform to the size of vehicles in the monitoring video stream.

To adapt the Deepsort algorithm to vehicle tracking, we need a large dataset to train
the vehicle appearance feature extraction network. Currently, there are few reidentification
datasets based on the roadside traffic monitoring of vehicles. Therefore, based on the vehi-
cle recognition information and detection frame information provided by UA-DETRAC,
we generated the vehicle reidentification dataset, REID-UA-DETRAC. To ensure the effec-
tiveness of training, we selected vehicles that appeared more than 200 times as valid data.
The generated dataset contained 1053 identities and 606,007 images in total. Part of the
generated dataset is shown in Figure 4.

Sensors 2023, 23, 2208 8 of 26

Figure 4. Images from the REID-UADETRAC dataset.

3.3. Overview of the Accelerator Architecture

Based on the YOLOv3 and YOLOv3-tiny models, we designed the architecture of the
vehicle detection accelerator. All kinds of calculations required by the model are optimized
and encapsulated into the corresponding calculation modules in the FPGA. The overall
architecture of the accelerator is shown in Figure 5.

D
R

A
M

C
o

n
tro

ller

Image

processing

Data

quantification

Host FPGA

NMS

Deepsort

DMA0

DMA1

DMA2

DMAm+n

Read

&

Write

Buffer

controller

GEMM

Maxpooling

Upsampling

W&B

pixels

pixels

pixels

W&B

pixels

pixels

pixels

detections

data

Winograd

Memory

management

Figure 5. Overview architecture of the accelerator.

The accelerator consists of a host computer and an FPGA. The main tasks of the
host are image preprocessing, data quantization, nonmaximal suppression, and Deepsort
task scheduling. The host uses the controller to schedule the flow of data and uses the
memory manager to manage the interaction between DRAM and DMA. The FPGA is
responsible for the accelerated calculation of various computation-intensive tasks. The
host loads the configuration information of the current model at the beginning, and stores
the pre-quantized weight and bias data of the model in a continuous memory. Then, the
host extracts the input video into frame images and sends them to the controller module
in sequence. First, the control module sends the image to the data quantification module.
Then, it transfers the quantized image, the weight, and bias data of the current layer to
the FPGA on-chip memory through the optimized transmission method of ping-pong
double buffering and multi-channel transmission. After the acceleration of a specific
computing module, the result is sent back to the off-chip DRAM through the above method.
After completing the prediction of an image, the host performs the NMS (Non Maximum
Suppression) operation and transmits the result to the Deepsort tracking module. Finally, it
draws the tracking result into a new video stream in real time.

Sensors 2023, 23, 2208 9 of 26

3.4. Strategies of Memory Optimization

DNNs contain a large number of parameters; however, the on-chip Block Random
Access Memory (BRAM) cannot carry all the data. Storing all the parameters in the off-chip
Dynamic Random Access Memory (DRAM) will significantly increase the access latency.
Therefore, we use DRAM to store image data and weight data. During the operation, the
data blocks involved in the operation are transmitted to BRAM, and the results are written
back to DRAM after the operation is completed.

3.4.1. Model Configurability and Memory Interlayer Multiplexing

The accelerator we proposed encapsulates the operators required by the YOLOv3
and YOLOv3-tiny models. In the stage of designing the overall architecture, we take into
account the configurability of the accelerator, and design two memory management drivers
for the two models, respectively. Such a design can switch detection models by adaptively
or manually switching memory management drivers based on real-time traffic and weather
conditions. When the detection environment is poor, using YOLOv3 can achieve a higher
accuracy. However, when the traffic increases, the calculation using YOLOv3 takes a long
time, and the real-time detection effect can be achieved by using YOLOv3-tiny. Based on
this, when the traffic flow is high (the detection results of 10 consecutive frames are more
than 15 vehicles), the software automatically switches to use the memory management
driver of YOLOv3-tiny to improve the detection speed. When the detection environment
is not ideal (rainy days, night scenes), we can manually switch to the YOLOv3 model
to obtain a higher detection accuracy. We read the parameters of both models into the
specified memory in the program loading stage, and the switching action is after the end
of a picture detection, so there is almost no switching delay. According to the accuracy
priority and speed priority, the accelerator can better adapt to the change in the detection
environment. The following is an introduction to the two memory driver designs.

Since the input of YOLOv3 and YOLOv3-tiny is the output of the previous layer
except for the first layer, we use the strategy of memory interlayer multiplexing to reduce
DRAM consumption.

Figure 6a illustrates the intermemory multiplexing strategy adopted by YOLOv3-tiny.
The memory management module of YOLOv3-tiny uses two caches of the same size, each
416× 416× 3, which is the largest feature map of all layers. Typically, outputs in adjacent
layers are written to the head of the first cache and the tail of the second cache. The Route
layer needs to stitch the results of two layers. For example, the output of YOLOv3-tiny’s
Layer(20) is the stitched result of Layer(8) and Layer(19) outputs; thus, the output of the
middle layer needs to be sequentially cached at the position indicated by top1 until the
results of Layer(8) and Layer(19) are stitched at the bottom of the second cache, as shown
in Figure 6b, and used as Layer(20)’s output.

top0

top1

bottom

416x416x16

416x416x16

...

in_layer(i)/

Out_layer(i-1)

...

out_layer(i)/

in_layer(i+1)

A
d

d
ress in

crease

...

in_layer(j)/

Out_layer(j-1)

top0

top1

bottom

416x416x16

416x416x16

... Out_layer(8)

...

...
Out_layer(19)

Out_layer(20)

in_layer(i)/

Out_layer(i-1)

in_layer(j)/

Out_layer(j-1)

(a)Memory management for YOLOv3-tiny (b) Memory management for route layer

...

Figure 6. Diagram of the memory interlayer multiplexing strategy.

Sensors 2023, 23, 2208 10 of 26

The interlayer multiplexing strategy adopted by YOLOv3 is the same as that of
YOLOv3-tiny. Since the YOLOv3 network has more layers and a more complex model, its
memory management module consists of five caches of size 416× 416× 3.

