Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review
Abstract
:Highlights
- Point-of-care diagnosis is crucial for management of infectious diseases.
- Integration of nanotechnology into biosensing technology increases conductivity, sensitivity and Limit of Detection (LOD).
- Graphene-based electrochemical biosensors have emerged as one of the best approaches for enhancing biosensing technology.
- Integration of Internet of Medical Things (IoMT) in the development of biosensors have the potential to improve detection of diseases and treatments.
Abstract
1. Introduction
1.1. Comparison with Similar Studies
1.2. Scope
2. Biosensors
2.1. Components of a Biosensor
- (A)
- Samples: Samples used in biosensors vary from human samples such as saliva, urine, blood, and other bodily fluid-to-cell cultures of bacteria and fungi and other microbes. Other types of samples include food samples and environmental samples such as water, soil, vegetation, etc.
- (B)
- Bioreceptors: Receptors used in biosensors differ from each other in terms of their mechanism, the most widely used bioreceptors include nucleic acid (NA) such as DNA and RNA, enzymes, antibodies, whole cells, cell organelles, immunosystems, tissues, hormones, lectin, etc.
- (C)
- Transducers: The function of a transducer is to transfer a signal from output domain detected from the chemical reaction between analyte and biological recognition element. Transducers are also called sensors, electrodes, or detectors. Transducers used in biosensors include thermal, optical, electrical, electrochemical, and piezoelectrical detection [19].
- (D)
- Electronics and Display: this component of a biosensor is responsible for processing and preparing the transduced signal for display. It is made up of a complicated electrical circuit that performs signal conditioning functions such as amplification and digital signal conversion. The display device of the biosensor then quantifies the processed signals [19].
2.2. Classification of Biosensors
2.3. Electrochemical Biosensors
- (A)
- Amperometric Electrochemical Biosensors
- (B)
- Potentiometric Electrochemical Biosensors
2.4. Application of Biosensors
2.5. Advantages of Electrochemical Biosensors
3. Graphene
3.1. Carbon-Allotropes
3.2. 2D Graphene
3.3. Properties and Applications of Graphene
3.4. Conductivity of Graphene
3.5. Preparation/Synthesis of Graphene
4. Nanotechnology
4.1. Definitions and Properties
4.2. Classification of NPs
4.3. Nanocomposites
4.4. Synthesis of Nanocomposites
4.5. Classification of Nanocomposites
- Polymer-based nanocomposites are copolymers or organic polymers which contain either nanofillers or NPs dispersed in their matrix which are often called poly nanocomposites. The criteria for regarding a compound as polymer-based nanocomposite is one of the dimensions must be within 1–50 nm. These nanocomposites come in different shape such as fibers, platelets, and spheroids [62]. In research development and application, polymer-based nanomaterials are utilized more compared to other classes of nanocomposites. These types of improved or enhanced material have shown characteristics such as dimensional variability, activated functionalities, and film forming ability among others [63].
- Non-polymer-based nanocomposites are nanocomposites in which one of the constituents does not comprise of any organic polymer or polymer derived materials. This type of nanocomposite is also called an inorganic nanocomposite. Their subclassifications include nanocomposites based on ceramics, and metallic nanocomposites [64].
