
Citation: Borowiec, M.; Piszko, R.;

Rak, T. Knowledge Extraction and

Discovery about Web System Based

on the Benchmark Application of

Online Stock Trading System. Sensors

2023, 23, 2274. https://doi.org/

10.3390/s23042274

Academic Editors: Marco Savi,

Sebastian Troia and Habib Mostafaei

Received: 30 December 2022

Revised: 9 February 2023

Accepted: 9 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Knowledge Extraction and Discovery about Web System Based
on the Benchmark Application of Online Stock Trading System
Marcin Borowiec, Rafał Piszko and Tomasz Rak *

Department of Computer and Control Engineering, Rzeszow University of Technology,
Powstancow Warszawy 12, 35-959 Rzeszow, Poland
* Correspondence: trak@kia.prz.edu.pl

Abstract: Predicting workload characteristics could help web systems achieve elastic scaling and
reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or
decreasing used resources. However, a successful analysis using a simulation model and recognition
and prediction of the behavior of the client presents a challenging task. Furthermore, the network
traffic characteristic is a subject of frequent changes in modern web systems and the huge content of
system logs makes it a difficult area for data mining research. In this work, we investigate prepared
trace contents that are obtained from the benchmark of the web system. The article proposes traffic
classification on the web system that is used to find the behavior of client classes. We present a
case study involving workload analysis of an online stock trading application that is run in the
cloud, and that processes requests from the designed generator. The results show that the proposed
analysis could help us better understand the requests scenario and select the values of system and
application parameters. Our work is useful for practitioners and researchers of log analysis to enhance
service reliability.

Keywords: experimental analysis; workload characterization; web client classification; web benchmark

1. Introduction

Measurement technology has evolved into wearable hardware devices, but we also
can use observers as parts of software that transmit monitored values of system variables
and collect them in databases. Usually, these captured data from production servers are
technically difficult or relatively expensive. Furthermore, tests of the production system are
not possible or are carried out too late. However, in many cases, it is necessary to test the
hardware and software environment already at the early stages of its preparation. Analysis
of the Internet system is a complex and time-consuming task and requires appropriate
preparation on both sides—the software and the hardware. Logs report information, which
are crucial to diagnose the root cause of complex problems. Administrators of most user-
facing systems depend on periodic log data to get the status of production applications.
Experimental environments make it possible to create an ecosystem for collecting and
processing data about a specific environment so it could be monitored, managed, and
controlled more easily and efficiently. Therefore log data is an essential and valuable
resource for online service systems.

In this article, an experimental environment will be presented, as a case study, based
on a container structure. Furthermore, a web application (AP1) was developed, which their
task is to perform the appropriate tasks algorithm. Modern web systems provide multiple
services that are deployed through complex technologies. Thus, this approach, on the
software and server side, is based on the latest programming technologies and containers
running in the cloud. The proposed application (AP1) is a new concept based on the
DayTrader Java EE application [1] originally developed by IBM as the Trade Performance
Benchmark Sample. DayTrader is a benchmark application built around the paradigm of

Sensors 2023, 23, 2274. https://doi.org/10.3390/s23042274 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042274
https://doi.org/10.3390/s23042274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9299-2216
https://doi.org/10.3390/s23042274
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042274?type=check_update&version=1


Sensors 2023, 23, 2274 2 of 19

an Online Stock Trading System (OSTS). In order to automate the testing process of the
prepared application, an additional application was constructed, which is an automatic
client (AP2), that generates players and performs requests on the OSTS. The combination of
these two applications allowes for the preparation of a benchmark that was used to analyze
web requests. The process of playing on the OSTS was analyzed with predetermined query
scenarios (A1, A2, A3). The OSTS tasks include receiving and then processing purchase and
sale offers while measuring the duration of individual operations, conducting transactions,
i.e., executing previously created offers, and measuring the CPU and RAM consumption of
each container.

Based on this approach, it was possible to analyze the behavior of the OSTS and the
requests processing during increased load. Data was obtained in tests for various test
parameters on two different hardware architectures AR1 and AR2 and with a different
number of R docker replicas because the benchmark program was placed in a prepared
container environment. This solution uses the system architecture where communication is
mediated by a message queuing server.