3.4.2. Parameter Rearrangement in Memory

The convolution operation requires the parallel calculation of the results of all channels
and then summing them. The original weight parameters are stored in memory in row
priority order, which requires more access times. According to the block division of the
weight of each layer, we reordered the weight parameters of each layer in advance, which
reduced the accessing delay time during the operation [37]. The parameter conventions are
shown in Table 2.

Table 2. Parameter conventions for convolution operations.

Symbol Meaning

I The input feature map.
W The weights of the convolution layer.
B The bias of the convolution layer.
O The output feature map.
IH The height of the input feature map.
IW The width of the input feature map.
IC The number of input channels.
K The kernel size.

OH The height of the output feature map.
OW The width of the output feature map.
OC The number of output channels.
pad The padding.
S The stride.

Tx Parallelism of multiply-add operations on input feature maps.
Ty Parallelism of multiply-add operations on output feature maps.

Taking the weight parameters of the 12th layer of YOLOv3-tiny as an example, as shown
in Figure 7, there are 1024× 512× 9(X×Y× K2) parameters, where X = 1024, Y = 512, and
K2 = 9. X, Y represent the number of input and output feature maps, respectively. When
the convolutional loop block is divided according to Tx = 32, Ty = 4, and the weight
parameters are stored in row priority order, 524,288 parameter blocks with a size of 9
need to be read from the memory in the order of the arrow. After rearrangement, the
parameters are stored continuously, and 4096 parameter blocks with a size of 32× 4× 9
should be read from memory in the order of the arrows. Parameters’ prearrangement
reduces memory reads.

...

...

...

...

...

...

...

...

...

...

Ty×K2

Tx×Ty×K2

(X
×

Y
)/(T

x×
T

y)

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

......

...

...

...

Y×K2

T
x

Figure 7. Parameter rearrangement.

Sensors 2023, 23, 2208 11 of 26

3.4.3. Multichannel Transmission

We adopt the multichannel transmission strategy shown in Figure 8 to optimize data
transmission and further reduce the transmission delay.

DMA0

DMA1

DMA2

DMAm+n

W&B

pixels

pixels

pixels

W&B

pixels

pixels

pixels
...

...

DRAM BRAM

...trow

tcol

Tx/n Ty/m

tr

tc

Figure 8. Multichannel transmission.

The input characteristic diagram is transmitted by n channels in parallel, and the
output characteristic diagram is transmitted by m channels in parallel. After the current
layer is partitioned, each incoming channel reads the pixel blocks corresponding to d Tx

n e
feature maps from DRAM into the chip each time. The size of each input pixel block is
trow× tcol = ((tr − 1)× S + K)× ((tc− 1)× S + K). After the operation is completed,
each output channel reads d Ty

m e feature image pixel blocks with size tr× tc from the BRAM
and writes them out of the chip. Due to the small amount of weight parameter data, DMA0
is used for transmission, DMA1 to DMAn are used to transmit the input characteristic
map, and DMAn+1 to DMAn+m are used to transmit the output characteristic map.

After an exhaustive architecture search, we give the values of these parameters to
determine the final accelerator architecture: Txmax = 32, Tymax = 4, n = 4, m = 2.

For the convolutional layer,Tx and Ty can be described as (13) and (14).

Tx = min(X, Txmax). (13)

Ty = min(Y, Tymax). (14)

The Tx and Ty of the pooling layer can be described as (15).

Tx = Ty = min(Txmax, Tymax, X). (15)

The architecture determined by the above parameter reduces the number of feature
maps transmitted by each channel from Tx + Ty to Tx

n or Ty
m without causing too much

competition, which brings us the best transmission delay.

3.4.4. Multi-Level Pipeline Optimization

Due to the dependence of data transfer between two adjacent layers and the convo-
lutional module needing to traverse the output of all channels of the previous layer, the
interlayer flow optimization cannot be carried out. However, there is no data dependence
among all channels in the calculation of the pooling layer, so some data from the upper
layer can be used for direct calculation. Therefore, we fuse the convolution module with
the pooling module to reduce the triple access of the two operations to one, as shown in
Figure 9.

Sensors 2023, 23, 2208 12 of 26

Convolution

module

Maxpooling

module
DRAM

AX14

Line

buffering
Im2col GEMM

Output

buffer

Interlayer pipeline

In-layer pipeline

Figure 9. Pipeline processing.

For the convolution module designed with the Im2col+GEMM algorithm, we use the
in-layer pipeline design shown in Figure 9. The entire convolution module is optimized
into a four-stage pipeline, corresponding to four subtasks: the line cache, Im2col function,
GEMM calculation, and result output.

3.5. Strategies of Computational Optimization
Multiscale Convolution Acceleration Engines

The convolution operation is used for feature extraction of images, and its computa-
tional complexity is O(OH×OW×K2× IC×OC) = O(n6). It is the most computationally
resource-consuming operation in the YOLO family of networks and is our main target
for acceleration. The convolution operation can be described by (16). After omitting the
index symbol of the tensor operation, Equation (16) can be simplified to (17). A schematic
diagram of the convolution calculation is shown in Figure 10.

O[oc][oh][ow] =
C−1

∑
c=0

K−1

∑
i=0

K−1

∑
j=0

I[ic][S ∗ oh + i][S ∗ ow + j]×

W[oc][ic][i][j] + B[oc],

0 ≤ oc < OC, 0 ≤ ic < IC, 0 ≤ i, j < K

OH =
IH − K + 2pad

S
+ 1,

OW =
IW − K + 2pad

S
+ 1

(16)

O = I ×W + B (17)

CNN computing requires a large amount of memory, but the FPGA’s on-chip storage
resources cannot meet the requirement of storing such a large amount of data at a time [38].
Therefore, based on the local principle of the convolution computing data, the input
feature map data and corresponding weight parameters can be divided into blocks. Each
time, 2 pixel blocks of size Tx × tir × tic and corresponding weight parameters of size
Tx× Ty× K2 are read from the off-chip DRAM. After all the on-chip data are calculated,
the result of size Ty× tor× toc is written back to the off-chip DRAM. The calculation of tor
is shown below:

tor =
tir− K + 2pad

S
+ 1 (18)

We deeply analyze the characteristics of convolution operations with kernel sizes of 1× 1
and 3× 3, and design two convolution acceleration engines using the Im2col+GEMM [39]
and Winograd [40] algorithms, respectively, so as to reduce the computational complexity
and resource consumption.

