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Abstract: Electrical impedance tomography (EIT) is non-destructive monitoring technology that can
visualize the conductivity distribution in the observed area. The inverse problem for imaging is
characterized by a serious nonlinear and ill-posed nature, which leads to the low spatial resolution
of the reconstructions. The iterative algorithm is an effective method to deal with the imaging
inverse problem. However, the existing iterative imaging methods have some drawbacks, such
as random and subjective initial parameter setting, very time consuming in vast iterations and
shape blurring with less high-order information, etc. To solve these problems, this paper proposes
a novel fast convergent iteration method for solving the inverse problem and designs an initial
guess method based on an adaptive regularization parameter adjustment. This method is named
the Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm (RS-FISTA). The
iterative solution process under the L1-norm regular constraint is derived in the LASSO problem.
Meanwhile, the Nesterov accelerator is introduced to accelerate the gradient optimization race in the
ISTA method. In order to make the initial guess contain more prior information and be independent
of subjective factors such as human experience, a new adaptive regularization weight coefficient
selection method is introduced into the initial conjecture of the FISTA iteration as it contains more
accurate prior information of the conductivity distribution. The RS-FISTA method is compared
with the methods of Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA, six different
distributions with their optimal parameters. The SSIM, RMSE and PSNR of RS-FISTA methods are
0.7253, 3.44 and 37.55, respectively. In the performance test of convergence, the evaluation metrics of
this method are relatively stable at 30 iterations. This shows that the proposed method not only has
better visualization, but also has fast convergence. It is verified that the RS-FISTA algorithm is the
better algorithm for EIT reconstruction from both simulation and physical experiments.

Keywords: EIT; RS-FISTA; image reconstruction; inverse problem; FISTA

1. Introduction

Electrical Impedance Tomography (EIT) [1] is a noninvasive tomographic technique
that visualizes the conductivity distribution in the measurement area [2]. A set of excitation
electrodes attached to the boundary inject an alternating current to construct a sensitive
field, and then the responding voltages are measured by other sensors sequentially. The
conductivity distribution of the measurement region is reconstructed by an appropriate
tomography algorithm. With the advantages of being non-damaging, noninvasive, non-
radiation, low-cost, a simple operation and providing rich functional information, electrical
impedance tomography has been researched deeply in the biomedical and industrial
fields [3]. In biomedical applications, EIT has been used for lung imaging, which is based
on the principle of assessing recoverable alveolar collapse and overdistension by images
obtained during end-expiratory positive pressure titration [4,5]. In addition, EIT has also
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been used to varying degrees in brain function, brain activity and tumor localization stud-
ies [6–8]. EIT is more advantageous in long-time monitoring with functional visualizations
compared to computed tomography (CT) and magnetic resonance imaging (MRI) [9,10].
In industrial applications, it is mainly used for process monitoring, allowing real-time
monitoring of the gas or liquid transported in the pipeline and a more accurate estimation
of the flow rate [11].

Currently, the core problem of solving the inverse problem of EIT, i.e., image recon-
struction, is finding a suitable image reconstruction algorithm to obtain an accurate image
to describe the conductivity parameters and boundary features. In order to solve this prob-
lem, many image reconstruction methods have been studied in two categories, iterative
and non-iterative methods.

The non-iterative methods include the linear back projection method (LBP), truncated
singular value decomposition (TSVD), the D-bar method, the Tikhonov regularization
method, and the statistical shape constrained reconstruction method, etc. The back pro-
jection method (BP) is widely used as a basic solving method with the advantage of fast
imaging. However, the linear back projection method (LBP) [12] and the improved filtered
back projection method (FBP) [13] can reconstruct the approximate conductivity parameters
containing serious artifacts and significant errors. The truncated singular value decompo-
sition (TSVD) [14] method decomposes the system into singular values and uses partial
singular value eigenvectors to solve the inverse problem, which reduces the influence of
unknown parameters on the stability of the solution process. It improves the quality of FBP
imaging to some extent, but the selection of the number of singular values and the eigenvec-
tors often depends on the positive problem model and human experience, so it is not widely
applicable to the scenario. The D-Bar method [15] is a direct method for solving nonlinear
inverse problems, which converts the Laplace equation into the Schrödinger equation by
nonlinear variable substitution. The D-Bar method utilizes the nonlinear Fourier transform
to invert the distribution of the dielectric permittivity within the electric field using the
exponential form of the solution. This method can improve the reconstruction quality
under complex boundary conditions because it does not depend on the accuracy of the
forward problem model and does not require an approximate solution of the Jacobian ma-
trix. However, the calculation of the nonlinear transformation often requires the calculation
of the DtN mapping, and it is built on the interrupted electrode model, so there are also
certain artifacts on the ROI boundary. The regularization methods [16,17] are to impose a
suitable penalty function to constrain the solution space under the convex optimization
paradigm, such as the Tikhonov regularization method, which is based on L2-norm and
is prone to cause boundary smoothing, which makes artifacts exist in the reconstructed
images. Another regularization method is the total variation regularization method, which
has the advantage of preserving boundary features but the proper regularization coefficient
needs to be set by human experience [18]. The Statistical Shape Constrained Reconstruction
method (SSCR) [19] is an ideal method that fully utilizes structural prior information as
an optimization penalty function, where an accurate convergent solution is difficult to
calculate considering the large condition number of the Jacobian matrix, alleviating the risk
of inversing the ill-conditioned system matrix. However, the SSCR method requires strict
Lipschitz continuity and is often limited by complex boundary conditions.