Modern system development and operations rely on monitoring and understanding
systems behaviour in a production. Behavior analysis was performed and used for client
traffic classification. It was possible to indicate customer traffic based on the system
parameters obtained and the application processing. Traditional analysis and prediction
methods in cloud computing provide unidimensional output. However, the unidimensional
output cannot capture the relationship between multiple dimensions, which results in
limited information and inaccurate results. The precise determination of customer behavior
is very difficult, but with the use of multidimensional hardware, software factors and the
defining of trends of clients’ behavior it has been successful.

The rest of this article is organized as follows. We discuss related work and introduce
our previous models in Section 2. Section 3 presents our solution based on hardware and
software elements. This section contains mechanisms describing the system, the operation
of the OSTS, and the game algorithms implemented by the generator. In Section 4, we
evaluate the usefulness of our benchmark for analysis in the domain of the web system.
Finally, Section 5 presents the conclusions and future work.

2. Related Works

In recent years, novel applications have emerged and it benefited from automated
log-file analysis, for example, real-time monitoring of system health, understanding user
behavior, and extracting domain knowledge. In [2,3], we can find a systematic review of
recent literature (covering the period between 2000 and June 2021) related to automated
log analysis. Application logs record the behavior of a system during its runtime, and
their analysis can provide useful information. Log data is used in anomaly detection,
root analysis, behavior analysis, and other applications. In this section, we discuss re-
lated work on this topic for web system structures. We divided related work into two
parts software and hardware. Some articles present several methods to design new and
improve existing web systems that, even within unpredictable load variations, have to
satisfy performance requirements [4]. Reliability testing is a significant method to ensure
the reliability and quality of systems. The proposition in [5] taxonomy to organise works
focusing on the prediction of failures could help in the context of Web structures perfor-
mance. This taxonomy classifies related work along the dimensions of the prediction target
(e.g., anomaly detection, performance prediction, or failure prediction), the time horizon
(e.g., detection or prediction, online or offline application), and the applied modeling type
(e.g., time series forecasting, machine learning, or queueing theory). We were able to
find works for understanding workloads and modeling their performance is important
for optimizing systems and services. The main models were presented in [6,7] uses Petri
Nets. Article [8] presents a method for setting the input parameters of a production system.
In [9], authors try to understand and model storage workload performance. They analyzed
over 250 traces across 5 different workload families using 20 widely used distributions.



Sensors 2023, 23, 2274 3 of 19

Publications [10,11] use stochastic formalisms for the performance engineering of a web
system and compare their own models with the performance of the production system. We
based on strategies and techniques that could be used in practice to derive the values of
common metrics, including event-driven, tracing, sampling, and indirect measurement
proposed in [12]. Furthermore, some of them could be applied generally to other types
of metrics.

The load generators [13,14] that define web workloads imitate the behavior of thou-
sands of concurrent users in a web browser. Existing generators mostly use different
distributions for representing the time between requests (client think time) [15].

We found many old benchmarks, but they are all based on old types of system.
WebTP [16] is a benchmark that measures the performance of a web information subsystem.
In [17], we can find old techniques of performance testing and various diagnostic tools to
implement testing. In recent years, several new tools and methodologies have been used to
evaluate and measure the quality of web systems. For example, we could find [18] checking
the conformance with respect to the requirements (compatibility testing). In this context,
one challenge for analysis is how to execute multiple test cases, in a correct and efficient
way, that may cover several environments and functionalities of the tested applications
while reducing the consumed resources and time. The existing approaches suffer from
several limitations when deploying them in practice [19]: inability to deal with various logs
and complex log abnormal patterns, poor interpretability, and lack of domain knowledge.
Logfile anomaly detection is vital for service reliability engineering. Paper [19] proposes
a generic log anomaly detection system based on ensemble learning. They conduced an
empirical study and an experimental study based on large-scale real-world data. In [20],
the authors conducted a comprehensive study on log analysis in Microsoft. This article
uncovers the real needs of industrial practitioners and the unnoticed, yet the significant
gap between industry and academia. Debnath [21] presents a real-time log analysis system
that automates the process of detecting anomalies in logs. This system runs at the core of a
commercial log analysis solution that handles millions of logs generated from large-scale
industrial environments. In [22], the authors offered a method for conceptualizing and
developing a real-time log acquisition, analysis, visualization, and correlation setup for
tracking and identifying the main security events.