Sensors 2023, 23, 2208 13 of 26

Weight Input Feature map Output Feature map

OC

K

K

IH

IW

IC

IC

OC

OH

OW

Figure 10. Convolutional calculation.

Im2col+GEMM: The Im2col+GEMM algorithm reduces the time complexity of the
convolution operation from O(n6) to O(n3) by using the matrix multiplication instead of
the convolution, as shown below:

The GEMM algorithm needs to stretch the convolution kernel and feature map into
the matrix form. This transformation process not only includes the delay increase caused
by the multiple access but also requires more storage space to temporarily store the matrix
form of the feature map for which the kernel size is larger than 1× 1. Figure 11 illustrates a
2D convolution operation with a 2× 2 convolution kernel, which requires 4× 4 space to
temporarily store the matrix form of a 3× 3 feature map. Without a loss of generality, for
the convolution kernel with size K× K, the im2col+GEMM algorithm is used to convolve
the feature map with size IH × IW. Combined with (18), the ratio of the spatial complexity
to be improved is shown below:

space_ratio =
K2 ×OH ×OW

IH × IW
(19)

1 2

4 5

37 47

67 77

1 2 4 5

37 47 67 77

Kernel
Input Feature map

Output Feature map
3

6

7 8 9

1 2

3 4

1 2 3 4

2 3

4 5

5

7

5 6 8

6

8

9

Kernel matrix

Input Feature map matrix

Output Feature map matrix

 =

 =

Convolution

Matrix

Multiplication

Figure 11. Two-dimensional convolution with kernel size 2× 2.

The space complexity is proportional to the convolution kernel size K2. The convo-
lution kernel with a size of 1× 1, as shown in Figure 12, does not consume extra space
to store the feature graph matrix; thus, the im2col+GEMM algorithm is more suitable
for acceleration.

Sensors 2023, 23, 2208 14 of 26

1 2

3 4
2

2 4

6 8

1 2 32 4 2 4 6 8

Kernel

Input Feature map Output Feature map

Kernel matrix Output Feature map matrixInput Feature map matrix

 =

 =

Convolution

Matrix

Multiplication

Figure 12. Two-dimensional convolution with kernel size 1× 1.

Figure 13 illustrates the convolution module based on the Im2col+GEMM algorithm.
DMA transfers a feature map with a size of Tx × tr × tc and corresponding weight pa-
rameters with a size of Tx× Ty to the on-chip memory each time. The input feature map
is stretched into Tx vectors with length tr × tc by the Im2col function in the direction
indicated by the arrow. Then, we send Tx× Ty weights and the feature map vector into a
parallel multiplier for the dot product operation. After this, Tx× Ty intermediate results
with a length of tr× tc are divided into Ty groups according to the output dimension and
sent to the parallel adder. The additional result of each group is the result of a certain layer
of the output feature graph. After all groups are operated by the adder, the final result is
converted into the matrix form of Ty× tr× tc as the output.

Tx

1

1

TxTy

...

tc

tr

Im2col

Feature map Kernel

...

...
...

...

Tx

tr×tc

PE

PE

PE

...

...

...

...

...

...

...

...

...

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

...

Parallel

Addition Tree

...

Ty

tc

tr

Output

tr×tc

Parallel

Multiplication Tree

Figure 13. Architecture of the convolution module based on the Im2col+GEMM algorithm.

Winograd convolution:
For the convolution operation with a convolution kernel size of 3× 3, we designed a

Winograd convolution engine to accelerate the operation.
The Winograd algorithm accelerates the convolution operation by significantly re-

ducing the multiplication operation in the convolution [41]. F(m×m, r× r) represents a
two-dimensional convolution function; its input is a convolution kernel of size r× r, and
the output is an output feature map of size m×m. We use Y to represent the output of this
function, which can be expressed in the form of Equation (20).

Y = AT [[GWGT]� [BT IB]]A (20)

In Equation (22), W represents the convolution filter, I represents the input feature
map, G is the convolution kernel transformation matrix of size r(m + r− 1), A is the output
feature map transformation matrix of size m(m + r− 1), and B is the input feature map

Sensors 2023, 23, 2208 15 of 26

transformation matrix of size (m + r − 1)2. AT , BT , GT are transpose matrixs of A, B, G.
The calculation of the convolution using the sliding window algorithm requires m2r2

multiplication operations, which can be reduced to (2m− 1)(2r− 1) operations by using
the Winograd algorithm. The time complexity decreases from O(n4) to O(n2) when we
ignore the effect of the addition operations.

Figure 14 illustrates the convolution module based on the Winograd algorithm. First,
DMA passes the feature graph with size Tx × tir × tic and the corresponding weight
parameters with size Tx× Ty× K2 into on-chip memory. Then, we transform the input
feature map and convolution kernel into the same dimension matrix and send them into
the parallel multiplication tree for the multiplication operation. After that, we fed the
intermediate result into the parallel addition tree after the matrix transformation to calculate
the convolution result.

PE

PE

PE

Tx

K

K

TxTy

...

tic

tir

...

...

Parallel

Multiplication Tree

matrix

transformation

Feature

map

Kernel

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

...

Parallel

Addition Tree

Output

Ty

toc

tor

Figure 14. Architecture of the convolution module based on the Winograd algorithm.

3.6. Max-Pooling and Upsampling Parallel Optimization

Max-pooling is a downsampling operation that selects the largest value in an image
region as the pooled value in that region based on the stride and the pooling size [42].
Pooling compresses the scale of feature maps, reduces the computational burden of models
and keeps the scale invariance and rotation invariance. The output sizes OH and OW can
be calculated as follows:

OH = OW = b IS− K
S
c+ 1,

IS = IH = IW. (21)

The max-pooling module is implemented by the comparator. Figure 15 illustrates
the composition of its hardware architecture. When the pipeline is full, n pixels at the
same position of the feature map are read in parallel in each clock cycle, and the pooling
result is obtained after the K2 parallel comparison operation in n paths and written into the
output cache.