Iterative methods include the Landweber method, the Newton-Raphson method, the
conjugate gradient method (CG), the soft threshold iterative method (Iterative Shrinkage-
Thresholding Algorithm (ISTA), the NOSER (Newton’s one-step error reconstructor) method,
the fast soft threshold method (Fast Iterative Shrinkage-Thresholding Algorithm, or FISTA),
etc. Landweber’s algorithm [20] continuously reduces the error between the computed
and real results by iterative methods. Since the Landweber algorithm needs to choose the
appropriate regularization function to ensure the convergence of the solution, it often relies
on the a priori information and empirically chosen regularization parameters, so there
are sometimes artifacts interfering in the reconstruction results. The Newton-Raphson
method [21,22] uses a quadratic function approximation instead of the objective function
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to find the extremum of this quadratic function and uses it as the approximation of the
minima of the objective function. However, the Newton-Raphson method needs to calculate
the Hessian matrix of the objective function for each iteration, which is computationally
intensive when there are more variables. The conjugate gradient method (CG) [23] is a
method for solving nonlinear systems of equations, which uses two eigenvectors in the
conjugate direction to continuously iterate to search for the optimal solution of the EIT
inverse problem and converges faster. However, the CG algorithm requires the system
matrix to be strictly square, and the system matrix of EIT is an approximate result, so this
approximation error is amplified in the solution, and the reconstruction results contain
artifactual information, which cannot be applied to quantitative analysis scenarios. The
NOSER (Newton’s one-step error reconstructor) method [24] requires only the Newton-
Raphson method’s first step, setting an initial conductivity, to obtain an approximate
solution of the field conductivity distribution. However, the image reconstructed in this
way can only reflect the location and size of the medium, not the shape of the medium.
The soft threshold iterative method (ISTA) [25,26] is an extension of the gradient descent
method, and the iterative process only considers the information of the current point for
gradient estimation to update the iteration point; the optimization process is in the shape
of a zigzag towards the minimal value point, and the convergence speed is relatively
slow. The fast soft threshold iteration method (FISTA) [27–30] adds a Nesterov acceleration
technique to the ISTA method, which consists of a linear combination of the current point
and the previous point and uses an acceleration technique to re-estimate the gradient and
update the iteration points, which speeds up the algorithm. Due to the characteristics of
ill-posedness and nonlinearity in the image reconstruction problem, it leads to the loss of
some boundary information and makes the reconstructed images contain some artifacts.
Although iterative algorithms have alleviated the effects of nonlinearity and ill-posedness
on image reconstruction to a certain extent, the spatial resolution of images is still a subject
that many researchers have devoted themselves to studying.

In summary, various iterative or non-iterative algorithms have different principles,
but a single reconstruction algorithm is often used in specific applications. In this paper,
we fully consider incorporating the non-iterative algorithm adaptive TR into the iterative
FISTA algorithm to solve the problem of artificial empirical setting of the initial conduc-
tivity matrix in the FISTA algorithm, i.e., the Regularization Solver Guided Fast Iterative
Shrinkage-Thresholding Algorithm (RS-FISTA for short). The algorithm first uses the
adaptive regularization coefficient method to obtain the initial conductivity matrix of the
FISTA. This paper adopts a fast soft thresholding image reconstruction strategy based on
regularized solutions. The initial solution obtained by using the regularization method
contains more a priori information, reduces the dependence on human settings, improves
the imaging quality, and accelerates the convergence speed of the FISTA algorithm.

The contents of this paper are organized as follows. Section 2 is an overview of the EIT
sensing model, the forward problem, and the inverse problem. Section 3 is the methodology
of the proposed RS-FISTA algorithm. Section 4 briefly introduces the compared algorithm
and the evaluation metrics. Section 5 presents the imaging results of the simulation and
physical model, and compares the different algorithms quantitatively. Section 6 is the
discussion and conclusions.

2. EIT Sensing Mechanism and Mathematical Model
2.1. EIT Sensing Model

Taking a 2D EIT sensing model as an example, the measurement system of EIT is shown
in Figure 1. The data acquisition protocol of EIT adopts the adjacent current excitation
adjacent voltage measurement [31]. A specific collection method is as follows: the current
excitation is applied to one adjacent electrode pair as the initial excitation electrode (1–2 is
selected as the first pair of the excitation current source in Figure 1), and then two adjacent
electrodes are selected successively to measure voltages as the measurement electrode (3–4,
4–5, 5–6, . . . . . . , 14–15, 15–16 in Figure 1). Using 16 pairs of adjacent electrodes as the
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excitation electrode successively, a total of 208 measurements are collected, which will be
used as measurement describing one frame cross section.
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In Figure 1, 1 to 16 represent 16 titanium electrodes attached equally on the boundary
at the same height. Ω(σ0) represents the measurement area with conductivity σ0. σ1 and
σ2 represent the conductivity of different inclusions.
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adjacent electrodes.

In the EIT mathematical model, the electromagnetic field distribution in the region
to be measured satisfies Maxwell’s equations [32], and its partial differential equation is
as follows

∇× (σ(x)∇ϕ(x)) = 0, x ∈ Ω (1)

where Ω is the measuring field, σ(x) and ϕ(x) represent the conductivity distribution and
potential distribution in the measuring field, respectively. The unique solution of the
differential Equation (1) can be obtained only under certain boundary conditions.

In the current excitation pattern, the response voltage at the boundary of the measured
region is constrained by the Dirichlet boundary condition.

ϕ(x) = u(x), x ∈ ∂Ω\
16
∪

L=1
eL (2)

The boundary current density vector of the measurement area satisfies the Neumann
boundary condition, and the equation is as follows

σ(x)
∂ϕ(x)

∂n
= 0, x ∈ ∂Ω\

16
∪

L=1
eL (3)

where n is the outer normal vector on the boundary, and ∂Ω represents the boundary
information of the measurement region.