New technologies have not only offered new opportunities but also have posed
challenges to hardware and software reliability technology. In [23], the technologies of
software reliability testing were analyzed, including reliability modeling, test case gen-
eration, reliability evaluation, testing criteria, and testing methods. Proposed in [24]
framework can predict the resource utilization of physical machines. This framework
consists of two parts: a noise reduction algorithm and a neural network. Davila-Nicanor in
paper [25], presents a process to estimate test case prioritization on Web systems. The results
become a guide to establish test coverage through the knowledge of the most critical paths
and components of the system. The newest and the most common proposed hardware
behavior predictions are based on machine learning techniques [26,27]. In [26], proposes a
novel Prediction mOdel based on SequentIal paTtern mINinG (POSITING) that considers
the correlation between different resources and extracts behavioral patterns. Based on
the extracted patterns and the recent behavior of the application, the future demand for
resources is predicted. Reliability, availability, and maintainability aspects are critical for
an engineering design and were investigated in [28]. These aspects concern a system’s
sustained capability throughout its useful life. The authors in [29] provided a methodology
that results in the successful integration of Reliability, Availability, and Maintainability with
Model-Based Systems Engineering that can be used during the early phases of design.

Paper [30] analyzes the time-sharing system and the network connection, by exploring
internal computer processors. Some works [31] are related to the detection of errors in the
process of static software analysis. Said et al. [32] presented a straggler identification model
for distributed environments using machine learning. This model uses several parameters



Sensors 2023, 23, 2274 4 of 19

extracted by the execution of various types and large-scale jobs. In the paper [33], the
authors presented the study of workload prediction in the cloud environment.

In many cases, traffic analysis and classification of web system requests only include
models of native architecture. All use experiments to verify the proposed classifications.
However, we were unable to find an approach based on a container architecture. Further-
more, we could not find an approach applicable to up-to-date software web framework
tools. Some authors present tools for the run-time verification of quantitative specifications
applications. The PSTMonitor from [34] is the detection of executions that deviate from
the expected probabilistic behavior. CaT [35] is a nonintrusive content-aware tracking and
analysis framework. CaT can improve the analysis of distributed systems. The paper [36]
presents LogFlow, a tool to help human operators in the analysis of logs by automati-
cally constructing graphs of correlations between log entries. The core of LogFlow is an
interpretable predictive model based on a Recurrent Neural Network.

3. Web System Hardware and Software Architecture

Next, we will describe the experiment environment: hardware (AR1 and AR2) and
software (APP1 and APP2). We will use them for evaluation in this case study.

3.1. Hardware Architecture

In this subsection, we describe the hardware test environment that we used for the
analysis. We deployed our system on the Docker container platform. The back-end servers
contain a logic tier and a database. To reflect a realistic container setup (Docker engine
in Swarm mode), we deployed the application APP1 as a benchmark inside a container
with Linux OS. The load generator for requests APP2 was situated in another container.
Depending on the test, we used a different number of containers. We used a pool of
containers running on a cloud that had: AR1 (8 CPU and 20 GB RAM) and AR2 (12 CPU
and 30 GB RAM). A separate internal network connected all containers. We ran only
the programs expected for tests. All parts of the system were implemented based on a
PIONIER cloud environment (https://cloud.pionier.net.pl/, accessed on 18 December
2022) with Intel Xeon E312xx (Sandy Bridge) processors. The sample memory size was
selected experimentally for request processing performance lower than 100% in all cases.

3.2. Software Architecture

All analyses require a set of input parameters. The concrete set of input parameters
differs depending on the architecture of the underlying system and the concrete test. We
carried out several test runs. In our experiments, we used an implementation based on the
Java Spring Boot framework (APP1— https://github.com/raphau-soft/stock-backend-
swarm, accessed on 18 December 2022 and APP2—https://github.com/raphau-soft/
traffic-backend-swarm, accessed on 18 December 2022), Flyway library, MySQL open-
source database management system, and RabbitMQ message broker software.

