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Abstract: Ubiquitous sensor networks collecting real-time data have been adopted in many industrial
settings. This paper describes the second stage of an end-to-end system integrating modern hardware
and software tools for precise monitoring and control of soil conditions. In the proposed framework,
the data are collected by the sensor network distributed in the soil of a commercial strawberry farm
to infer the ultimate physicochemical characteristics of the fruit at the point of harvest around the
sensor locations. Empirical and statistical models are jointly investigated in the form of neural
networks and Gaussian process regression models to predict the most significant physicochemical
qualities of strawberry. Color, for instance, either by itself or when combined with the soluble solids
content (sweetness), can be predicted within as little as 9% and 14% of their expected range of values,
respectively. This level of accuracy will ultimately enable the implementation of the next phase in
controlling the soil conditions where data-driven quality and resource-use trade-offs can be realized
for sustainable and high-quality strawberry production.

Keywords: smart agriculture; machine learning; IoT; harvest forecasting; sustainable farming; food
quality prediction

1. Introduction

In the world of big data sustained by ubiquitous applications of sensor networks,
artificial intelligence (AI) and machine learning (ML) create significant opportunities in
multidisciplinary fields, including healthcare, financial services, and smart agriculture.
According to the U.S. Department of Agriculture (USDA), the agriculture field and sur-
rounding industries contributed USD 1.109 trillion to the U.S. gross domestic product
and provided 10.9% of the total employment in 2019 [1,2]. This paper introduces a holis-
tic approach, which includes a sensor network with real-time connectivity to the cloud,
algorithm-driven controllers, and advanced machine learning algorithms to enable a fully
automated soil conditioning system. This paper aims to improve the sustainability of straw-
berry production, which can easily be scaled to other kinds of special crops. Smart farming
systems use sensory data and real-time monitoring devices to acquire high-resolution data
from the field and the environment surrounding the crop to improve the crop quality and
quantity while decreasing cost and increasing sustainability.

Researchers have focused on the yield prediction sector to support the economy
and develop a sustainable supply across many different crops. Strawberry fruit is an
essential crop for the U.S. economy, as the U.S. is the second-largest strawberry producer
worldwide, contributing to 26.2% of the world’s production with 231 tons in 2017–2018 [3].
The importance of the strawberry crop worldwide provided the motivation to study the
effects of the natural environment and soil physical characteristics on the quality of the
strawberry, and not just the yield. One of the major factors that has been continuously
investigated through different studies is the water content and its effects on the yield and
strawberry quality [4,5]. Strawberry cultivars have different demands of water content and

Sensors 2023, 23, 2247. https://doi.org/10.3390/s23042247 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042247
https://doi.org/10.3390/s23042247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1691-8353
https://orcid.org/0000-0002-3224-4865
https://doi.org/10.3390/s23042247
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042247?type=check_update&version=3


Sensors 2023, 23, 2247 2 of 17

fertilization to reach acceptable levels of both quality and yield [4–10]. Previous literature
reports that a water deficit has a drastic effect on the strawberry yield and marketability
(size of the fruit) on most strawberry cultivates [4,7]. At the same time, the overuse of water
increases the cost and subsequently reduces the water resources for other areas [11]. The
drip irrigation system for strawberry is an efficient way to save 50% more water compared
to the overhead sprinklers [12]. Furthermore, the overuse or wrong kind of fertilization
can harm the strawberry size and sweetness [8,13]. Wu et al. [10] studied the effect of
four different factors (nitrogen (N), phosphorus (P), potassium (K), and water) on the
yield and the strawberry sweetness ratio (SSC/TTA), where they found a significant effect
on the yield and SSC when they applied the N fertilizer. While the water content had
a significant effect on yield, P fertilizers had a significant effect on the sweetness ratio.
However, they noticed a decline in the yield, sweetness ratio, and firmness when they
applied fertilizer and water extravagantly [10,14]. The sweetness ratio and the development
of the strawberry cultivars are reflected in the ripening stage of the fruit, which affects
the strawberry color [15]. The combination of all the factors, including water content and
fertilizer levels, with optimal irrigation schedule and techniques, still represent an open
field for research. As the new technologies help explore and adjust these combinations,
machine learning and data mining help improve the agricultural process for applications
including crop prediction, disease, and weed detection, and species recognition [16].