4.6. Advantage of Nanocomposite
5. Hyphenation
5.1. Electrochemical Biosensors and Nanomaterials
5.2. Graphene-Based Biosensors
5.3. Blending IoT and AI with Medical Devices
6. Proposed Future Graphene-Based Electrochemical Smart Biosensors
6.1. Challenges
6.2. Supporting Research
6.3. Architecture and Framework of Proposed Biosensor
6.4. Sensing Technology and Signal Processing
6.5. Data Analysis and Transmission
6.6. Challenges and Open Research Issue
7. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbrvations | Meaning |
AchE | Acetylcholinesterase |
AI | Artificial Intelligence |
aM | Attomolar |
ANN | Artificial Neural Network |
AOx | Alcohol Oxidase |
BSA | Bovine Serum Albumin |
CB | Carbon Black |
Cd2+ | Cadmium ions |
CEU | Commission of European Union |
CFU | Colony Forming Unit |
CNN | Convolutional Neural Network |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeat |
Cu | Copper |
CV | Cyclic Voltammetry |
DNA | Deoxyribonucleic Acid |
DMD | Duchene Muscular Dystrophy |
DPV | Differential Pulse Voltammetry |
ESF | European Science foundation |
Fe@Au | Gold-coated Iron |
fM | Femtomolar |
GCE | Glass Carbon Electrode |
gFET | Graphene-based field effect transistor |
GO | Graphene Oxide |
GOx | Glucose Oxidase |
H2O2 | Hydrogen Peroxide |
HIV | Human Immunodeficiency Virus |
IoMT | Internet of Medical Things |
IOS | International Organization for Standardization |
IUPAC | International Union of Pure and Applied Chemistry |
KNN | K-Nearest Neighbor |
LOD | Limit of Detection |
NA | Nucleic Acid |
NAA | Nucleic Acid Amplification |
NCs | Nanocomposites |
NM | Nanometer |
NPs | Nanoparticles |
MERS | Middle East Respiratory Syndrome |
MNG | Magnetic Nitrogen-doped Graphene |
Mm | Micromolar |
Ops | Organophosphate Pesticides |
PB | Phosphate Buffer |
PBNPs | Prussian Blue NPs |
PCR | Polymerase Chain Reaction |
PDDA | Poly (Diallyl Dimethyl Ammonium chloride) |
pM | Picomolar |
POC | Point-of-Care |
POCT | Point-of-Care-Testing |
PPCPE | Porous Pseudo Carbon Paste Electrode |
rGO | Reduced Graphene Oxide |
RT-qPCR | Real-Time Quantitative Reverse Polymerase Chain Reaction |
RNA | Ribonucleic Acid |
SAW | Surface Acoustic Resonance |
SgRNA | Single Guide RNA |
SPE | Screen Printed Electrode |
SPR | Surface Plasmon Resonance |
SSDNA | Single Stranded DNA |
µM | Micromolar |
TB | Toluidine Blue |
zM | Zeptometer 10−21 |
ZrMOF | Zirconium series Metal-organic Framework |
References
- Mitsuma, S.F.; Mansour, M.K.; Dekker, J.P.; Kim, J.; Rahman, M.Z.; Tweed-Kent, A.; Schuetz, P. Promising new assays and technologies for the diagnosis and management of infectious diseases. Clin. Infect. Dis. 2013, 56, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irkham, I.; Ibrahim, A.U.; Nwekwo, C.W.; Al-Turjman, F.; Hartati, Y.W. Current Technologies for Detection of COVID-19: Biosensors, Artificial Intelligence and Internet of Medical Things (IoMT). Sensors 2022, 23, 426. [Google Scholar] [CrossRef] [PubMed]
- Prabowo, B.A.; Cabral, P.D.; Freitas, P.; Fernandes, E. The challenges of developing biosensors for clinical assessment: A review. Chemosensors 2021, 9, 299. [Google Scholar] [CrossRef]
- Martinkova, P.; Kostelnik, A.; Válek, T.; Pohanka, M. Main streams in the construction of biosensors and their applications. Int. J. Electrochem. Sci. 2017, 12, 8. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.U.; Al-Turjman, F.; Sa’id, Z.; Ozsoz, M. Futuristic CRISPR-based biosensing in the cloud and internet of things era: An overview. Multimed. Tools Appl. 2020, 81, 35143–35171. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 2020, 566, 463–472. [Google Scholar] [CrossRef]
- Prattis, I.; Hui, E.; Gubeljak, P.; Schierle, G.S.K.; Lombardo, A.; Occhipinti, L.G. Graphene for biosensing applications in point-of-care testing. Trends Biotechnol. 2021, 39, 1065–1077. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef]
- Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.Y.; Kumar, S.; Kaushik, A.; Li, C.Z. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 2021, 179, 113074. [Google Scholar] [CrossRef]