3.2.1. Containers Configuration

Docker is an open platform for building, delivering, and running applications. It
allows you to decouple the application from the infrastructure so that you can deliver
software quickly. It allows you to significantly reduce the delay between writing code
and running it in a production environment. Container use controlled portions of the host
operating system resources. Docker is only one layer between the real CPU and the web
application. Applications share the same operating system kernel in a highly managed way.

Using the Docker f ile files, we could build our container with the written application
and then run it. Such a container has everything needed to run and at the same time is as
small as possible. In addition, Docker allows us to define the structure of the entire system
consisting of various applications by creating and running the file docker-compose.yml (https:
//github.com/raphau-soft/stock-swarm/blob/master/docker-compose.yml, accessed on
18 December 2022). Powerful Docker mechanism called the Docker Swarm, allows us to

https://cloud.pionier.net.pl/
https://github.com/raphau-soft/stock-backend-swarm
https://github.com/raphau-soft/stock-backend-swarm
https://github.com/raphau-soft/traffic-backend-swarm
https://github.com/raphau-soft/traffic-backend-swarm
https://github.com/raphau-soft/stock-swarm/blob/master/docker-compose.yml
https://github.com/raphau-soft/stock-swarm/blob/master/docker-compose.yml


Sensors 2023, 23, 2274 5 of 19

run a certain number of replicas of a given container. Orchestration is an advanced DevOps
tool that allows accurate and automatic management of entire deployments from a single
tool. The main advantages of orchestration are allowing a single person to monitor and
manage hundreds of systems and automation. Orchestration allows very easy scaling of
services. This greatly simplifies application load management. Please note that the Docker
Swarm supports load balancing, due to which traffic and external load are shared between
all replicas of a given service.

Each server runs in its container. The Docker tool allowed creation of a system of
containers that could communicate with each other. As shown in the figure (Figure 1),
the system consists of two databases, a query queue, the APP2 traffic generator, and any
number of APP1 OSTS replicas. Docker has been run in Swarm mode, so any container
can be created with a given number of replicas.

Figure 1. System schema.

We deploy a web application in a container in the cloud.

3.2.2. RabbitMQ

The use of RabbitMQ allows for asynchronous processing of sent requests in both
directions, so applications do not wait for each other. Division was introduced into pro-
ducers, i.e., those who generate messages and consumers who receive and process these
messages. The table (Table 1) shows the queues and information on which application in
the case of a particular queue is a consumer C and which is a producer P.

3.3. Benchmark

We need a dedicated and controllable benchmark. Benchmark is a web application
that simulates the operation. It is patterned on the IBM DayTrader Benchmark designed to
be representative of typical Internet commerce applications. The benchmark consists of
a database and a set of Application Programming Interface endpoints. It is also directly
related to the stock exchange system (OSTS). The tests include more or less complex
activities, where the system may only carry out one type of operation (buying/selling).
We use a load generator that generates a defined system traffic. APP2 emulates user
behavior and performs requests to stress a web API. During the experiment runs we obtain
measurements of the response times of individual requests and resource utilization. Its
logs contain the response time of every request. The APP2 runs on a separate container.



Sensors 2023, 23, 2274 6 of 19

Table 1. Producers and consumers.

Queue APP1 APP2
buy− o f f er− request C P
sell − o f f er− request C P

company− request C P
test− details− response P C
cpu− data− response P C
user− data− request C P
stock− data− request C P
user− data− response P C
stock− data− response P C

register− request C P
register− response P C

trade− request C P
trade− response P C

Individual queues perform the following tasks and transmit:

• buy− o f f er− request—creates purchase offers,
• sell − o f f er− request—creates sales offers,
• company− request—creates companies,
• test− details− response—sends a response with time data of operations,
• cpu− data− response—the measurement of CPU and RAM usage,
• user− data− request—requests for user data,
• stock− data− request—requests for company data,
• user− data− response—a response with user data,
• stock− data− response—a response with company data,
• register− request—user registration data,
• register− response—registration confirmation.