Over the past decade, most of the research (authors of this paper included) focused on
evaluating the quality of strawberries postharvest with little attention to how to control the
quality of the crop pre-harvest. This study proposes a holistic system, which is comprised
of multiple components in the form of a wireless sensor network to collect real-time high-
resolution data from the soil, machine learning algorithms to predict potential harvest
quality from the measured data and a control system to adjust soil parameters, including
water content (WC) and electrical conductivity (EC) to achieve desired physicochemical
characteristics at the point and time of harvest. The high-resolution data which match the
soil measurements with the postharvest quality analysis has been presented in [17]. As
the follow-up publication, this paper will focus on the data inference part of the project
using machine learning tools, including both empirical (neural networks, ensembles of
neural networks (ENN)) and statistical (Gaussian Process Regression (GPR)) approaches.
Figure 1 shows the proposed system in full, where the general aim is to regulate the soil
water and fertilizer levels both in real-time and on-demand for optimal physicochemical
qualities at the harvest. The study’s results so far prescribe several steps that can be taken
to enhance strawberry cultivation through soil sensor-based real-time field monitoring. For
instance, the control algorithm can be tested in a field where water levels can be monitored
and adjusted using real-time smart controllers at drip line valves, thus optimizing resource
utilization based on dynamic environmental and weather factors. This article will focus on
the data collection and model training, which are required to ultimately control the smart
valves at each drip line.

Previous studies have shown less than stellar results regarding strawberries’ overall
sensory qualities, which do not always satisfy the customers [18]. As was also shown in the
literature, local area information has a significant effect on the model’s accuracy [19–21].
This provides a strong incentive to find the optimal pre-harvest conditions for different
cultivars and to develop a robust algorithm to determine the relationship between the local
soil properties and the strawberry’s physicochemical characteristics.
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Figure 1. The proposed framework with two stages. (a) The first stage is data collection from the
field, data pre-processing, and model training. (b) The second stage is testing the developed models
with new field data and implementing the control hardware based on the model predictions.

2. Materials and Methods

This study was conducted using data collected from an approximately 40 acre com-
mercial strawberry farm in Plant City, Florida. The reader can learn more about the data
collection process and the statistical analysis of the data in the first publication of this
study [17]. As shown in Figure 2, a bird’s-eye view is provided for the farm with three
time-series data loggers from three different regions, each with two terminals connected
to three sensors. The markers in Figure 2 represent the location of each logger, which
were strategically placed to sample from areas of the field with high, medium, and low
humidity levels based on natural elevation. The sensors measured the soil water content
(m3/m3), electrical conductivity (mS/cm), and soil temperature (◦C), for the whole of
four months during the 2018–2019 Florida Brilliance strawberry season [22]. The precip-
itation rate (inch /day) data for Plant City, Florida, were included in this study [23] for
that Florida strawberry season in order to see the effect of rain on the water content (WC)
and electrical conductivity (EC). There is a relationship between the soil water content
(WC), the soil conductivity (EC), and the precipitation rate, similar to what has been found
in the literature [17,24]. There is a correlation between the WC level with rainwater, WC
level with EC level, and EC level with rainwater where the rainwater obviously increases
the WC along with the ions and minerals in the soil, which is then reflected in the EC
level, as reported by Friedman et al. [24]. The soil properties such as temperature and WC
are significant factors in crop quality and quantity [16,19,25], but since Florida Brilliance
Strawberries were grown on an open field in a plastic-covered bed, temperature control
is not feasible. Based on the results of the preliminary analysis of the data and what was
previously reported in the literature [17,24], the WC and EC were selected as the primary
factors in training the ML algorithms.
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Figure 2. The satellite view of the farm in Plant City, Florida, where the real-time data loggers were
placed, and the commercial harvest was performed.

The dataset includes data points for four harvests during the four months of the
2018–2019 strawberry season, where six different points in the field were harvested to yield
a total of 24 multivariate data points after pre-processing the dataset, as shown in Table 1.
The 24 multivariate data points include the soil measurements and the corresponding fruit
sensory qualities recorded in a collaborating lab at the University of Florida. For each of the
24 samples, the sensory qualities of the harvested strawberries used in the study as output
predictions include color and soluble solids content (SSC). Color is an attractive element
in strawberry evaluation [18,26] and the basic external quality factor for the postharvest
uses of the fruit, as well as a natural indicator of fruit ripeness [15,18,27]. The color of
strawberries was analyzed using a machine vision system [28] consisting of a light box, a
Nikon D200 digital color camera, and a computer. The camera settings were set to 36 mm
focal length, ISO 100 sensitivity, 1/3 s F/11 shutter speed, −1 eV exposure compensation,
and direct sunlight white balance. The system was calibrated using a standard red plate
from Labsphere. A software program was used to capture images and calculate the average
L*, a*, and b* values of the strawberry surface based on five replicates [17]. The measure
of redness, “a*”, was taken on the red/green coordinate and considered the definitive
indicator of strawberry color in this study. On the other hand, SSC is an indicator of sugar
content for sweetness, another primary consumer preferred attribute. SSC was conducted
on the homogenized strawberry samples from each harvest. The samples were blended in
a high-speed blender for 5 min, then centrifuged at 5000× g for 20 min to obtain a clear
juice, which was filtered through cheesecloth [17]. The SSC of the resulting supernatant
was determined using a Reicher handheld digital refractometer at room temperature [17].
Ultimately, color and SSC was highlighted as the consumer and food industry’s main focus
for good strawberry quality [29,30]. There is a correlation between an increase in sugar
content in the strawberry as the fruit ripens [31,32]. Furthermore, previous studies have
reported the quality of a strawberry is at the peak around day 28 from the fruit set [15], so
a 28-day postharvest time window was determined for this study as well.