- Fracchiolla, N.S.; Artuso, S.; Cortelezzi, A. Biosensors in clinical practice: Focus on oncohematology. Sensors 2013, 13, 6423–6447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szunerits, S.; Boukherroub, R. Graphene-based biosensors. Interface Focus 2018, 8, 20160132. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Maekawa, T.; Kumar, D.N.S. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mat. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef] [Green Version]
- Sadique, M.A.; Yadav, S.; Ranjan, P.; Khan, M.A.; Kumar, A.; Khan, R. Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor. Mat. Lett. 2021, 305, 130824. [Google Scholar] [CrossRef]
- Soni, I.; Kumar, P.; Jayaprakash, G.K.; Pandith, A. A Short Review Comparing Carbon-Based Electrochemical Platforms with Other Materials for Biosensing SARS-CoV-2. ChemistrySelect 2022, 7, e202202465. [Google Scholar] [CrossRef]
- Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Nayak, M.; Kotian, A.; Marathe, S.; Chakravortty, D. Detection of microorganisms using biosensors—A smarter way towards detection techniques. Biosens. Bioelectron. 2009, 25, 661–667. [Google Scholar] [CrossRef]
- Monosik, R.; Streďanský, M.; Šturdík, E. Biosensors-classification, characterization and new trends. Acta Chim. Slovaca 2012, 5, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Stefano, G.B.; Fernandez, E.A. Biosensors: Enhancing the natural ability to sense and their dependence on bioinformatics. Int. Sci. Lit. Inc. Med. Sci. Monit. 2017, 28, 3168–3169. [Google Scholar] [CrossRef] [Green Version]
- Vashistha, R.; Dangi, A.K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. Biotech 2018, 8, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vamvakaki, V.; Chaniotakis, N.A. Pesticide detection with a liposome-based nano-biosensor. Biosens. Bioelectron. 2007, 22, 2848–2853. [Google Scholar] [CrossRef] [PubMed]
- Rad, M.; Ebrahimipour, G.; Bandehpour, M.; Akhavan, O.; Yarian, F. Enzymatic Formation of Recombinant Antibody-Conjugated Gold Nanoparticles in the Presence of Citrate Groups and Bacteria. Catalysts 2022, 12, 1048. [Google Scholar] [CrossRef]
- Jie, G.; Wang, L.; Yuan, J.; Zhang, S. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal. Chem. 2011, 83, 3873–3880. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Akhavan, O.; Tayyebi, A.; Rahighi, R.; Mohammadzadeh, M.; Rad, H.S. Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging. RSC Adv. 2015, 5, 47529–47537. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, L.; Xue, Y.; Zhang, S.; Zhu, N.; Liang, J.; Li, G. Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mat. Sci. Eng. C 2017, 77, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, R.; Diez, P.; Eguilaz, M.; Martinez, P.; Pingarron, J.M. Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. ACS App. Mat. Interfaces 2012, 4, 4312–4319. [Google Scholar] [CrossRef]
- Carralero, V.; Mena, M.L.; Gonzalez-Cortes, A.; Yanez-Sedeno, P.; Pingarrón, J.M. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite–Teflon electrode modified with gold nanoparticles. Biosens. Bioelectron. 2006, 22, 730–736. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El’Skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Amperometric enzyme biosensors: Past, present and future. Irbm 2008, 29, 171–180. [Google Scholar] [CrossRef]
- Kumsa, D.W.; Hudak, E.M.; Bhadra, N.; Mortimer, J.T. Electron transfer processes occurring on platinum neural stimulating electrodes: Pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ≤ k ≤ 2.3 in rat subcutaneous tissues. J. Neural. Eng. 2019, 16, 026018. [Google Scholar] [CrossRef]
- Salzillo, T.; Marchetti, A.; Vejpravova, J.; Bolado, P.F.; Fontanesi, C. Molecular electrochemistry. An overview of a cross-field: Electrochemistry/spectroscopic/theoretical integrated approach. Curr. Opinion. Electrochem. 2022, 35, 101072. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95, 197–206. [Google Scholar] [CrossRef]