Because the current density vector on the electrode surface is unknown, the differential
form of Ohm’s law cannot be directly used on the electrode. Therefore, the boundary
condition in the form of the integral is adopted, that is, on the electrode, the integral of the
current density vector on the electrode surface is equal to the size of the injected current,
which can be expressed as follows∫

eL

σ(x)× ∂ϕ(x)
∂n

dS =IL, x ∈ eL, L = 1, 2, · · · , 16 (4)
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In EIT, the contact surface between the sensor and the measurement area usually has
high impedance thin layers due to chemical reactions. The complete electrodes model
(CEM) proposed by Somersalo et.al., is utilized [33–35]

ϕ(x) + ρLσ(x)× ∂ϕ(x)
∂n

= UL, x ∈ eL, L = 1, 2, · · · , 16 (5)

where ρL represents the contact impedance between the electrode and the contact surface,
and UL represents the potential response at the L electrode.

Compared with the actual measurement, the boundary potential obtained by the
CEM model with contact impedance has better consistency. To ensure the existence and
uniqueness of the solution of Equation (1), it is necessary to guarantee the conservation of
potential and charge in the EIT sensing model [36,37], namely

16

∑
L=1

UL = 0 (6)

16

∑
L=1

IL = 0 (7)

2.2. Forward Problem

Forward problem modeling methods include the finite element method (FEM) [38] and
the boundary element method (BEM) [39]. The FEM divides the continuous measurement
field into many discrete sub-areas (such as the triangle area), which can approximately
represent the measuring field. The discrete form of the governing equation in Formula (1)
is obtained by analyzing the conductivity and potential of each region, establishing the
equations of each region, and combining them into a whole equation. Using FEM, the
conductivity and voltage distribution in the measured field are written in discrete form as

σ(x) =
Nσ

∑
i=1

σiφ(x), x ∈ Ω (8)

ϕ(x) =
Nϕ

∑
i=1

ϕkψ(x), x ∈ Ω (9)

where σ(x) represents the conductivity value in the subdivision grid, ϕ(x) represents the
potential in the mesh, φ(x) represents the nodal basis function of the conductivity, ψ(x)
represents the nodal basis function of the potential, and Nσ and Nϕ represent the number
of subdivision regions obtained by FEM. Using the standard Galerkin discretization [40],
the solution of the direct problem can be approximated to the solution of a system of linear
equations, respectively.

Below, U(σ) is used to indicate that σ discretely maps positively to U. The additive
Gaussian model is used for measurement error, and the observation model is

V = U(σ) + e (10)

where V ∈ RM*1 represents the voltage value of the measured electrode, U(σ)∈RM*1 rep-
resents the direct problem operator (the solution of the direct problem is the calculated
voltage), and e ∈ RM*1 represents the additive noise.

The inverse problem of EIT is the image reconstruction problem. The measurements
and sensitivity matrix calculated from the forward problem are used to image the distri-
bution of the parameters with conductivity. There exists a nonlinear relationship between
the measurements and the conductivity distribution in the measurement field, as shown in
Formula (10).
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2.3. Inverse Problem

In general, the nonlinear functions that can be expanded using the Taylor series at some
point can be approximated by linear combinations of the exponential function. Therefore,
in the reference conductivity σ0, the Formula (11) can be obtained by the first order Taylor
series expansion at

U = U0 + A(σ)× (σ− σ0) + O(σ) (11)

where A(σ) = dU(σ)
dσ

∣∣∣
σ=σ0

is the Jacobian matrix (matrix A ∈ RM*N), representing the

differential of boundary voltage to conductivity. According to Geselowitz’s sensitivity
theory [41], the Jacobian matrix is used to describe the changing relationship between
measurements and the conductivity distribution, in which the elements are calculated as

Aij = −
∫
jth

∇ϕi
u.∇ψi

udΩ (12)

where i represents the electrode pair for the i-th adjacent current excitation adjacent voltage
measurement, j represents the j-th pixel unit, ∇ϕi

u represents the gradient vector of the
input current of the excitation electrode of the i-th pair in each electric field unit, and ∇ψi

u
represents the gradient vector of the input current of the measurement electrode of the
j-th pair in each electric field unit. After combining Formulas (11) and (12) and discrete
approximation, the mathematical model of EIT inverse problem can be expressed as

y = Ax + b (13)

where y = U − U0, x = σ − σ0. y (matrix y ∈ RM*1) represents the difference between the
boundary voltage value in different states and the boundary voltage value in the reference
state. x (matrix x ∈ RN*1) represents the difference between the conductivity distribution
in different states and the conductivity distribution in the reference state. b represents
additive noise.

Since the mathematical model of the EIT inverse problem is ill-conditioned, Formula (10)
cannot be uniquely solved and is usually calculated with the least squares error [42]. In
order to prevent the least square problem from overfitting, a regularization term R(x) is
added to the objective function, namely

x = argmin
x

1
2
‖Ax− y‖2

2 + R(x) (14)

3. Methodology

This section mainly introduces a new image reconstruction method, the RS-FISTA.
The first part briefly introduces the FISTA method and analyzes the reconstruction process
of the method. The second part briefly introduces the calculation method of regularization
solver. The third part introduces the implementation process of the RS-FISTA.

3.1. FISTA Algorithm

When the regularization term R(x) uses the L1-norm constraint, the problem of For-
mula (14) can be converted into the LASSO problem (Least absolute shrinkage and selection
operator, LASSO) [43], i.e.,

x̂ = argmin
x

1
2
‖Ax− y‖2

2 + λ‖x‖1 (15)

where λ is the regularization coefficient, and λ > 0. Let f (x) = 1
2‖Ax− y‖2

2, g(x) =
‖x‖1. g : RN → R is a continuous non-smooth convex function. f : RN → R is a smooth
convex function defined in C1,1, that is, a continuously differentiable function with Lipschitz
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continuous gradient, i.e., ‖∇ f (x)−∇ f (y)‖ ≤ L( f )‖x− y‖, x, y ∈ RN . The smallest
Lipschitz constants of ∇ f is L( f ) = 2λmax(AT A).