Table 1. Dataset characteristics for the raw and pre-processed field and harvest data.

Raw Dataset Pre-Processed Dataset
for Analytics

Number of soil sensor data points 22,000 per sensor
24 × 4 (WC)

24 × 8 (WC & EC)

Number of harvests for quality analysis 4 4

Number of sensors 6 6

Number of fruit samples analyzed per harvest 5–15 per sensor
Averaged across the

population for each sensor

2.1. Machine Learning Methods

The effectiveness of various machine learning algorithms has been proven in many
agricultural applications [16,19–21,33–35]. The overall framework proposed in this study
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takes inspiration from the fact that the causality between sensory variables and product
quality can be used to develop smart control systems for better quality and sustainability as
shown in Figure 1. The first phase of the project involved the creation of the dataset from
an operational commercial strawberry farm in Central Florida, which included significant
collaborations between the stakeholders including the farm and two collaborating academic
institutions. Once the data were collected, they were pre-processed to group the recordings
within a 4-week time window prior to each harvest on account of the studies in the literature,
which discuss how the quality of a strawberry is at its peak between 28–36 days from the
fruit set [15]. After some statistical preliminary analysis [17], which demonstrated non-
linear relationships between the primary input predictors WC and EC, and the primary
quality attributes SSC and color, two scenarios were considered in this study. In the first
scenario, the WC was used as the primary input feature to predict associated strawberry
qualities, color and soluble solids content (SSC) as the model outputs. In the second
scenario, the same outputs were predicted using both WC and EC as joint input features.

The dataset, even though it was collected over a 4-month period with thousands of data
points for sensory recordings, still has a challenging size, in light of the limited harvesting
capabilities, which allowed for 4 separate occasions for the harvest on the commercial
farms. As a result, the dataset has 24 data points and a relatively large feature vector, so it
is extremely important to apply the fail-safe measures to prevent the network from over-
fitting, such as early stopping and proper cross-validation. Leave-one-out cross-validation
was applied in training the algorithms, as described below.

One of the recently introduced strategies used in training the empirical models is
splitting training data into two partitions, where the first partition is used to train model
parameters and the second partition is used to calculate model accuracy at each step. As
illustrated in Figure 3, two neural network frameworks were employed in the form of
shallow and ensemble (ENN) neural networks, the first to tune the early stopping condition
and the second to train and test the dataset. Once the early stopping conditions are reached
(i.e., the accuracy on the validation partition starts to drop for N number of consecutive
times), the training is stopped, the epoch number is recorded, and the two partitions
are combined. The neural network is then trained from scratch using the same initial
parameters for the same number of epochs using the entire training set. The final accuracy
is reported on the test set, which is not included in any stage of the training process and is
alternated between cross-validations.

Figure 3. Methodology flow chart used in two-stage neural network training.
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2.1.1. Empirical Methods

This study includes a thorough comparison between different machine learning topolo-
gies which fall under two main categories: empirical and statistical. The first step in this
study compares the results of a neural network (NN) to avoid over-fitting on a small dataset
to an ensemble of neural networks (ENN), which helps build a more stable algorithm at
the expense of error rate.

For each run, leave-one-out cross-validation was used with 23 samples for training and
1 sample for testing. The root mean square error (RMSE) and prediction error percentage
(PEP) metrics were used to measure the models’ performance for both frameworks. The
PEP is defined as the root mean square error of the network over the quality average (QA)
for each feature to provide a general understanding of the relative accuracy with respect to
quantifiable metrics for each output, as shown in Equation (1) below. The limitations of the
dataset size have ultimately determined the cross-validation size.

PEP =

√
∑N

i=1(yi−ŷi)2

N
QA

∗ 100 (1)

Neural Network Data Representation: Different topologies were implemented in
the form of one or two hidden layers, with different numbers of neurons in each layer,
for an exhaustive analysis with all possible combinations. The input in the first scenario
was presented as the WC averages for the 4 weeks prior to each harvest, whereas in the
second scenario, the inputs were the WC and EC averages for the 4 weeks prior to each
harvest. In both cases, the output was different for each experiment depending on whether
univariate or multivariate scenarios were used, such as predicting color separately, or color
and SSC together. Each experiment was conducted 50 times for statistical redundancy
and the average RMSE on the training and testing sets were recorded. The networks used
hyperbolic tangent functions for activation and RMSE as the cost function, whereas PEP
was used to evaluate the network prediction error.