- Bonnet, N.; Morishita, T.; Sugino, O.; Otani, M. First-principles molecular dynamics at a constant electrode potential. Phys. Rev. Lett. 2012, 109, 266101. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Kougianos, E. Biosensors: A tutorial review. IEEE Potentials 2006, 25, 35–40. [Google Scholar] [CrossRef]
- Ding, J.; Qin, W. Recent advances in potentiometric biosensors. TrAC Trends Anal. Chem. 2020, 124, 115803. [Google Scholar] [CrossRef]
- Justino, C.I.; Rocha-Santos, T.A.; Duarte, A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 2010, 29, 1172–1183. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry—2011 update. Clin. Chim. Acta 2011, 412, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral. Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anik, Ü. Electrochemical medical biosensors for POC applications. In Medical Biosensors for Point of Care (POC) Applications; Woodhead Publishing: Muğla, Turkey, 2017; pp. 275–292. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Inagaki, M.; Kim, Y.A.; Endo, M. Graphene: Preparation and structural perfection. J. Mat. Chem. 2011, 21, 3280–3294. [Google Scholar] [CrossRef]
- Acik, M.; Chabal, Y.J. Nature of graphene edges: A review. Jpn. J. App. Phys. 2011, 50, 070101. [Google Scholar] [CrossRef]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Esteghamat, A.; Akhavan, O. Graphene as the ultra-transparent conductive layer in developing the nanotechnology-based flexible smart touchscreens. Microelectron. Eng. 2022, 267–268, 111899. [Google Scholar] [CrossRef]
- Amani, H.; Mostafavi, E.; Arzaghi, H.; Davaran, S.; Akbarzadeh, A.; Akhavan, O.; Pazoki-Toroudi, H.; Webster, T.J. Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Eng. 2018, 5, 193–214. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mat. Chem. B 2016, 4, 3169–3190. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; James, D.K.; Tour, J.M. Graphene chemistry: Synthesis and manipulation. J. Phys. Chem. Lett. 2011, 2, 2425–2432. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010, 48, 509–519. [Google Scholar] [CrossRef]
- Cano-Márquez, A.G.; Rodríguez-Macías, F.J.; Campos-Delgado, J.; Espinosa-González, C.G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D.A.; Smith, D.J.; Terrones, M.; Vega-Cantú, Y.I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Saadati, M.; Jannesari, M. Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Lett. 2016, 16, 5619–5630. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xiao, L.; Sushko, M.L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.V.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Strambeanu, N.; Demetrovici, L.; Dragos, D.; Lungu, M. Nanoparticles: Definition, classification and general physical properties. In Nanoparticles’ Promises and Risks; Springer: Cham, Switzerland, 2015; pp. 3–8. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I. Nanomaterials and their classification. In EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials; Springer: New Delhi, India, 2017; pp. 3–45. [Google Scholar] [CrossRef]
- Shin, W.H.; Jeong, H.M.; Kim, B.G.; Kang, J.K.; Choi, J.W. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012, 12, 2283–2288. [Google Scholar] [CrossRef]
- Liu, X.; Antonietti, M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 2014, 69, 460–466. [Google Scholar] [CrossRef]
- Sen, M. Nanocomposite Materials. In Nanotechnology and the Environment; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Fischer, H. Polymer nanocomposites: From fundamental research to specific applications. Mat. Sci. Eng. C 2003, 23, 763–772. [Google Scholar] [CrossRef]
- Al-Johani, H.; Abdel Salam, M. Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution. J. Colloid Interface Sci. 2011, 360, 760–767. [Google Scholar] [CrossRef]
- Khandoker, N.; Hawkins, S.C.; Ibrahim, R.; Huynh, C.P.; Deng, F. Tensile strength of spinnable multiwall carbon nanotubes. Procedia Eng. 2011, 10, 2572–2578. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li, H. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 2012, 184, 132–140. [Google Scholar] [CrossRef]