3.1.1. Non-Constrain LASSO Problem

Consider unconstrained optimization problems min
x

{
F(x) ≡ f (x), x ∈ RN}. Nor-

mally, the gradient descent method

xk+1 = xk − tk∇ f (xk) (16)

is used to solve the vector xk+1. First, f (x) = 1
2‖Ax− y‖2

2 performs the second-order
Taylor expansion,

f (x) =
1
2

∥∥∥Axk − y
∥∥∥2

2
+
〈

AT(Axk − y), x− xk
〉
+

1
2tk

∥∥∥x− xk
∥∥∥2

(17)

Assuming f (x) satisfies the Lipschitz continuity condition, i.e., ∃L( f ), s.t.
L( f ) = sup

x
f ′(x). Then there exists any L ≥ L( f ) with f (x) = f (y) +

〈
∇ f (xk), x− y

〉
+

1
2tk
‖x− y‖2,x, y ∈ RN . At this time, in the neighborhood of any iteration point x = xk,

there is the following approximation

f (x, xk) = f (xk) +
〈
∇ f (xk), x− xk

〉
+

L
2

∥∥∥x− xk
∥∥∥2

(18)

In the next step, using Proxinal regularization method, i.e., the point where the
function f (x) obtains the minimum value at x = xk−1 is taken as the starting point of the
next iteration x = xk, then the optimization problem is

xk = argmin
x

{
f (xk) +

〈
∇ f (xk), x− xk

〉
+

1
2tk

∥∥∥x− xk
∥∥∥2
}

(19)

where tk = 1
L . Equation (19) can be derived by the second-order Taylor expansion at

x = xk−1, where f(x) meets Lipschitz continuous constrain
∥∥∥∇ f (xk)−∇ f (xk−1)

∥∥∥
2
≤

L( f )
∥∥∥xk − xk−1

∥∥∥
2
.

3.1.2. Constrain LASSO Problem

When constraints are introduced, the optimization problem (15) can be written as
min

x

{
F(x) ≡ f (x) + g(x), x ∈ RN}, then Equation (19) is rewritten as

xk = argmin
x

{
f (xk−1) +

〈
∇ f (xk−1), x− xk−1

〉
+

1
2tk

∥∥∥x− xk−1
∥∥∥2

+ λ‖x‖1

}
(20)

After ignoring the constant term in Equation (20), we can obtain

xk = argmin
x

{
1

2tk

∥∥∥x− (xk−1 − tk∇ f (xk−1))
∥∥∥2

+ λ‖x‖1

}
(21)

Since the L1-norm is separable, the calculation of xk is simplified to solving the one-
dimensional minimization problem for each of its components, which can be obtained
through calculus

xk = Tλtk [x
k−1 − tk∇ f (xk−1)] (22)

where Tα : RN → RN is the shrinkage operator, which is defined as Tα(xi) = sign(xi)×
max{|xi| − a, 0}, and α is the denoising parameter [44]. Literature [45] proves that the
linear convergence rate of (21) is O( 1

k ). The expansion result of Equation (22) is
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xk = Tλtk [x
k−1 − 2tk AT(Axk−1 − y)] (23)

where tk is a suitable step size.

3.1.3. Nesterov Accelerator

In order to speed up the convergence rate, the Nesterov accelerator is added to (23),
where the calculation steps are as follows

x(k) = Tα[z(k) − µAT(Az(k) − y)]

t(k+1) =
1+
√

1+4×(t(k))2

2

z(k+1) = x(k) + t(k)−1
t(k+1) (x(k) − x(k−1))

(24)

where µ = 1/L is a suitable step size, and L must be the upper bound of the maximum
eigenvalue of ATA [46].

Literature [44] proves that, for any, there is

F(xk)− F(x∗) ≤ 2βL( f )‖x0 − x∗‖2

(k + 1)2 (25)

where β = 1 is the constant search uber length, and β = η is the backtracking cruise step
length. x* represents the solution when the algorithm convergence rate reaches O( 1

k2 ).
Therefore, the convergence rate of this algorithm is increased from O( 1

k ) to O( 1
k2 ).

3.2. Regularization Solver (RS)

In the FISTA algorithm, the initial matrix x(0) is selected as a fixed matrix and depends
on human experience, which has great uncertainty. In this paper, based on the regularization
idea, the solution can be solved by regularization, which can not only reduce the number
of iterations, but also improve the solving accuracy of the iterative algorithm, so as to
improve the spatial resolution of the image. Therefore, a penalty function based on the
L2-norm constraint is used as the regularization factor in this paper, and its mathematical
expression is

R(θ) = ‖R(x− x0)‖2
2 (26)

where R is a particular continuous regularized matrix, and x0 is a hypothetical initial
parameter based on the positive problem model. If R = I (identity matrix) and x0 = 0, the
standard Tikhonov regularization mathematical expression of Formula (14) is

x̂ = argmin
x

1
2
‖Ax− y‖2

2 + λ‖Ix‖2
2 (27)

Define the objective function as

f (x) =
1
2
‖Ax− y‖2

2 + λ‖Ix‖2
2 (28)

Then the first-order differential of the objective function is

d f (x)
dx

=
(

AT A + λI
)

x− ATy (29)