Ensemble of Neural Networks: ENN is an enhanced form of a singular neural network,
where an ensemble of networks is used with different initial parameters to stabilize the
prediction. ENN was used to deal with the randomness of each model and to improve
the stability of prediction across all the models, especially considering the size of the
dataset. Combining ensembles of neural networks with leave-one-out cross-validation
gave us an unbiased and reliable estimation for the model performance and generalized
the error [36]. Each experiment was conducted 50 times for statistical redundancy and
recorded the average RMSE on the training and testing set. The networks use hyperbolic
tangent functions for activation and RMSE as the cost function, whereas PEP was used to
evaluate the network prediction error.

2.1.2. Statistical Method

A robust and statistical model was added to corroborate this study—the Gaussian
Process Regression (GPR), which has gained immense popularity in recent years—to
explore the value of a statistical approach. GPR is a powerful probabilistic model to deal
with noisy and small datasets [37], gives us well-calibrated probabilistic outputs, and
provides the prediction with its confidence interval.

Gaussian Process Regression: GPR is a non-parametric probabilistic model which
uses the Bayesian approach to give a probabilistic output. It uses independent variables to
determine the uncertainty in the model prediction and improve the model selection [38].
GPR uses the mean of the input data, m

(
X ∼ Rd

)
; in the first case, the input data were

the WC averages, and in the second case, the input data were the WC and EC averages of
the 4-week time scales prior to each harvest and the covariance kernel matrix, k

(
x, x

′
)

, to
calculate the prior probability distribution and predict the posterior probability distribution.
GPR maximizes the likelihood of Y given X, while ε ∼ N

(
0, σ2

xx
)

is the noise associated
with the data with a zero mean and variance σ2

xx.
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f (x) ∼ GP(m(x), k(x, x′)) (2)

k(x, x′) = σ2exp(−d(x, x′)2

2l2 ) (3)

Y = f (x) + ε (4)

Working with GPR on a small dataset helps in saving resources, while computing the
kernel matrix as the model complexity, (n3), is tied to the data dimension [37–39]. GPR is
still sensitive to over-fitting with a small dataset, so the squared exponential (SE) kernel
was used to calculate the prior in our experiments, while adding white noise to overcome
the model over-fitting, as described in literature [40,41].

The leave-one-out cross-validation technique was applied to improve the performance
and avoid over-fitting, where 23 samples were used for training and one sample for testing.
The input–output pairs followed the same pattern as before for each experiment, depend-
ing on whether univariate or multivariate scenarios were used, such as predicting color
separately or color and SSC together. RMSE was used to measure the models’ performance
for both the univariate and multivariate responses, whereas PEP was used to evaluate the
network prediction error.

3. Results

The results overall suggest that the color of a strawberry can be best predicted from
the water content (WC) of the soil averaged across the 4 weeks immediately preceding
the harvest. Including the electrical conductivity (EC) in the input space for predicting
both color and sugar content simultaneously generally resulted in higher RMSE values.
The RMSE results on the testing set for all neural network topologies, including singular
and ensemble frameworks as well as the GPR models, are shown in detail in Tables 2–4.
The algorithms use the input representation in the form of weekly averages for WC or
the weekly averages for WC and EC, 4 weeks prior to each harvest, whereas Figures 4–7
show the prediction error percentage (PEP) and variance across 50 experiments for all
the empirical methods for visual illustration. The testing RMSE for each experiment is
calculated via leave-one-out cross-validation due to the limited size of the dataset. The
mean of RMSE, PEP (error%), and variance of the RMSE for 50 independent runs for each
experiment are presented for the empirical methods. Where the mean RMSE indicates the
overall performance of a specific algorithm, PEP indicates the prediction error range, and
the variance can be used as an indicator of robustness in real-life applications.

Figure 4. (a) Prediction error percentage across 50 experiments for all empirical methods in predicting
color from WC. (b) The variance across 50 experiments for all empirical methods in predicting color
from WC. The legend indicates the number of layer(s) (one or two) in each network and number of
neurons(s) in each layer(s).
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Figure 5. (a) Prediction error percentage across 50 experiments for all empirical methods in predicting
color from WC and EC. (b) The variance across 50 experiments for all empirical methods in predicting
color from WC and EC. The legend indicates the number of layer(s) (one or two) in each network and
number of neurons(s) in each layer(s).

Figure 6. (a) Prediction error percentage across 50 experiments for all empirical methods in predicting
color and SSC from WC. (b) The variance across 50 experiments for all empirical methods in predicting
color and SSC from WC. The legend indicates the number of layer(s) (one or two) in each network
and number of neurons(s) in each layer(s).

Figure 7. (a) Prediction error percentage across 50 experiments for all empirical methods in predicting
color and SSC from WC and EC. (b) The variance across 50 experiments for all empirical methods in
predicting color and SSC from WC and EC. The legend indicates the number of layer(s) (one or two)
in each network and number of neurons(s) in each layer(s).
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Table 2. Performance comparisons across all empirical models in predicting color for 50 experimental repetitions from WC, and WC plus EC, respectively.