- European Science Foundation. Nanomedicine: An ESF-European Medical Research Councils (EMRC) Forward Look Report; ESF: Strasbourg, France, 2005. [Google Scholar]
- Euliss, L.E.; DuPont, J.A.; Gratton, S.; DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 2006, 35, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kucherenko, I.S.; Soldatkin, O.O.; Kucherenko, D.Y.; Soldatkina, O.V.; Dzyadevych, S.V. Advances in nanomaterial application in enzyme-based electrochemical biosensors: A review. Nanoscale Adv. 2019, 1, 4560–4577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, N.; Du, D.; Wang, X.; Liu, D.; Xu, W.; Luo, Y.; Lin, Y. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 2019, 37, 1236–1254. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Rutka, J.T.; Chan, W.C. Nanomedicine. N. Eng. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.C.; Cuda, G.; Bunimovich, Y.L.; Gaspari, M.; Heath, J.R.; Hill, H.D.; Mirkin, C.A.; Nijdam, A.J.; Terracciano, R.; Thundat, T.; et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 2006, 10, 11–19. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Takemura, K.; Li, T.C.; Suzuki, T.; Park, E.Y. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Wang, W.; Zhang, L.; Lu, Z.; Li, S.; Xu, L. Preparation and electrochemical behavior of L-glutamate electrochemical biosensor. J. Biomed. Nanotechnol. 2013, 9, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Qian, K.; Qi, J.; Liu, Q.; Yao, C.; Song, W.; Wang, Y. Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosens. Bioelectron. 2018, 99, 564–570. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Y.; Yang, G.; Tang, C.; Deng, Y.; Li, S.; Wang, Z. Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode. J. Biomed. Nanotechnol. 2017, 13, 1253–1259. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, G.; Gou, D.; Luo, P.; Yao, Y.; Chen, H. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens. Bioelectron. 2019, 142, 111486. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta 2017, 960, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhai, Q.; Dong, D.; An, T.; Gong, S.; Shi, Q.; Cheng, W. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal. Chem. 2019, 91, 6569–6576. [Google Scholar] [CrossRef] [PubMed]
- Hajian, R.; Balderston, S.; Tran, T.; DeBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N.A.; Chung, J.Y.; Nokes, J.; Athaiya, M.; et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Varmira, K.; Mohammadi, G.; Mahmoudi, M.; Khodarahmi, R.; Rashidi, K.; Hedayati, M.; Goicoechea, H.C.; Jalalvand, A.R. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 2018, 183, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ishihara, M.; Koga, Y.; Tsugawa, K.; Hasegawa, M.; Iijima, S. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 091502. [Google Scholar] [CrossRef]
- Bianco, A.; Cheng, H.M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.; et al. All in the graphene family–A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Hartati, Y.A.; Yusup, S.F.; Fitrilawati, F.; Wyantuti, S.; Sofiatin, Y.; Gaffar, S. A voltametric epithelial sodium channels immunosensor using screen printed carbon electrode modified with reduced graphene oxide. Curr. Chem. Lett. 2020, 9, 151–160. [Google Scholar] [CrossRef]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When biomolecules meet graphene: From molecular level interactions to material design and applications. Nanoscale 2016, 8, 19491–19509. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef]
- Wang, K.; He, M.Q.; Zhai, F.H.; He, R.H.; Yu, Y.L. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta 2017, 166, 87–92. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Teengam, P.; Siangproh, W.; Tuantranont, A.; Henry, C.S.; Vilaivan, T.; Chailapakul, O. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal. Chim. Acta 2017, 952, 32–40. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhang, L.; Zhang, Y.; Zhang, H.; Zhang, C.; Xuan, X.; Wang, M.; Zhang, J.; Yuan, Y. A novel graphene-based nanomaterial modified electrochemical sensor for the detection of cardiac troponin I. Front. Chem. 2021, 9, 680593. [Google Scholar] [CrossRef]