Each max-pooling module directly reads the convolution result of the previous layer
from on-chip memory. They compare the read result with the predefined minimum value
MIN and store the larger value in register Reg, while the counter Cnt is recorded as 1. In the
next comparison, the input value and the value in the register are fed into the comparator,
while the counter Cnt increases by 1 until it increases to K2. N pooling modules run in
parallel, and the result of N feature maps can be obtained after the K2 + 1 clock cycle.

Sensors 2023, 23, 2208 16 of 26

M
U

XMIN

Input

buffer

Line
buffer

PE1

PE2

PEn

Output

buffer

Out[n]

seg1

seg2

seg3

Cnt=K2?

no

yes

>

In[n]

Reg

Figure 15. Architecture of the max-pooling module.

Upsampling is an image magnification technique that improves the image resolution
by interpolation. This operation first takes every pixel in the image and makes four copies
of it, doubling the width and height of the output feature image.

Because the upsampling calculation process is simple and the calculation scale is small,
we use the combinatorial logic circuit to implement the module. The optimization idea we
use is similar to the max-pooling module, so we will not go into detail here.

Fused Convolution and Batch Normalization Computation

Batch normalization is often used in DNNs to accelerate network convergence after
linear calculation and before nonlinear activation [43]. To reduce the computation, we
merge the BN operation into the convolution process. Equation (22) rearranges (17) to
achieve the BN of the convolution results. The parameter conventions are shown in Table 3.

Onorm =
γ√

σ2 + ε
O + (

γµ√
σ2 + ε

+ β). (22)

Table 3. Parameter conventions.

Symbol Meaning

Onorm The output of the feature map after batch normalization.
γ The parameter that controls the variance of Onorm.
σ2 The variance of O .
ε A small constant used to prevent numerical error.
O The output of the feature map.
µ The estimate of the mean of O.
β The parameters that control the mean of Onorm.

Let P = γ√
σ2+ε

and Q = (γµ√
σ2+ε

+ β); then, Equation (22) can be simplified into the
form in (23).

Onorm = PO + Q. (23)

Substituting (17) into (23), we obtain (24).

Onorm = P(I ×W + B) + Q. (24)

Sensors 2023, 23, 2208 17 of 26

Equation (22) is rearranged to obtain Wnew = PW and Bnew = PB + Q. Then, Onorm
can be described, as shown below:

Onorm = I ×Wnew + Bnew. (25)

By integrating BN with a convolution operation, computing resources and delay can
be reduced.

4. Experiments
4.1. Experimental Setup

We designed and simulated the proposed accelerator to verify the effectiveness of the
proposed optimization method. The training and pruning quantization were completed
by the NVIDIA Tesla V100 platform. The detection inference was implemented by the
CPU+FPGA heterogeneous platform. The chip we used is ZYNQ XC7Z035-FFG676-2. We
designed the IP cores of YOLOv3 and YOLOv3-tiny accelerators using Xilinx Vivado HLS
2021.2, and used Vivado 2021.2 for the synthesis and layout.

4.2. Dataset and Model Training

We used the UA-DETTAC dataset to train the YOLOv3 and YOLOv3-tiny detection
models. It is a large-scale dataset used for vehicle detection and tracking, covering 1.21 mil-
lion detection frames of 8250 vehicles under different weather and road conditions.

During training, the four categories of the dataset were merged into a single category,
called car. The same training parameters were selected in the training stages of the two
models. After basic training and pruning for the YOLOv3 and YOLOv3-tiny models, the
specific performance indices are shown in Table 4.

Table 4. Meanings of the variables.

Model Pruning Rate AP@0.5 Model Size (MB) Parameters (×103) BFLOPs

YOLOv3 0 0.671 235.06 61523 65.864
YOLOv3 85% 0.711 33.55 8719 19.494

YOLOv3-tiny 0 0.625 33.10 8670 5.444
YOLOv3-tiny 85% 0.625 1.02 267 1.402
YOLOv3-tiny 85% + 30% 0.599 0.59 69 0.735

According to the data in Table 4, the size of the pruned YOLOv3 is reduced by 85%.
The detection accuracy AP@0.5 is improved by 0.04, and the number of floating-point
calculations required for convolution is reduced by 70.4%. The size of YOLOv3-tiny after
two dynamic prunings reduced 98.2% at the cost of the mAP reduction by 0.026. The
computation of the convolution is reduced by 86.5%.

To show the detection effect more intuitively, we selected an image from the test set to
be detected using the models before and after compression, as shown in Figure 16.

The number of vehicles detected by each model is shown in Table 5. Among them,
the detection results of the YOLOv3-prune 85% model are consistent with those of the
original YOLOv3 model, both detecting 27 vehicles. The detection accuracy of the YOLOv3-
prune 85% model is slightly better than that of the original YOLOv3 model. The detection
performance of the YOLOv3-tiny-prune 85% + 30% model is slightly better than that of the
original YOLOv3-tiny model. The number of vehicles is increased from 24 to 26.

Sensors 2023, 23, 2208 18 of 26

（a）original image （b）YOLOv3

（c）YOLOv3-prune85% （d）YOLOv3-tiny

（e）YOLOv3-tiny-prune85% （f）YOLOv3-tiny-prune85%+30%

Figure 16. Comparison of detection results.

Table 5. Comparison of the numbers of detected vehicles.

Model Number of Vehicles Detected

YOLOv3 27
YOLOv3-prune85% 27

YOLOv3-tiny 24
YOLOv3-tiny-prune85% 24

YOLOv3-tiny-prune85%+30% 26

4.3. RE-ID Deepsort

The UA-DETRAC dataset is derived from the road surveillance video in real scenarios.
Therefore, the images in the test set can be converted to the video with a frame rate of 24 fps
for the tracking test of the Deepsort algorithm. A comparison of the tracking results before
and after training using the reidentification dataset is shown in Figure 17.