Color Prediction Results from WC Color Prediction Results from WC and EC
#Neurons Statistical Value Neural Network (NN) Ensemble of 2 NN Ensemble of 3 NN Ensemble of 4 NN Neural Network (NN) Ensemble of 2 NN Ensemble of 3 NN Ensemble of 4 NN

[1] Neuron Mean 3.24 3.24 3.29 3.26 4.05 4.15 4.02 4.06
Error% 8.90% 1 8.90% 1 9.04% 8.96% 11.13% 11.40% 11.04% 11.15%

Variance 0.04 0.01 1 0.01 1 0.01 1 0.09 0.04 0.03 0.02
[2] Neurons Mean 3.29 3.30 3.37 3.35 4.24 4.18 4.17 4.27

Error% 9.04% 9.07% 9.26% 9.20% 11.65% 11.48% 11.46% 11.73%
Variance 0.05 0.02 0.04 0.24 0.32 2 0.11 0.07 0.12

[5] Neurons Mean 3.43 3.38 3.51 3.43 4.16 4.31 4.23 4.27
Error% 9.42% 9.29% 9.64% 9.42% 11.43% 11.84% 2 11.62% 11.73%

Variance 0.08 0.05 0.02 0.29 0.08 0.08 0.04 0.03
[10] Neurons Mean 3.49 3.51 3.52 3.56 4.18 4.18 4.18 4.19

Error% 9.59% 9.64% 9.67% 9.78% 11.48% 11.48% 11.48% 11.51%
Variance 0.08 0.06 0.05 0.25 0.09 0.04 0.04 0.02

[1, 1] Neurons Mean 3.28 3.29 3.28 3.29 3.89 3.9 3.93 3.91
Error% 9.01% 9.04% 9.01% 9.04% 10.69% 10.71% 10.80% 10.74%

Variance 0.03 0.02 0.01 1 0.011 0.10 0.04 0.04 0.03
[2, 1] Neurons Mean 3.28 3.27 3.30 3.25 3.97 4.02 3.95 4.07

Error% 9.01% 8.98% 9.07% 8.93% 10.91% 11.04% 10.85% 11.18%
Variance 0.06 0.04 0.03 0.02 0.10 0.09 0.05 0.24

[2, 2] Neurons Mean 3.32 3.38 3.36 3.34 3.94 3.93 4.01 4.02
Error% 9.12% 9.29% 9.23% 9.18% 10.82% 10.80% 11.02% 11.04%

Variance 0.08 0.06 0.02 0.02 0.15 0.05 0.04 0.04
[5, 1] Neurons Mean 3.46 3.33 3.35 3.36 4.07 4.03 4.01 4.03

Error% 9.51% 9.15% 9.20% 9.23% 11.18% 11.07% 11.02% 11.07%
Variance 0.09 0.04 0.24 0.03 0.16 0.04 0.04 0.04

[5, 2] Neurons Mean 3.39 3.52 3.45 3.43 4.09 4.13 4.05 4.09
Error% 9.31% 9.67% 9.48% 9.42% 11.24% 11.35% 11.13% 11.24%

Variance 0.12 0.08 0.27 0.03 0.09 0.06 0.07 0.04
[5, 5] Neurons Mean 3.49 3.49 3.52 3.54 4.11 4.16 4.09 4.11

Error% 9.59% 9.59% 9.67% 9.73% 11.29% 11.43% 11.24% 11.29%
Variance 0.08 0.04 0.28 0.02 0.17 0.12 0.04 0.04

[10, 1] Neurons Mean 3.40 3.46 3.42 3.47 4.13 4.1 4.07 4.09
Error% 9.34% 9.51% 9.40% 9.53% 11.35% 11.26% 11.18% 11.24%

Variance 0.07 0.06 0.27 0.02 0.23 0.09 0.05 0.03
[10, 2] Neurons Mean 3.51 3.48 3.52 3.51 4.11 4.06 4.16 4.07

Error% 9.64% 9.56% 9.67% 9.64% 11.29% 11.15% 11.43% 11.18%
Variance 0.11 0.04 0.28 0.02 0.18 0.05 0.07 0.03

[10, 5] Neurons Mean 3.55 3.57 3.54 3.60 4.11 4.05 4 4.02
Error% 9.75% 9.81% 9.73% 9.89% 11.29% 11.13% 10.99% 11.04%

Variance 0.06 0.04 0.04 0.05 0.14 0.06 0.06 0.03
[10, 10] Neurons Mean 3.54 3.52 3.44 3.45 4 3.93 3.91 3.94

Error% 9.73% 9.67% 9.45% 9.48% 10.99% 10.80% 10.74% 10.82%
Variance 0.08 0.05 0.03 0.03 0.20 0.05 0.04 0.02

1 The smallest error% and variance values. 2 The highest error% and variance values.
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Table 3. Performance comparisons across all empirical models in predicting color and SSC for 50 experimental repetitions from WC, and WC plus EC, respectively.