- Saeed, A.A.; Sánchez, J.L.; O’Sullivan, C.K.; Abbas, M.N. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 2017, 118, 91–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.K.; Zhu, Y.; Jiang, H. Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 2014, 86, 9459–9465. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, D.; Xiang, G.; Liu, L.; Liu, F.; Pu, X. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst 2014, 139, 5460–5465. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012, 6, 2904–2916. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Hashemi, E.; Rahighi, R. Ultra-sensitive detection of leukemia by graphene. Nanoscale 2014, 6, 14810–14819. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Rahighi, R.; Abdolahad, M. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 2014, 79, 654–663. [Google Scholar] [CrossRef]
- Yang, B.; Zeng, X.; Zhang, J.; Kong, J.; Fang, X. Accurate identification of SARS-CoV-2 variant delta using graphene/CRISPR-dCas9 electrochemical biosensor. Talanta 2022, 249, 123687. [Google Scholar] [CrossRef] [PubMed]
- Heidarimoghadam, R.; Akhavan, O.; Ghaderi, E.; Hashemi, E.; Mortazavi, S.S.; Farmany, A. Graphene oxide for rapid determination of testosterone in the presence of cetyltrimethylammonium bromide in urine and blood plasma of athletes. Mat. Sci. Eng. C 2016, 61, 246–250. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2012, 34, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.E.; Lopes, B.V.; Rossato, J.H.H.; Maron, G.K.; Gallo, B.B.; La Rosa, A.B.; Balboni, R.D.C.; Alves, M.L.F.; Ferreira, M.R.A.; da Silva Pinto, L.; et al. Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. Surfaces 2022, 5, 187–201. [Google Scholar] [CrossRef]
- Haghayegh, F.; Salahandish, R.; Hassani, M.; Sanati-Nezhad, A. Highly stable buffer-based zinc oxide/reduced graphene oxide nanosurface chemistry for rapid immunosensing of SARS-CoV-2 antigens. ACS Appl. Mat. Interfaces 2022, 14, 10844–10855. [Google Scholar] [CrossRef] [PubMed]
- Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and future trends. Com. Commun. 2020, 150, 644–660. [Google Scholar] [CrossRef]
- Kumar, A.; Purohit, B.; Maurya, P.K.; Pandey, L.M.; Chandra, P. Engineered nanomaterial assisted signal-amplification strategies for enhancing analytical performance of electrochemical biosensors. Electroanalysis 2019, 31, 1615–1629. [Google Scholar] [CrossRef]
- Pashchenko, O.; Shelby, T.; Banerjee, T.; Santra, S. A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect. Dis. 2018, 4, 1162–1178. [Google Scholar] [CrossRef]
- Kaushik, A.; Mujawar, M.A. Point of care sensing devices: Better care for everyone. Sensors 2018, 18, 4303. [Google Scholar] [CrossRef] [Green Version]
- Mujawar, M.A.; Gohel, H.; Bhardwaj, S.K.; Srinivasan, S.; Hickman, N.; Kaushik, A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mat. Today Chem. 2020, 17, 100306. [Google Scholar] [CrossRef]
- Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, S.S.; Lin, C.W.; Wei, K.C.; Huang, C.Y.; Hsu, P.H.; Liu, H.L.; Lu, Y.J.; Lin, S.C.; Yang, H.W.; Ma, C.C.M. Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci. Rep. 2021, 6, 25155. [Google Scholar] [CrossRef] [Green Version]
- Yola, M.L.; Eren, T.; Atar, N. A novel and sensitive electrochemical DNA biosensor based on Fe@ Au nanoparticles decorated graphene oxide. Electrochim. Acta 2014, 125, 38–47. [Google Scholar] [CrossRef]
- Chen, M.; Hou, C.; Huo, D.; Bao, J.; Fa, H.; Shen, C. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens. Bioelectron. 2017, 85, 684–691. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, S.; Mo, F.; Su, S.; Chen, X.; Li, Y.; Fang, L.; Huang, H.; Deng, J.; Liu, H.; et al. An electrochemical DNA biosensor analytic technique for identifying DNA methylation specific sites and quantify DNA methylation level. Biosens. Bioelectron. 2019, 127, 155–160. [Google Scholar] [CrossRef]