We further used the MOT-Metrics tool [44], combined with identification precision
(IDP), identification recall (IDR), the corresponding F1 score IDF1, false negative (FN),
false-positive (FP), ID switch (IDs), multiobject tracking accuracy (MOTA), and multiobject
tracking precision (MOTP) metrics, to measure the tracking performance. The upper arrow
↑ means the larger value shows better performance, and the lower arrow ↓ means the
smaller value shows better performance. We test using three video streams from the UA-
DETRAC test set, MVI_40701, MVI_40771, and MVI_40863, which are challenging and
cover a variety of traffic conditions during the peak traffic flow in daytime and nighttime
and on rainy days. The results of the ablation experiments are shown in Table 6.

Sensors 2023, 23, 2208 19 of 26

Figure 17. Comparison of tracking results before and after reidentification training.

Table 6. Ablation experiment of re-id training.

Model Video Stream IDF1↑ IDP↑ IDR↑ FP↓ FN↓ IDs↓ MOTA↑ MOTP↓
Deepsort MVI_40701 76.4% 82.5% 71.1% 1515 3706 53 66.8% 0.118

RE-ID Deepsort 79.6% 86.4% 76.2% 1452 3686 27 67.5% 0.117
Deepsort MVI_40771 69.3% 74.5% 66.2% 2409 2409 49 65.2% 0.153

RE-ID Deepsort 80.6% 87.2% 75.0% 1015 2348 13 69.6% 0.155
Deepsort MVI_40863 55.2% 80.6% 42.0% 2076 17746 51 39.2% 0.138

RE-ID Deepsort 56.1% 82.0% 42.6% 2037 17382 35 40.5% 0.138

The MVI_40701 video stream was captured in the daytime peak traffic flow scene and
shot from a forward overlooking angle. All evaluation indices show that the RE-ID Deepsort
algorithm has better performance than the Deepsort algorithm in tracking vehicles.

The MVI_40771 video stream was captured in the peak traffic flow scene at night
and shot from a forward overlooking angle. Compared with the Deepsort algorithm, the
RE-ID Deepsort algorithm improved significantly in several evaluation indices, especially
in reducing the number of IDs. The experimental results indicate that the model proposed
in this paper has an obvious improvement effect on vehicle detection in night scenes.

The MVI_40771 video stream was shot on a rainy day with heavy traffic. The shooting
angle was a side view. A large number of small cars were covered by large cars in this video
stream; thus, all tracking indices are inferior to those of the previous two video streams.
Except for the same MOTP, RE-ID Deepsort is better than Deepsort in other indicators.

We use the YOLOv3 and YOLOv3-tiny models after pruning and combine them with
the RE-ID Deepsort algorithm to conduct vehicle tracking counting experiments. Figure 18
is the result of vehicle detection and ID assignment. When a vehicle crosses the solid red

Sensors 2023, 23, 2208 20 of 26

line in the figure, one is added to the traffic flow counter. Figure 19 compares the traffic
flow data collected by the model with the data collected by manual statistics.

(a) (b) (c)

Figure 18. Tracking using RE-ID Deepsort. (a) Detection result of MVI_40701. (b) Detection result of
MVI_40771. (c) Detection result of MVI_40863.

Figure 19. Comparison of traffic flow statistics.

The scenarios we tested included peak traffic under the day, night, and rainy condi-
tions. In these scenarios, vehicles move slowly, and the vehicles are relatively close, which
easily generates occlusion. A car located between two large vehicles will cause missed
detection. Especially in the third scenario, the camera is located on the side of the road;
thus, cars in the middle of the road are almost completely covered by large cars on the
side road when moving slowly, resulting in poor detection results. The accuracy rates of
YOLOv3 and YOLOv3-tiny were 96.15% and 92.3% in daytime conditions, 94.0% and 92.0%
in nighttime conditions, and 81.8% and 75.8% in rainy conditions, respectively.

4.4. Comparison and Discussion

Table 7 shows our cross-platform comparison results. We implement the same
YOLOv3-tiny network in CPU and GPU, then we measure the performance using frame
per second and power consumption (W). Our proposed accelerator design has a 33× higher
energy efficiency ratio and 9.16× higher forward inference speed than the AMD Ryzen
7 5800H CPU. Compared to the NVIDIA GeForce RTX 2060, our FPGA implementation
achieves similar throughput while achieving a 9.4× improvement in energy efficiency. We
take the acceleration results based on Xilinx Vitis AI and DPU as another baseline. The
ZCU102 evaluation board uses the mid-range ZU9 UltraScale+ device. Compared with
the device we use, it has more abundant resources and better performance. However,

Sensors 2023, 23, 2208 21 of 26

the price is more expensive; our design with the Zynq-7000 outperforms it in terms of
cost efficiency and energy efficiency. Compared with the yolov3_adas_pruned_0_9 model
implemented based on Vitis AI and ZCU102, our pruned YOLOv3-tiny model has faster
forward inference speed and higher fps. Tajar and his partner implement the YOLOv3-tiny
network for the vehicle detection on Nvidia Jetson Nano [45]. The throughput of their
solution was not sufficient for applications requiring at least 24 fps. However, we achieve
91.65 fps with the pruned YOLOv3-tiny model. We compare the cost efficiency of different
platforms, and the results demonstrate that our solution is the most cost-effective.

Table 7. Cross-platform comparison.

Item Platform CNN Model Operation
(GOP)

Throughput
(fps)

Full
Power

(W)

Efficiency
(GOPS/W)

Cost Efficiency
(GOPS/$×102)