Color and SSC Prediction Results from WC Color and SSC Prediction Results from WC and EC
#Neurons Statistical Value Neural Network (NN) Ensemble of 2 NN Ensemble of 3 NN Ensemble of 4 NN Neural Network (NN) Ensemble of 2 NN Ensemble of 3 NN Ensemble of 4 NN
[1] Neuron Mean 2.61 2.63 2.61 2.57 3.09 3.09 3.08 3.09

Error% 16.33% 16.36% 16.40% 16.39% 18.51% 18.51% 18.44% 18.52%
Variance 0.02 0.01 1 0.14 0.01 1 0.03 0.02 0.01 1 0.01 1

[2] Neurons Mean 2.65 2.59 2.64 2.62 3.24 3.18 3.19 3.28
Error% 15.16% 15.35% 15.37% 15.31% 19.04% 2 18.77% 18.73% 19.02%

Variance 0.03 0.01 1 0.15 0.01 1 0.12 0.04 0.07 0.19 2

[5] Neurons Mean 2.64 2.62 2.63 2.65 3.04 3.05 3.08 3.06
Error% 14.40% 14.33% 14.42% 14.31% 17.94% 17.76% 18.04% 17.87%

Variance 0.03 0.01 1 0.16 0.01 1 0.05 0.02 0.02 0.01 1

[10] Neurons Mean 2.61 1 2.6 2.61 2.62 2.98 3.01 3 3.01
Error% 14.04% 1 14.11% 14.13% 14.16% 17.54% 17.54% 17.67% 17.53%

Variance 0.03 0.03 0.15 0.01 1 0.05 0.01 1 0.01 1 0.01 1

[1, 1] Neurons Mean 2.61 2.62 2.59 2.59 3.02 3 3.02 3.04
Error% 16.35% 16.49% 16.45% 16.49% 17.97% 17.92% 17.90% 18.00%

Variance 0.02 0.01 1 0.01 1 0.01 1 0.04 0.02 0.02 0.01 1

[2, 1] Neurons Mean 2.64 2.62 2.61 2.62 3.03 2.99 2.99 3
Error% 16.37% 16.39% 16.35% 16.53% 17.94% 17.93% 17.89% 18.00%

Variance 0.02 0.01 1 0.01 1 0.01 1 0.06 0.02 0.02 0.01 1

[2, 2] Neurons Mean 2.62 2.68 2.64 2.64 2.99 3 3.01 3.02
Error% 16.15% 16.07% 15.98% 15.87% 17.97% 17.93% 17.98% 17.99%

Variance 0.03 0.02 0.15 0.01 1 0.07 0.05 0.03 0.02
[5, 1] Neurons Mean 2.7 2.71 2.73 2.69 3.01 3.04 3.01 3.01

Error% 16.63% 16.33% 16.57% 15.84% 18.06% 18.15% 18.04% 18.13%
Variance 0.04 0.02 0.02 0.02 0.05 0.04 0.01 1 0.02

[5, 2] Neurons Mean 2.77 2.77 2.78 2.75 3.08 3.07 3.04 3.05
Error% 15.81% 15.93% 15.72% 15.41% 18.24% 18.26% 18.01% 18.11%

Variance 0.08 0.04 0.03 0.03 0.08 0.03 0.04 0.02
[5, 5] Neurons Mean 2.77 2.78 2.78 2.77 3.06 3.11 3.1 3.07

Error% 15.32% 15.52% 15.56% 15.41% 18.30% 18.20% 18.34% 18.18%
Variance 0.05 0.03 0.04 0.01 1 0.08 0.05 0.03 0.02

[10, 1] Neurons Mean 2.71 2.72 2.7 2.7 3.05 3 3.02 2.98
Error% 16.63% 16.52% 16.47% 16.40% 18.23% 17.98% 18.07% 17.96%

Variance 0.07 0.02 0.02 0.01 1 0.06 0.02 0.01 1 0.01 1

[10, 2] Neurons Mean 2.85 2.79 2.79 2.81 3.13 3.02 3.12 3.1
Error% 15.90% 15.80% 15.95% 15.84% 18.33% 17.90% 18.33% 18.21%

Variance 0.04 0.05 0.03 0.02 0.09 0.03 0.08 0.02
[10, 5] Neurons Mean 2.74 2.76 2.77 2.76 3.08 3.06 3.1 3.14

Error% 14.97% 15.18% 15.33% 15.04% 18.05% 18.26% 18.17% 18.28%
Variance 0.05 0.04 0.03 0.01 1 0.05 0.04 0.03 0.03

[10, 10] Neurons Mean 2.69 2.71 2.69 2.67 3.1 3.12 3.06 3.04
Error% 14.44% 14.51% 14.59% 14.49% 18.12% 18.26% 17.94% 17.89%

Variance 0.04 0.03 0.02 0.02 0.08 0.05 0.02 0.01 1

1 The smallest error% and variance values. 2 The highest error% and variance values.
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Table 4. The performance of GPR for color, color and SSC from WC and WC plus EC, respectively.