Let the first-order differential be zero, the optimal solution of the objective function
can be expressed as

x̂ =
(

AT A + λI
)−1

ATy (30)

where matrix A∈RM*N represents the sensitivity matrix in the measurement field, and
matrix x̂ ∈ RN*1 represents the conductivity distribution in the measurement field, and
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matrix y ∈ RM*1 represents the potential distribution in the measurement field, and λk

represents the regularization coefficient.
In most cases, the regularization coefficient λ is evaluated according to the trial-

and-error method or the “L” curve method, so the value taken out has great uncertainty.
Therefore, a TR regularization method with adaptive regularization parameters is proposed
in this paper. After each calculation of this method, the regularization coefficient λ will
be adjusted according to the results of this (xk) and the expected (y), and then the new
regularization parameters will be used to solve the solution of the next step, so that the
value obtained is closer to the expected value. The formula for calculating the adaptive
regularization coefficient λ can be expressed as

λk+1 = λk −∇xk

∥∥∥Axk − y
∥∥∥

1
(31)

So that xk+1 =
(

AT A + λk+1 I
)−1

ATy. When the TR algorithm of adaptive regular-

ization parameter iterates to an error less than 10−2, the initial matrix x(0) required by the
FISTA algorithm is obtained.

3.3. Pseudo-Code of RS-FISTA

The pseudo-code of this Algorithm 1 is as follows

Algorithm 1 Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm
(RS-FISTA)

INPUT: Sensitivity matrix A, voltage y; parameters: denoising parameter α = 10−9, relative
tolerance Epsilon = 10−5, maximum iterations Itermax.

1. Setting the initial value t(1) = 1, k = 1, error = 0
2. Calculate the regular resolution as the initial value of the algorithm x(0), z(1) = x(0)

3. Calculate the step size µ in the RS-FISTA method, µ = 1
L

4. If it does not reach the convergence criterion or the error is greater than the relative
tolerance,

(1) Calculate x(k), x(k) = Tα[z(k) − µAT(Az(k) − y)]

(2) Update parameter t(k + 1) of the RS-FISTA method, t(k+1) =
1+
√

1+4×(t(k))2

2

(3) Calculate z(k+1), z(k+1) = x(k) + t(k)−1
t(k+1) (x(k) − x(k−1))

(4) Calculate error, error = |y− Ax(k)|
(5) k = k + 1

end
OUTPUT: The calculated conductivity matrix x(k), the error between the actual voltage and the
estimated voltage error.

4. Comparison Algorithms and Evaluation Metrics
4.1. Comparison Algorithms
4.1.1. Landweber Method

In EIT inverse problem, the conductivity distribution in the measurement field and
the voltage at the electrode boundary are nonlinear problems. Moreover, the Landweber
method is the most common method to solve nonlinear and ill-posed EIT problems [46].
The expression of the Landweber method is

xk+1 = xk + λAT(y− Axk) (32)

where λ = 2/(λmax + λmin) (λmax and λmin are the maximum and minimum positive spe-
cial values of matrix ATA, respectively) [47]. In this article, the value of x0 is zero matrix.
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4.1.2. Conjugate Gradient Method (CG Method)

The CG method takes x0 as the initial conductivity matric, calculates the error
ω0 = y–Ax0, gives the first search direction as p0 = ω0, and then carries out the iterative
operation. The main iterative formula for this method is as follows

ak =
(ωk ,ωk)
(Apk ,pk)

gk+1 = gk + ak pk
ωk+1 = ωk − ak Jpk

βk =
(ωk+1,ωk+1)

(ωk ,ωk)

pk+1 = ωk+1 − βk pk

(33)

where k = 1, 2, 3, . . . , n is the number of iterations, and the relationship between each
corrected direction vector is conjugate, that is, pi

TApj = 0 (I 6= j). In this article, the value of
x0 is zero matrix.

4.1.3. Iterative Shrink Threshold Algorithm (ISTA)

The ISTA method formula is shown in (15). The ISTA method solves Formula (15)
through iterative Formula (34), which is shown below

x(k+1) = Tα[x(k) − µAT(Ax(k) − y)] (34)

where µ = 1/L is a suitable step size, and L must be the upper bound of the maximum
eigenvalue of ATA [48], such as L > λmax(AT A). Tα is the shrink operator. For example,
when R(x) = ‖x‖1, the shrink operator is Tα(x) = so f t(x, a), and so f t(x, a) = sign(xi)×
max{|xi| − a, 0}. α is a denoising parameter. In this article, µ = 1/(λmin + λmax) and the
value of α is 10−9. The initial matrix is zero matrix.

4.1.4. NOSER Method

The NOSER method [24] is a fast static EIT algorithm based on the Newton method,
but it does not require iteration and is only the first step of the Newton method, as shown
in Formula (36) 

E(x(0)) =
∥∥∥y− Ax(0)

∥∥∥2
,

F(x(0)) = ∂E(x(0))
∂xi

, i = 1, 2, · · · , N,

x = x(0) − [A(x(0))]
−1 × F(x(0)).

(35)

where x(0) represents the initial conductivity matrix, A(x(0)) represents the modified
sensitivity matrix, and N represents the number of element divided in the measuring field.
In this article, the value of x(0) is zero matrix.

4.1.5. Newton-Raphson Method

The Newton-Raphson method [21] is an iterative method of unconstrained minimiza-
tion for solving nonlinear functions. The basic idea of this method is to use the function
approximation to replace the objective function, in order to find the minimum point of
the quadratic function and take it as the approximate value of the minimum point of the
objective function. The iterative formula of this method is shown in (36)

x(k+1) = x(k) − (AT A + rI)
−1

AT(Ax(k) − y) (36)

where r stands for regularization parameter and I stands for unit diagonal matrix. In this
article, the value of r is 0.1.
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4.2. Evaluation Metrics

The three main metrics of structure similarity (SSIM), root mean square error (RMSE)
and peak signal to noise ratio (PSNR) are commonly used to quantify and evaluate image
quality. SSIM is used to measure the similarity of two images. RMSE is used to measure the
deviation between the calculated value and the expected value. PSNR is used to measure
the degree of image satisfaction. The mathematical expression is as follows