Baseline1 CPU AMD
R75800H

YOLOv3-
tiny 0.735 10.01 45 0.16 1.96

Baseline2 GeForce RTX
2060

YOLOv3-
tiny 0.735 112.87 160 0.52 16.58

Baseline3 XCZU9EG-
FFVB1156

yolov3-adas-
pruned-0.9 5.5 84.1 - 3.71 4.16

Ref [45] Nvidia
Jetson Nano

YOLOv3-
tiny 1.81 17 10 3.08 24.62

This work Zynq-7000 YOLOv3-
tiny 0.735 91.65 12.51 5.43 46.51

Table 8 shows the comparison of our work with previous fpga-based work. Since
we designed pipeline processing based on both intralayer and interlayer granularity, the
computational efficiency is slightly higher than that of the literature [14]. The resource
consumption is slightly higher than those in the literature [14] because of the separate
upsampling computation module we designed to adapt the computation of the upsampling
layer in YOLOv3 and YOLOv3-tiny. However, due to our pruning strategy, we reduced
the computation of YOLOv3 and YOLOv3-tiny by factors of 3.4 and 7.4, respectively.
Our design has a significant increase in throughput, with a slightly better computational
performance. We doubled the performance of the convolutional computation compared
to the literature [37] due to the introduction of the Winograd convolutional acceleration
computation engine and multiple levels of pipeline processing. Since the literature [14,37]
only shows dynamic power consumption, for a fair comparison, we use dynamic energy
efficiency (GOPS/W) to compare with them and obtain a clear advantage. At the same
time, we also have better cost efficiency and DSP efficiency. Reference [33] uses lower
bit quantization precision and introduces a new sparse convolution algorithm, which
makes the DSP efficiency higher. They use an end-to-end design space search for a sparse
convolution-specific circuit architecture, making it computationally more efficient than our
design. Since our YOLOv3-tiny model is less computationally intensive after compression,
we have a higher detection speed. At the same time, our designs consume less power
and are more cost-effective. Ding et al. [46] proposed a resource-aware system-level
quantization framework, which takes into account both the accuracy of the object detection
algorithm and the hardware resource consumption during deployment. They implemented
the acceleration of the YOLOv2-tiny network on the Virtex-7 with more abundant resources
and superior performance, and achieved a high throughput. Our design deploys the more
advanced YOLOv3 and YOLOv3-tiny models at less than 10% of the overall resource
consumption of their design, and outperforms it in terms of the DSP efficiency. None of the
models in other works are trained on vehicle detection-specific datasets; thus, our model
has an advantage in vehicle detection scenarios.

Sensors 2023, 23, 2208 22 of 26

Table 8. Comparison with previous fpga-based work.

Item Ref [14] Ref [37] Ref [33] Ref [46] This Work

Basic information introduction

Platform ZYNQ XC7Z020 Zedboard Arria-10GX1150 Virtex-7:
XC7VX690T-2 Zynq-7000

Precision Fixed-16 Fixed-16 Int8 Float-32 Float-32 Fixed-16
CNN Model YOLOv2 YOLOv2 YOLOv2-tiny YOLOv2 YOLOv2-tiny YOLOv3 YOLOv3-tiny YOLOv3 YOLOv3-tiny

Dataset COCO COCO VOC VOC UA-DETRAC

Hardware resource consumption

BRAM 87.5 88 96% 1320 98.5 (19.7%) 132.5 (26.5%)
DSPs 150 153 6% 3456 301 (33.8%) 144 (16.2%)
LUTs 36 576 37 342 45% 637 560 38 336 (22.3%) 38 228 (22.2%)
FFs 43 940 35 785 717 660 62 988 (18.3%) 42 853 (12.5%)

Performance comparison

mAP 0.481 0.481 - 0.744 0.548 0.711 0.599 0.711 0.599
Operations

(GOP) 29.47 29.47 5.14 4.2 1.24 19.494 0.735 19.494 0.735

Freq (MHz) 150 150 204 200 210 230
Performance

(GOP/s) 64.91 30.15 21.97 182.36 389.90 41.39 43.47 63.51 67.91

Throughput(fps) 2.20 1.02 4.27 61.90 314.2 2.12 59.14 3.23 91.65

Efficiency comparison

Cost Efficiency
(GOPS/$×102) 44.45 20.65 15.05 17.49 46.75 28.35 29.77 43.50 46.51

DSP Efficiency
(GOPS/DSPs) 0.433 0.197 0.144 2.004 0.113 0.138 0.144 0.441 0.472

Dynamic Power
(W) 1.4 1.2 0.83 - - 1.80 1.48 1.52 1.31

Full Power (W) - - - 26 21 13.29 12.92 12.73 12.51
Dynamic Energy

Efficiency
(GOPS/W)

46.36 25.13 26.47 - - 22.99 29.37 41.78 51.84

Full Energy
Efficiency

(GOPS/W)
- - - 7.01 18.57 3.11 3.36 4.99 5.43

Sensors 2023, 23, 2208 23 of 26

4.5. Scalability Discussion

To cope with the demand of detecting multiple video streams at one intersection
in practical applications, we implemented a design of deploying multiple accelerator
modules on-chip xc-7z035-ffg676-2. The experimental results shown in Table 9 show that
the detection throughput of the Fixed-16 precision YOLOv3-tiny model reaches 168.72 fps,
which satisfies the demand for the simultaneous detection of up to six real-time video
streams with a frame rate of 25 fps at the same intersection.

Table 9. Performance and power consumption of the dual.

Precision Float-32 Fixed-16

Platform Zynq-7000
Freq (MHz) 200 209

BRAM 230.5 263
DSPs 602 294
LUTs 89,014 91,108
FFs 149,259 89,148

CNN Model YOLOv3 YOLOv3-tiny YOLOv3 YOLOv3-tiny
Performance (GOP/S) 78.84 82.80 115.96 124.01

Throughput (fps) 4.04 112.66 5.95 168.72
Full Power (W) 16.72 16.06 15.64 15.18

Our acceleration architecture currently supports the acceleration of three operators:
convolution, upsampling, and max-pooling. Many auxiliary functions come from darknet,
so it has good support for YOLO series networks. It also supports YOLOv2 and YOLOv2-
tiny. Since their detection performance is not as good as YOLOv3 and YOLOv3-tiny, we
do not compress them. The inference speeds of the original YOLOv2 and YOLOv2-tiny
are 433 ms and 72 ms, respectively. It can support YOLOv4 network by adapting the
memory management driver. In order to adapt to YOLOv5, the focus structure needs to
be optimized.

By adapting memory management drivers and auxiliary functions such as load_network
and get_detections, our acceleration architecture can be applied to other networks such as
SSD, ResNet, and MobileNet.