- Chen, H.G.; Ren, W.; Jia, J.; Feng, J.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Fluorometric detection of mutant DNA oligonucleotide based on toehold strand displacement-driving target recycling strategy and exonuclease III-assisted suppression. Biosens. Bioelectron. 2016, 77, 40–45. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.; Xiang, Y.; Yuan, R.; Chai, Y. Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Biosens. Bioelectron. 2014, 55, 266–271. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, J.; Ye, Y.; Cao, X.; Zheng, H.; Xu, X.; Zhang, Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon 2018, 129, 730–737. [Google Scholar] [CrossRef]
- Abu-Salah, K.M.; Zourob, M.M.; Mouffouk, F.; Alrokayan, S.A.; Alaamery, M.A.; Ansari, A.A. DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 2015, 15, 14539–14568. [Google Scholar] [CrossRef] [Green Version]
- Touhami, A. Biosensors and nanobiosensors: Design and applications. Nanomedicine 2014, 15, 374–403. [Google Scholar]
- Chandrasekaran, A.R. DNA nanobiosensors: An outlook on signal readout strategies. J. Nanomat. 2017, 2820619. [Google Scholar] [CrossRef]
- Debiais, M.; Lelievre, A.; Smietana, M.; Müller, S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res. 2020, 48, 3400–3422. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing biosensors with machine learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef] [PubMed]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Bollella, P.; Gorton, L.; Ludwig, R.; Antiochia, R. A third-generation glucose biosensor based on cellobiose dehydrogenase immobilized on a glassy carbon electrode decorated with electrodeposited gold nanoparticles: Characterization and application in human saliva. Sensors 2017, 17, 1912. [Google Scholar] [CrossRef] [Green Version]
- Bollella, P.; Katz, E. Biosensors—Recent Advances and Future Challenges. Sensors 2020, 20, 6645. [Google Scholar] [CrossRef]
- Kavita, V. DNA biosensors—A review. J. Bioeng. Biomed. Sci. 2017, 7, 222. [Google Scholar] [CrossRef]
- Choi, J.H.; Lim, J.; Shin, M.; Paek, S.H.; Choi, J.W. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2020, 21, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Vishnubhotla, R.; Sriram, A.; Dickens, O.O.; Mandyam, S.V.; Ping, J.; Adu-Beng, E.; Johnson, A.C. Attomolar detection of ssdna without amplification and capture of long target sequences with graphene biosensors. IEEE Sens. J. 2020, 20, 5720–5724. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Yin, K.; Xu, Z.; Cooper, K.; Liu, C. Electric field-enhanced electrochemical CRISPR biosensor for DNA detection. Biosens. Bioelectron. 2021, 192, 113498. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens. Bioelectron. 2016, 77, 99–106. [Google Scholar] [CrossRef]
- Tripathy, S.; Vanjari, S.R.; Singh, V.; Swaminathan, S.; Singh, S.G. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens. Bioelectron. 2017, 90, 378–387. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Saffar-Dastgerdi, M.H. Clean Laccase immobilized nanobiocatalysts (graphene oxide-zeolite nanocomposites): From production to detailed biocatalytic degradation of organic pollutant. Appl. Catal. B Environ. 2020, 268, 118443. [Google Scholar] [CrossRef]
- Zhou, L.; Mao, H.; Wu, C.; Tang, L.; Wu, Z.; Sun, H.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; et al. Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens. Bioelectron. 2017, 87, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.Y. Recent advances on IoT-assisted wearable sensor systems for healthcare monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Pateraki, M.; Fysarakis, K.; Sakkalis, V.; Spanoudakis, G.; Varlamis, I.; Maniadakis, M.; Lourakis, M.; Ioannidis, S.; Cummins, N.; Schuller, B.; et al. Biosensors and Internet of Things in smart healthcare applications: Challenges and opportunities. In Wearable and Implantable Medical Devices 2019; Academic Press: Cambridge, MA, USA, 2020; pp. 25–53. [Google Scholar] [CrossRef] [Green Version]