SSIM =

2 ∗ 1
n

n
∑

i=1
rxi

1
n

n
∑

i=1
rxi
∗cov(rx, rx∗)[(

1
n

n
∑

i=1
rxi

)2
+

(
1
n

n
∑

i=1
rxi
∗
)2
]

cov2(rx, rx∗)

(37)

RMSE =

√√√√ 1
nm

m

∑
j=1

n

∑
i=1

[pix(j, i)− pix∗(j, i)]
2

(38)

PSNR = 10 log10
(2k − 1)

2

RMSE2 (39)

where rx* represents the conductivity distribution of the reconstructed image, and rx is
the conductivity distribution of the real image. pix* represents the pixel value of the
reconstructed image, and pix represents the pixel value of the real image. 2k − 1 represents
the maximum pixel value of the image.

In order to effectively evaluate the performance of the RS-FISTA method, this paper
uses the rates at which average metrics are changing compared with those of other compar-
ison methods (Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA methods), and
the expression is

CAM =
|AVERS−FISTA − AVEx|

AVEx
∗ 100% (40)

where AVERS-FISTA represents average metrics of the RS-FISTA method, and AVEx repre-
sents average metrics of the other comparison methods. The higher CAM means the better
performances improved.

5. Experimentations and Results

The simulation experiments are implemented through the joint programming of
MATLAB 2021a and COMSOL Multiphysics 5.6. The measurement field is triangulated by
the finite element method (FEM) and obtains 3012 elements. Then the boundary voltage
and sensitivity matrix of the field are obtained by using COMSOL Multiphysics 5.6 to solve
the EIT forward problem. In the process of solving the EIT inverse problem, COMSOL
Multiphysics and MATLAB are used to divide the measurement field into 64 × 64 mesh
which could avoid inverse crime. During the simulation experiment, a tank with a radius
of 0.095 m is set, and 16 electrodes, made of a Titanium material with 1 mm radius,
are distributed on the wall of the tank at the same interval and height. A homogenous
background with conducting is 1 S/m is set inside the tank, and the conductivity of the
target object in the measurement field is 10−12 S/m. The excitation current amplitude is
4.5 mA, and the excitation current frequency is 100 kHz.

5.1. Simulation Experiments

The results of reconstructed images obtained by the RS-FISTA method compare with
those obtained by common Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA
methods. The simulation imaging results are shown in Figure 2. From the results, we can see
that the method has a better ability to deal with the nonlinearity of the EIT inverse problem.
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Figure 2. Simulation imaging results of different algorithms.

It can be seen from Figure 2 that with the increase in the number of inclusions in
the observation domain, the artifacts surrounding the objects in comparisons are not only
more obvious with the smaller bubbles, but characteristics of the sharp boundary and
the inclusion size are also significantly blurred. In contrast, due to the superiority of the
RS-FISTA with the optimized regularization parameter, which could improve the quality in
the initial guess with more prior information, the visualizations with more clear boundaries
and more accurate conductivities are much better than the NOSER method and other
optimized methods where the initial guess is manually set.

The results of image quantitative metrics, SSIM, RMSE, and PSNR, are shown in Table 1.
It can be seen from the results of SSIM, RMSE and PSNR of the RS-FISTA method compared
with the other six methods in Table 1 that the RS-FISTA method has significantly improved
the image quality. The rates of average metrics (model 1~model 10) changing comparing
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with those of other comparison methods are shown in Table 1 (such as Formula (40)). It
can be concluded that the SSIM of RS-FISTA method is 25.71% higher than the Landweber
method, 11.41% higher than the CG method, 8.83% higher than the NOSER method, 27.84%
higher than the Newton-Raphson method, 38.08% higher than the ISTA method and 33.37%
higher than the FISTA method. The RMSE of the RS-FISTA method is 35.14% higher than
that of the Landweber method, 10.21% higher than that of the CG method, 9.93% higher
than that of the NOSER method, 29.76% higher than that of the Newton-Raphson method,
38.36% higher than that of the ISTA method, and 40.28% higher than that of the FISTA
method. The PSNR of RS-FISTA method is 10.16% higher than that of the Landweber
method, 2.49% higher than that of the CG method, 2.93% higher than that of the NOSER
method, 8.35% higher than that of the Newton-Raphson method, 12.64% higher than that
of the ISTA method, and 13.4% higher than that of the FISTA method.

Table 1. Imaging evaluation metrics of simulation experiments of different methods.

Model
1

Model
2

Model
3

Model
4

Model
5

Model
6

Model
7

Model
8

Model
9

Model
10 Average CAM

(%)

SSIM

Landweber 0.6314 0.6560 0.4610 0.4755 0.6318 0.4950 0.5780 0.6106 0.5571 0.6958 0.5792 25.71
CG 0.7396 0.7060 0.6627 0.6503 0.5920 0.5912 0.6285 0.6054 0.6220 0.7377 0.6535 11.41

NOSER 0.8159 0.6872 0.6269 0.6481 0.6546 0.5969 0.6261 0.6311 0.6505 0.7533 0.6691 8.83
Newton-
Raphson 0.8139 0.6885 0.6484 0.5559 0.4951 0.6009 0.5134 0.5920 0.4122 0.3751 0.5695 27.84

ISTA 0.5407 0.6064 0.4544 0.4734 0.4639 0.5068 0.5947 0.6011 0.4810 0.5506 0.5273 38.08
FISTA 0.6776 0.5293 0.4572 0.4707 0.6241 0.4898 0.4177 0.5998 0.5315 0.6617 0.5459 33.37