5. Conclusions and Future Work

We implemented a scalable vehicle detector based on the FPGA and the YOLO ob-
ject detection algorithm using HLS. In terms of model compression, we incorporate the
dynamic threshold structured pruning strategy based on the binary search and the dy-
namic INT16 fixed-point quantization algorithm to significantly reduce the model size
and computation. In terms of vehicle tracking, we generated a reidentification dataset
based on the UA-DETRAC dataset and used it to train the appearance feature extraction
network of the Deepsort algorithm with a modified input size to improve the vehicle
tracking performance. For the two convolution operations, we designed fast convolution
engines based on the Winograd and GEMM algorithms, respectively. For max-pooling
and upsampling computation in YOLOv3 and YOLOv3-tiny models, we use combinatorial
logic to implement parallel computation to improve the computational efficiency.

Compression acceleration of neural networks still has many worthy research directions.
In the future, the search for network structures suitable for solving specific problems using
the optimization scheme of neural architecture searches (NASs) can be used as a research
direction for network compression. In terms of hardware acceleration, the current neural
network accelerators usually only support a few network frames, and the generalization of
acceleration frames is also worthy of further research.

Sensors 2023, 23, 2208 24 of 26

Author Contributions: Conceptualization, J.Z. and B.L.; methodology, J.Z. and B.L.; software, J.Z.
and B.L.; validation, J.Z., B.L. and S.L.; formal analysis, J.Z., B.L. and S.L.; investigation, J.Z., B.L.
and Q.Z.; resources, J.Z., B.L., S.L. and Q.Z.; data curation, J.Z. and S.L.; writing—original draft
preparation, J.Z. and B.L.; writing—review and editing, J.Z., B.L. and S.L.; visualization, J.Z., B.L.
and S.L.; supervision, B.L. and Q.Z.; project administration, B.L. and Q.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jan, B.; Farman, H.; Khan, M.; Talha, M.; Din, I.U. Designing a Smart Transportation System: An Internet of Things and Big Data

Approach. IEEE Wirel. Commun. 2019, 26, 73–79. [CrossRef]
2. Lin, J.; Yu, W.; Yang, X.; Zhao, P.; Zhang, H.; Zhao, W. An Edge Computing Based Public Vehicle System for Smart Transportation.

IEEE Trans. Veh. Technol. 2020, 69, 12635–12651. [CrossRef]
3. Wang, S.; Djahel, S.; Zhang, Z.; McManis, J. Next Road Rerouting: A Multiagent System for Mitigating Unexpected Urban Traffic

Congestion. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2888–2899. [CrossRef]
4. Tseng, Y.-T.; Ferng, H.-W. An Improved Traffic Rerouting Strategy Using Real-Time Traffic Information and Decisive Weights.

IEEE Trans. Veh. Technol. 2021, 70, 9741–9751. [CrossRef]
5. Heitz, D.; Mémin, E.; Schnörr, C. Variational fluid flow measurements from image sequences: Synopsis and perspectives. Exp.

Fluids 2010, 48, 369–393. [CrossRef]
6. Zivkovic, Z.; van der Heijden, F. Efficient adaptive density estimation per image pixel for the task of background subtraction.

Pattern Recognit. Lett. 2006, 27, 773–780. [CrossRef]
7. Wang, G.; Wu, J.; Xu, T.; Tian, B. 3D Vehicle Detection With RSU LiDAR for Autonomous Mine. IEEE Trans. Veh. Technol. 2021, 70,

344–355. [CrossRef]
8. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.-J. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN

for Object Detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861–1873. [CrossRef]
9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and

Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [CrossRef]
10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv.

Neural Inf. Process. Syst. 2015, 28. Available online: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028
a21ed38046-Abstract.html (accessed on 1 January 2023). [CrossRef]

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I 14; Springer
International Publishing: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 Juny 2016; pp. 779–788.

13. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

14. Pei, S.; Wang, X. Research on FPGA-Accelerated Computing Model of YOLO Detection Network. Small Microcomput. Syst.
Available online: https://kns.cnki.net/kcms/detail/21.1106.TP.20210906.1741.062.html (accessed on 1 January 2023).

15. Zhao, M.; Peng, J.; Yu, S.; Liu, L.; Wu, N. Exploring Structural Sparsity in CNN via Selective Penalty. IEEE Trans. Circuits Syst.
Video Technol. 2022, 32, 1658–1666. [CrossRef]

16. Nguyen, D.T.; Kim, H.; Lee, H.-J. Layer-Specific Optimization for Mixed Data Flow With Mixed Precision in FPGA Design for
CNN-Based Object Detectors. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2450–2464. [CrossRef]

17. Wen, L.; Du, D.; Cai, Z.; Lei, Z.; Chang, M.-C.; Qi, H.; Lim, J.; Yang, M.-H.; Lyu, S. UA-DETRAC: A new benchmark and protocol
for multi-object detection and tracking. Comput. Vis. Image Underst. 2020, 193, 102907. [CrossRef]

18. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]

19. Wright, M.B. Speeding up the hungarian algorithm. Comput. Oper. Res. 1990, 17, 95–96. [CrossRef]
20. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18.

[CrossRef]

http://doi.org/10.1109/MWC.2019.1800512
http://dx.doi.org/10.1109/TVT.2020.3028497
http://dx.doi.org/10.1109/TITS.2016.2531425
http://dx.doi.org/10.1109/TVT.2021.3102706
http://dx.doi.org/10.1007/s00348-009-0778-3
http://dx.doi.org/10.1016/j.patrec.2005.11.005
http://dx.doi.org/10.1109/TVT.2020.3048985
http://dx.doi.org/10.1109/TVLSI.2019.2905242
http://dx.doi.org/10.1109/TPAMI.2015.2437384
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://kns.cnki.net/kcms/detail/21.1106.TP.20210906.1741.062.html
http://dx.doi.org/10.1109/TCSVT.2021.3071532
http://dx.doi.org/10.1109/TCSVT.2020.3020569
http://dx.doi.org/10.1016/j.cviu.2020.102907
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1016/0305-0548(90)90031-2
http://dx.doi.org/10.1016/S0169-7439(99)00047-7

Sensors 2023, 23, 2208 25 of 26

21. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both Weights and Connections for Efficient Neural Network. Adv. Neural Inf. Process.
Syst. 2015, 28. Available online: https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.
html (accessed on 1 January 2023).

22. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2017, arXiv.1608.08710.
23. Yang, T.-J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. NetAdapt: Platform-Aware Neural Network

Adaptation for Mobile Applications. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 285–300.

24. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks Through Network Slimming. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 27–29 October 2017; pp. 2736–2744.

25. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv, 2019. arXiv.1810.05270.
26. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded

FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, New York, NY, USA, 21–23 February 2016; pp. 26–35. [CrossRef]

27. Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Matta, M.; Patetta, M.; Re, M.; Spanò, S. Approximated computing for
low power neural networks. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2019, 17, 1236–1241. [CrossRef]

28. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.; Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional
Neural Networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 22–24 February 2017; pp. 45–54. [CrossRef]

29. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York,
NY, USA, 22–24 February 2015; pp. 161–170. [CrossRef]

30. Lu, L.; Liang, Y.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs. In Proceedings of
the 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, CA,
USA, 30 April–2 May 2017; pp. 101–108. [CrossRef]

31. Lu, L.; Liang, Y. SpWA: An efficient sparse winograd convolutional neural networks accelerator on FPGAs. In Proceedings of the
55th Annual Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6. [CrossRef]

32. Bao, C.; Xie, T.; Feng, W.; Chang, L.; Yu, C. A Power-Efficient Optimizing Framework FPGA Accelerator Based on Winograd for
YOLO. IEEE Access 2020, 8, 94307–94317. [CrossRef]

33. Wang, Z.; Xu, K.; Wu, S.; Liu, L.; Liu, L.; Wang, D. Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for
YOLOv2. IEEE Access 2020, 8, 116569–116585. [CrossRef]

34. McFarland, M.C.; Parker, A.C.; Camposano, R. The high-level synthesis of digital systems. Proc. IEEE 1990, 78, 301–318. [CrossRef]
35. Yeom, S.-K.; Seegerer, P.; Lapuschkin, S.; Binder, A.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by explaining: A novel

criterion for deep neural network pruning. Pattern Recognit. 2021, 115, 107899. [CrossRef]
36. Shan, L.; Zhang, M.; Deng, L.; Gong, G. A Dynamic Multi-precision Fixed-Point Data Quantization Strategy for Convolutional

Neural Network. In Computer Engineering and Technology: 20th CCF Conference, NCCET 2016, Xi’an, China, August 10–12. 2016,
Revised Selected Papers; Springer: Singapore, 2016; pp. 102–111. [CrossRef]

37. Chen, C.; Xia, J.; Yang, W.; Li, K.; Chai, Z. A PYNQ-compliant Online Platform for Zynq-based DNN Developers. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York, NY, USA, 24–26 February
2019; p. 185. [CrossRef]

38. Qi, Y.; Zhou, X.; Li, B.; Zhou, Q. FPGA-based CNN image recognition acceleration and optimization. Comput. Sci. 2021, 48,
205–212. [CrossRef]

39. Liu, Z.-G.; Whatmough, P.N.; Mattina, M. Systolic Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile
CNN Inference. IEEE Comput. Archit. Lett. 2020, 19, 34–37. [CrossRef]

40. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021.

41. Ji, Z.; Zhang, X.; Wei, Z.; Li, J.; Wei, J. A tile-fusion method for accelerating Winograd convolutions. Neurocomputing 2021, 460,
9–19. [CrossRef]

42. Adiono, T.; Putra, A.; Sutisna, N.; Syafalni, I.; Mulyawan, R. Low Latency YOLOv3-Tiny Accelerator for Low-Cost FPGA Using
General Matrix Multiplication Principle. IEEE Access 2021, 9, 141890–141913. [CrossRef]

43. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.

44. Milan, A.; Leal-Taixe, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A Benchmark for Multi-Object Tracking. arXiv 2016.
arXiv.1603.00831.

https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.12928/telkomnika.v17i3.12409
http://dx.doi.org/10.1145/3020078.3021736
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1109/FCCM.2017.64
http://dx.doi.org/10.1145/3195970.3196120
http://dx.doi.org/10.1109/ACCESS.2020.2995330
http://dx.doi.org/10.1109/ACCESS.2020.3004198
http://dx.doi.org/10.1109/5.52214
http://dx.doi.org/10.1016/j.patcog.2021.107899
http://dx.doi.org/10.1007/978-981-10-3159-5_10
http://dx.doi.org/10.1145/3289602.3293961
http://dx.doi.org/10.3390/electronics10182272
http://dx.doi.org/10.1109/LCA.2020.2979965
http://dx.doi.org/10.1016/j.neucom.2021.06.003
http://dx.doi.org/10.1109/ACCESS.2021.3120629

Sensors 2023, 23, 2208 26 of 26

45. Tajar, T.; Alireza; Ramazani, A.; Mansoorizadeh, M. A lightweight Tiny-YOLOv3 vehicle detection approach. J. -Real-Time Image
Process. 2021, 18, 2389–2401. [CrossRef]

46. Ding, C.; Wang, S.; Wang, N.; Xu, K.; Wang, Y.; Liang, Y. REQ-YOLO: A resource-aware, efficient quantization framework for
object detection on FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Seaside, CA, USA, 24–26 February 2019; pp. 33–42.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11554-021-01131-w

	Introduction
	Background and Related Work
	YOLO
	Deepsort
	Simplification of the DNN
	CNN Accelerator Based on an FPGA

	Optimization and Implementation of the Vehicle Detector
	Model Compression
	 Structured Pruning Based on Dynamic Threshold of Binary Search
	Dynamic 16-bit Fixed-Point Quantization

	Self-Generated REID-UADETRAC Dataset
	Overview of the Accelerator Architecture
	Strategies of Memory Optimization
	Model Configurability and Memory Interlayer Multiplexing
	Parameter Rearrangement in Memory
	Multichannel Transmission
	Multi-Level Pipeline Optimization

	Strategies of Computational Optimization
	Max-Pooling and Upsampling Parallel Optimization

	Experiments
	Experimental Setup
	Dataset and Model Training
	RE-ID Deepsort
	Comparison and Discussion
	Scalability Discussion

	Conclusions and Future Work
	References