Color
Prediction from

WC

Color
Prediction from

EC and WC

Color and SSC
Prediction from

WC

Color and SSC
Prediction from

WC and EC

Mean 3.55 4.09 2.59 3.05
Error% 9.75% 11.25% 21.15% 25.79%

Variance 4.43 5.1 1.95 2.49

3.1. Color

The performances of the applied topologies for the univariate response, color, support
the hypothesis that an empirical tune on an NN with a small dataset can overfit, particularly
with sophisticated models, as shown in Table 1. For instance, in some cases, when the
number of layers and the number of neurons in each layer increased, the testing RMSE
also increased. Moreover, in most cases, the variance decreased as the number of networks
increased in the ensemble, as shown in Figure 5b, which means an ensemble could provide
more robust performance with a trade-off in mean RMSE. The color prediction results
shown in Table 2 display that the lowest RMSE is 3.24 and the PEP is 8.9% from the
expected range of values, at two incidents when NN with one layer and one neuron, and
an ensemble of two neural networks with only one layer and one neuron in each layer
was used with a variance of 0.04 and 0.01, respectively. Figure 8a shows the comparison
of predicted versus observed color values for each of the 24 harvest and location pairs
for the most accurate NN implementations. In a similar fashion, Figure 8b is a visual
representation of the bivariate relationship between the predicted and observed color pairs
for the same implementation. It is clear that while not perfect, the color values have been
predicted within a reasonable range, especially considering the wide dynamic range “a*”
parameter can take, which is the indicator of redness. The highest RMSE is 4.31 and the
PEP is 11.84% from the expected range of values when an ensemble of two NNs with one
hidden layer and five neurons with a variance of 0.08.

Figure 8. (a) Predicted versus observed color values when using the water content as the input to the
most accurate NN implementation. (b) The relationship between the predicted and observed color
pairs for the same implementation.

The GPR for the univariate response seems to have underperformed compared to the
empirical methods. It is possible that the high variance in the case of the GPR could be
due to the presence of some sample points, which are such outliers that they significantly
impact the statistical fitting than the empirical back-propagation across the dataset [42].
Figure 9 helps visualize the impact of outlier data points, where the majority of the samples
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with GPR models performed well compared to the empirical models with an average RMSE
below the best performing NN topology for 75% of the observations. The error distributions
in Figure 10 also demonstrate that most errors occur at RMSE values of 2 or less except
for the outlier points. Figure 10 shows the error histograms for each input–output pair
setup where the error distributions seem mostly identical. As shown in Table 4, the average
RMSE for color from WC is 3.55 on the test set, and the PEP is 9.75% with a variance of 4.43.
The average RMSE for color from WC and EC is 4.09 on the test set, and the PEP is 11.25%
with a variance of 5.1.

Figure 9. The univariate and multivariate RMSE results for GPR in predicting color, and color and
SSC together from WC and WC plus EC.

Figure 10. Error histograms for the four different input–output pair GPR models. (a) Predicting color
from WC. (b) Predicting color from WC and EC. (c) Predicting color and SSC from WC. (d) Predicting
color and SSC from WC and EC.

3.2. SSC and Color

Beyond its mathematical importance, combining the color and SSC features together
can ultimately give us a more precise picture of how to adjust the color and sugar content
for strawberries and improve the production based on available WC and EC averages for
the 4 weeks prior to each harvest.

As anticipated with small data, the RMSE/PEP increases as the number of hidden
layers and the neurons in these layers increase. However, the population of the ensemble
seems to help the variance of RMSE, as shown in Figure 7b. As can be seen from Table 3,
the lowest PEP is 14.04% when one NN with one layer and ten neurons was implemented
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with a variance of 0.03. The highest PEP is 19.04% from the expected range of values, when
an ensemble of one NN with one hidden layer and two neurons with a variance of 0.12.

The GPR performed better in predicting the color values using only the WC as the
input compared to using both the WC and EC as input features. Not only is the PEP% lower,
but also the variance in the root mean square error is smaller. Similarly, when predicting
both color and SSC, using a univariate input (WC) had a better performance than using
both WC and EC as inputs, both in terms of error% (PEP) and error variance. The reader
can find detailed numerical values in Table 4. This generally matches our observations
using empirical models, such as the ensemble networks.