RS-FISTA 0.8642 0.8186 0.6824 0.7682 0.7002 0.6709 0.6467 0.6618 0.6629 0.8052 0.7281

RMSE

Landweber 4.1512 3.9204 9.5336 8.0922 4.7712 8.0247 5.0658 4.4982 5.9477 4.6288 5.8634 35.14
CG 2.2004 3.1769 3.3918 4.1313 5.5283 6.4158 4.3224 4.8471 4.7803 4.5498 4.3344 10.21

NOSER 3.0971 3.5265 3.9107 4.2672 4.4006 6.4183 4.2285 4.1526 4.5111 4.6980 4.3211 9.93
Newton-
Raphson 3.0886 3.5107 3.2570 5.7159 7.5509 5.8777 5.9001 4.4714 8.8449 7.1195 5.5337 29.67

ISTA 3.5797 4.4090 9.6882 7.1962 7.7374 7.0151 4.6817 4.6917 7.3017 6.8406 6.3141 38.36
FISTA 3.5157 6.3535 9.6369 8.8076 4.8842 7.6574 8.5180 4.4623 6.4900 4.8457 6.5171 40.28

RS-FISTA 2.0716 3.1538 3.2188 4.1123 4.3155 4.8655 4.1900 4.0350 4.4323 4.5241 3.8919

PSNR

Landweber 35.7670
0003 36.2641 28.5456 29.9695 34.5583 30.0423 34.0379 35.0700 32.6438 35.4034 33.2302 10.16

CG 41.2807 38.0908 37.5221 35.8091 33.2789 31.9858 35.2599 34.4212 34.5417 34.971 35.7161 2.49
NOSER 38.3118 37.1838 36.2858 35.528 35.2607 31.9824 35.6071 35.7645 35.0451 34.6925 35.5662 2.92
Newton-
Raphson 38.3356 37.2229 37.8745 32.9891 30.5708 32.7466 32.7137 35.1219 29.1969 31.0818 33.7854 8.35

ISTA 37.0539 35.2440 28.4059 30.9887 30.3589 31.2102 34.7228 34.7042 30.8623 31.429 32.4980 12.64
FISTA 37.2105 32.0705 28.4521 29.2336 34.3549 30.4492 29.5240 35.1396 31.8860 34.4236 32.2744 13.42

RS-FISTA 41.8048 38.1542 37.9769 35.8490 35.4301 34.3883 35.6865 36.0140 35.1982 35.5628 36.6065

5.2. Tank Experiments

The boundary voltage signal acquisition equipment used in this paper is composed of
the electrical impedance data acquisition system (EIT-DAS) and sensors attached on the
tank. The system [49,50] is shown in Figure 3.

The DAS consists of a computer for data processing and image reconstruction, a data
acquisition and signal processing module, and a tank with 16 titanium electrode sensors.
In the experiment, 16 electrodes were distributed at the same interval and height on the
tank (with a radius of 0.095 m) wall and uniform media (replaced by glass rods, and
experimental data were obtained by changing the size, position, and number of objects)
were placed in the tank. A proper concentration of NaCl was added to tap water to obtain
the background conductivity of the experiment (the conductivity was set as 1 S/m), and the
conductivity of the glass rod was approximately 0 S/m. During the experiment, the current
with 4.5 mA amplitude and 100 kHz frequency is excited through the hardware. Then the
voltage between the adjacent electrodes is measured to obtain the boundary voltage of the
field. With the boundary voltage as the input value, image reconstruction was performed
using the Landweber, CG, ISTA, FISTA, NOSER, Newton-Raphson and RS-FISTA methods.
The result of image reconstruction is shown in Figure 3.
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Figure 3. TUST-EIT Electrical Impedance Imaging System.

It can be seen from Figure 4, using other methods (such as Landweber, CG, NOSER,
Newton-Raphson, ISTA and FISTA), with the increase of the number of inclusions in
the observation domain, the position information of inclusions with small geometric
diameter in the reconstructed image is more blurred, and the “transition area” between the
background and the include is larger. However, because the RS-FISTA method uses the
initial guess with prior information, the artifacts are less in reconstructions. So, compared
with other optimized methods where the initial guess is manually set, this method can
better display the location information of inclusions with a small diameter.

The results of image quantitative metrics, SSIM, RMSE, PSNR, are shown in Table 2. It
can be seen from the results of SSIM, RMSE and PSNR of the RS-FISTA method compared
with the other six methods in Table 2 that the RS-FISTA method has significantly improved
the image quality. The rates of average metrics (tank 1~tank 5) changing compared with
those of other methods are shown in Table 2 (such as Formula (40)). It can be seen from
the comparison chart of evaluation indicators that the SSIM of RS-FISTA method is 24.26%
higher than that of the Landweber method, 11.07% higher than that of the CG method,
9.38% higher than that of the NOSER method, 24.01% higher than that of the Newton-
Raphson method, 35.80% higher than that of the ISTA method, and 38.16% higher than that
of the FISTA method. The RMSE of the RS-FISTA method is 36.73% higher than that of the
Landweber method, 21.08% higher than that of the CG method, 10.65% higher than that
of the NOSER method, 36.83% higher than that of the Newton-Raphson method, 46.05%
higher than that of the ISTA method, and 44.57% higher than that of the FISTA method.
The PSNR of RS-FISTA method is 12.12% higher than that of the Landweber method, 4.66%
higher than that of the CG method, 2.38% higher than that of the NOSER method, 9.29%
higher than that of Newton-Raphson method, 16.31% higher than that of the ISTA method,
and 14.87% higher than that of the FISTA method.
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Table 2. Experimental evaluation metrics for imaging results of 7 different methods.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Average CAM (%)

SSIM

Landweber 0.5958 0.6597 0.5288 0.5767 0.5574 0.5837 24.26
CG 0.7985 0.587 0.6081 0.6905 0.581 0.653 11.07