Reference | Biosensors | Graphene Nanocomposites | Clinical Diagnostics | Medical Data, AI and IoMT | Open Research Issue |
---|---|---|---|---|---|
[11] | ✓ | - | ✓ | - | ✓ |
[12] | ✓ | ✓ | ✓ | - | - |
[13] | ✓ | ✓ | ✓ | - | ✓ |
[10] | ✓ | - | ✓ | ✓ | ✓ |
[14] | ✓ | ✓ | ✓ | - | - |
[15] | ✓ | ✓ | - | ✓ | - |
[16] | ✓ | ✓ | - | ✓ | - |
Biosensor | Types | Advantages | Disadvantages |
---|---|---|---|
Electrochemical | Amperometric, potentiometric, conductimetric, impedimetric and voltametric | excellent detection limits, easy miniaturization easy miniaturization (ease of fabrication), robustness, faster detection, linear output, good resolution, etc. | Unstable current and voltage, narrow or limited temperature range, cross sensitivity with other gases, short or limited shelf life |
Optical | surface plasmon resonance (SPR), fluorescence, bio/chemiluminescence, refractive index, Raman scattering, absorbance | high sensitivity, selectivity, cost-effectiveness, small size | Susceptible to physical change and interference from environmental effects |
Thermal/calorimetric | Thermistors or thermopiles | Scalability, Ease of use and ease of fabrication | Lack of specificity inn temperature measurements, long experimental procedures |
Mass sensitive or gravimetric | Wave biosensor, surface acoustic, cantilever | Low cost and simplicity | Low sensitivity |
Piezoelectric | Surface acoustic devices, Piezoelectric crystal | Fast detection, good frequency response, small size and high sensitivity | High temperature sensitivity, not suitable for static conditions, some crystal can dissolve in high humid environment and are water soluble |
Classification | Example |
---|---|
Chemical Nature | Inorganic and organic |
Conductivity | Conductors and semiconductors |
Material composition | Polymeric, ceramic, metallic, etc. |
NP state | Soft and hard |
Application | Medicine, imaging (optics), electronics, etc. |
Reference | Sample/Analyte/Target | Type of Graphene | LOD/LR |
---|---|---|---|
[89] | Lead in blood sample | gFET | LOD below 37.5 ng/L |
[90] | Cancer | gFET | LOD of less than 100 pg/ML |
[91] | Human papillomavirus | graphene-polyaniline | 2.3 nM LOD and 10–200 nM LR |
[92] | Cardiac troponin | rGO, silver nanoparticles and Molybdenum sulfide (MOS) | 0.3 pg/mL to 0.2 ng/mL LR |
[93] | Breast cancer biomarkers | GO and gold nanoparticles | 0.16 nM and 0.23 nM LOD and 378 nA/nM and 219 nA/nM for ERBB2 and CD24 respectively |
[94] | Living cell peroxide | RGO-Pt | 0.2 Um LOD and 0.5 µM to3.475 mM wide LR |
[95] | Mycobacterium tuberculosis | RGO- gold NPs | 1.0 × 10−15 to 1.0 × 10−9 M. |
[96] | 4 DNA bases | Reduced graphene-nanowalls | 0.1 fM to 10 mM and 9.4 zM (∼5 dsDNA/mL) |
[97] | Leukemia cells | graphene oxide nanoplates and reduced graphene oxide nanowalls | leukaemia fractions (LFs) of ∼10−11 LOD |
[98] | Leukemia cells | Mg2+-charged spongy graphene electrodes | wide concentration range of 1.0 × 105–0.1 cell/mL and LOD of ∼0.02 cell/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irkham, I.; Ibrahim, A.U.; Pwavodi, P.C.; Al-Turjman, F.; Hartati, Y.W. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors 2023, 23, 2240. https://doi.org/10.3390/s23042240
Irkham I, Ibrahim AU, Pwavodi PC, Al-Turjman F, Hartati YW. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors. 2023; 23(4):2240. https://doi.org/10.3390/s23042240
Chicago/Turabian StyleIrkham, Irkham, Abdullahi Umar Ibrahim, Pwadubashiyi Coston Pwavodi, Fadi Al-Turjman, and Yeni Wahyuni Hartati. 2023. "Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review" Sensors 23, no. 4: 2240. https://doi.org/10.3390/s23042240
APA StyleIrkham, I., Ibrahim, A. U., Pwavodi, P. C., Al-Turjman, F., & Hartati, Y. W. (2023). Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors, 23(4), 2240. https://doi.org/10.3390/s23042240