4. Discussion

Over the past decade, most of the research focused on evaluating the quality of spe-
cialty crops postharvest, whereas this study aims to develop a methodology to control
the production quality of strawberries pre-harvest. Specifically, this paper discusses the
algorithm development stage of a sensor-enabled real-time strawberry production moni-
toring system to improve both resource management and harvest quality. Recent studies
tried to predict the crop yield [16,19,20,34] and classify the quality of the harvest based on
computer-vision-developed methods using machine learning algorithms [33,43]. One of
the studies by Sim et al. (2020) predicted the strawberry yield and strawberry growth stage
using some environmental parameters (air temperature, soil temperature, and photosyn-
thetic active radiation) and soil parameters (soil moisture content, EC, relative humidity,
and CO2 concentration) [44], while Madhavi et al. [45] tried to evaluate the strawberry soil
nutrition from the strawberry leaf color and predict the strawberry growth stage. Another
study by ElMasry et al. [43] developed multiple linear regression models to predict the
sweetness and acidity of the strawberry crop using hyper-spectral imaging in the visible
and near-infrared regions.

This paper presents a nondestructive method to predict strawberry quality based on
appearance (color) and flavor (sweetness) from the soil properties (WC and EC) during the
pre-harvest process. Compared to the previous studies, the novel contributions of this study
are multi-fold. Specifically, it introduces both empirical and statistical models to find novel
correlations between the soil sensory measurements and associated multivariate harvest
quality. Furthermore, it demonstrates that a sufficient prediction error can be achieved to
enable a future real-time implementation of a smart controller to exploit environmental
and climate conditions to reduce resource use.

Based on the structure of the data collected from a commercial farm throughout an
entire Florida harvest season, several predictive models, statistical and empirical, were
proposed to infer the color and sugar content of the harvested strawberries from the
measured WC of the soil across a certain time period. To the best of our knowledge,
both the collected data and the subsequently developed algorithms are unprecedented
in the literature. This study demonstrates the performance of the algorithms through
a series of use-case scenarios in predicting the univariate and multivariate responses in
the form of color and sugar content of the produced strawberries as the most important
physicochemical characteristics for marketability.

The average color values in the collected data were around 36.4 (a quantitative measure
for redness) and the average SSC values were 6.4 (a quantitative measure of sugar content).
To accurately display the performance of each prediction model, these average values are
used to create the PEP metric such that the RMSE values are contrasted against the average
quality values for color and SSC to provide a general understanding of the relative accuracy
with respect to quantifiable metrics for each output. In the end, the models were able
to predict the color and color-sugar content within as little as 9% and 14% PEP of their
expected range of values, respectively. Such accuracy values allow for us to implement the
next phase of the project in controlling the WC based on predicted color values once the
desired quality threshold is chosen.
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The authors also acknowledge the limitations of this study. Specifically, the data were
collected across a single harvest season and the number of harvests for quality analysis
was not enough to create a sufficiently generalizable input–output relationship for the
prediction models. Even though widely accepted cross-validation methods have been
deployed and validated, the study can greatly benefit from additional data points which
are projected to be collected in the upcoming strawberry seasons.

These findings suggest several courses of action to implement the proposed scheme of
work shown in Figure 1, as part of a large soil study in improving strawberry production
using sensor-assisted real-time field monitoring. The ultimate goal of the project is to be
able to control the water levels of the soil on-demand to achieve the highest possible harvest
quality in terms of the physicochemical characteristics of the fruit. This study is the first
step toward establishing the relationship between water content, electric conductivity, and
the quality of the strawberries. A natural progression of this work is to implement one of
the developed algorithms in an experimental field where water levels can be monitored and
managed, and the harvest quality can be compared to the predicted algorithmic outputs.
For example, the control algorithm can be tested in a real-world environment where the
water levels are monitored and regulated by smart controllers at the drip line valves,
maximizing resource efficiency based on dynamic environmental and weather conditions.

5. Conclusions

This paper presents the second stage of a system that uses sensor networks to collect
real-time data for the precise monitoring and control of soil conditions in a commercial
strawberry farm. The sensor network is distributed in the soil to gather data that can infer
the ultimate physicochemical characteristics of the fruit at the point of harvest. Empirical
and statistical models, such as neural networks and Gaussian process regression models,
are used to predict the most significant physicochemical qualities of strawberry, such as
color and sweetness. The level of accuracy achieved is as low as 9% and 14% of the expected
range of values, respectively, which will enable the next and third phase of controlling soil
conditions for sustainable and high-quality strawberry production.

This paper introduces both empirical and statistical models to discover new relation-
ships between soil sensor measurements and multivariate harvest quality. Furthermore, it
shows that it is possible to achieve a sufficient level of prediction accuracy to implement a
real-time smart controller in the future to optimize resource use based on environmental
and climate conditions.

The limitations of this study mainly include a lack of sufficient harvests to match the
otherwise very-high-resolution multimodal data streaming from the soil sensors. This
mismatch in data inputs and outputs limited the complexity of the model used for training.
In future studies, more harvest points will be included and the effects of different cultivars,
soil conditions, and temperatures across multiple climates will be studied through multi-
climate and multiple field partnerships.
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