NOSER 0.802 0.6365 0.6042 0.68 0.5929 0.6631 9.38
Newton—
Raphson 0.8064 0.5174 0.6532 0.3932 0.5542 0.5849 24.01

ISTA 0.4397 0.6265 0.5055 0.5657 0.533 0.5341 35.8
FISTA 0.6857 0.6027 0.442 0.4566 0.4379 0.525 38.16

RS-FISTA 0.8188 0.7125 0.679 0.7166 0.6996 0.7253

RMSE

Landweber 6.2126 4.2844 5.9118 5.5837 5.202 5.4389 36.73
CG 2.3693 7.1053 4.579 3.8017 3.9482 4.3607 21.08

NOSER 2.3117 4.588 4.7049 3.7014 3.9506 3.8513 10.65
Newton—
Raphson 2.4178 8.1639 4.0846 8.5454 4.0266 5.4477 36.83

ISTA 9.506 4.7078 6.1617 5.7965 5.7223 6.3789 46.05
FISTA 3.3496 5.0391 7.1245 7.6213 7.9063 6.2082 44.57

RS-FISTA 2.3031 3.6883 4.0452 3.5559 3.6139 3.4413

PSNR

Landweber 32.2653 35.4931 32.6965 33.1924 33.8074 33.4909 12.12
CG 40.6386 31.0991 34.9153 36.5313 36.2029 35.8774 4.66

NOSER 40.8521 34.8983 34.6797 36.7636 36.1975 36.6784 2.38
Newton—
Raphson 40.4623 29.8928 35.9077 29.4961 36.032 34.3582 9.29

ISTA 28.5709 34.6745 32.3367 32.8675 32.9795 32.2858 16.31
FISTA 37.631 34.0838 31.0757 30.4902 30.1713 32.6904 14.87

RS-FISTA 40.8844 36.7942 35.992 37.1118 36.9713 37.5507
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5.3. Noise Experiments

In order to test the robustness of the RS-FISTA method to noise with different signal to
noise ratios (SNRs), different levels of Gaussian white noise (SNR = 60 dB, 50 dB, 40 dB,
30 dB) were added to the simulation experiment. In the experiment, models with different
numbers were selected as experimental samples. The image reconstruction results of the
experiment are shown in Figure 5.
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It can be seen from the figure that when the RS-FISTA method’s SNR = Inf, 60 dB
and 50 dB, the reconstructed image can better express the distribution of the inclusions in
the original measurement field, and the reconstructed image has less artifact information.
As the level of white Gaussian noise decreases, the position information of the inclusions
begins to become blurred, but the position information of the inclusions can still be better
expressed. In summary, it shows that the robustness of the RS-FISTA method is good,
and even if the input signal contains noisy interference, the image reconstructed by the
algorithm still has a good visualization effect.

6. Discussion and Conclusions
6.1. Experiments Analysis

In this paper, the results of RS are taken as the initial values, so that the initial values of
the iterative method are closer to the optimal solution of the objective function. Therefore,
the RS-FISTA method is used for image reconstruction. From the visual image, we can
see that the reconstructed image has less artifacts, relatively accurate location information
and clearer boundaries. From the quantitative metrics, we can see that the value of SSIM
is improved, indicating that the shape information saved is relatively good. The value of
RMSE is reduced which indicates that the distribution of conductivity is relatively accurate.
The value of PSNR is improved, which shows that the visualization effect of the image is
relatively good. In a word, the reconstructed image has good spatial resolution.
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6.2. Discussion on Convergence Iterations

In order to verify the convergence speed of the RS-FISTA method in this paper, except
that NOSER is a one-step iterative imaging method, the other six methods (Landweber,
CG, ISTA, FISTA, Newton-Raphson and RS-FISTA) successively perform different times
of iterative operations on the physical experimental model and compare the SSIM of the
reconstructed images. The SSIM of the reconstructed images of the six imaging methods
are shown in Figure 6.
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It can be observed that within 20 iterations, the SSIM index of the RS-FISTA is only
less than that of Newton-Raphson, but better than other methods. From 20 to 30 iterations,
the SSIM index of the RS-FISTA increases rapidly, which is distinctly higher than the other
five methods. After 30 iterations, the SSIM index of the RS-FISTA has a stable performance
in SSIM and superior to the other methods. If you discount the complexity of different
methods, the RS-FISTA method gives a satisfactory convergent efficiency.

The initial guess of the FISTA method is usually set according to experience, which
has great uncertainty. The RS-FISTA method takes the result of the adaptive regularization
solution as the initial guess. This has the advantage that the initial guess is closer to the
optimal solution of the objective function, thereby reducing the number of iterations of the
method. This method also introduces Nesterov acceleration technology. This acceleration
technique first realizes an acceleration in the xk direction by the linear combination of one
of the previous two points {xk, xk−1}, and then accelerates in the gradient direction of the
function through the contraction operator, so that the method can quickly solve the optimal
solution of the objective function. Other algorithms only accelerate in the gradient direction,
so this method has faster iteration speed and fewer iterations than other methods.

6.3. Conclusions

In this paper, the RS-FISTA method is proposed to solve the problems of excessive
artifact information and poor visualization effect in electrical impedance tomography. In



Sensors 2023, 23, 2233 18 of 20

this method, the TR regularization of the adaptive parameters is calculated as the initial
value of the input, and the Nesterov acceleration technique is used to solve the problem
of slow convergence of the reconstructed image method effectively. In this paper, the
corresponding experiment is carried out, and the imaging effect and image evaluation
metrics of the tank experiment are analyzed. The results show that compared with the
methods of Landweber, CG, ISTA, FISTA, Newton-Raphson and NOSER, the reconstructed
images not only have less artifact information and a better visualization effect, but also
effectively improve the convergence speed of the method.
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