The processing of bids and offers is the basic operation of the APP1 exchange. The
scheme is common for both buy and sell offers. In the case of a buy offer, the player’s
portfolio is updated, and in the case of a sell offer, the shares held by the player are updated.
First, the OSTS receives a buy or sell message from the queueing server. Then, it downloads
from the database such data as the user and the company to which the offer applies and, in
the case of a sale offer, the shares that are the subject of this offer. The data are updated
and saved in the database together with the created offer. In these operations, the code
responsible for measuring the overall processing time and the time of operations on the
database, i.e., when downloading and saving data, is intertwined. These measurements
are then sent to the queuing server and saved on the traffic generator side to the APP2
generator database. The time from sending a message to receiving it is largely dependent on
the status of the queue; therefore, an additional parameter in the response sent to the traffic
generator is the current number of messages in the queue before sending the response
with measurements.

3.4. Transactions Flow

The entire scheme for conducting transactions on the OSTS is presented in the figure
(Figure 2). In the first step, the application downloads a list of all companies in the database.
The current buy and sell offers are then retrieved for each company and then sorted so that
the highest-priced buy bids and the lowest-priced sell bids are considered first. The next
step is pairing offers with each other and carrying out transactions, i.e., the buyer loses
money and gains shares, and the seller vice versa. This happens as long as there are offers
in the database with which further transactions could be made. When these offers are no
longer available, the algorithm moves on to the next company.



Sensors 2023, 23, 2274 7 of 19

Figure 2. Transaction processing scheme.

4. Analysis of Requests Traffic

One of the ways to guarantee high-quality applications is through testing. Testing is
an important aspect of every software and hardware development process that companies
rely on to elevate all their products to a standardized set of reliable software applications
while ensuring that all client specifications are met. Due to the lack of traces from the real
container system, instead we use an application benchmark for the prepared scenario. All
analyses require a set of input parameters. The concrete set of input parameters differs
depending on the underlying system architecture and particular test.

This section describes the test setup used to obtain the measurement traces. The bench-
mark allows us to use measurements for performance parameters. A set of experiments
was conducted and the results were analyzed. We collected observations of the arrival
times, execution times of individual requests, and average CPU utilization during each
experiment run. The benchmark execution times were measured.

The tests have been grouped into 4 characteristic groups {K1, K2, K3, K4} examining
different characteristics:

1. K1 group examining the impact of the number of replicas (repl).
2. K2 group examining the impact of time between transaction execution (trans).
3. K3 group examining the impact of time between player requests (req).
4. K4 group investigating the impact of scenarious used by players (A1, A2, A3).

This study also has taken into account the impact of the physical factor, i.e., the
performance of the hardware itself on which the tested application will be launched.
The tests were carried out on two different servers with different architectures. The first
architecture has 8 processors and 20 GB of RAM (AR1), while the second has 12 processors
and 30 GB of memory (AR2).

4.1. Game Strategies

Each generated user (player) has its specific class and according to that it takes actions
on the OSTS. Before the test, parameters are given that determine how many players should
be launched for a given algorithm. The results obtained depend on the values of the
given parameters.

The first algorithm is “Buy and sell until resources are used”, hereinafter referred to as
A1. Its operation diagram is shown in the figure (Figure 3). The second algorithm is “Buy
and sell alternately”, hereinafter referred to as A2. The scheme of its operation is shown
in the figure (Figure 4). The third algorithm is “Just browse”, hereinafter referred to as



Sensors 2023, 23, 2274 8 of 19

A3. Its diagram is shown in the figure (Figure 5). The difference between the A1 and A2
algorithms is that the A2 algorithm does not run out of resources, i.e., it adds one buy then
one sell, while the A1 algorithm adds a buy offer in a loop until the player’s resources run
out, then adds sales offers until the player’s resources run out as well. The A3 algorithm
does not affect the expansion of data in the database of the APP1 application because these
are read-only operations.

Figure 3. A1 schema.

Figure 4. A2 schema.



Sensors 2023, 23, 2274 9 of 19

Figure 5. A3 schema.

4.2. Tests Configuration

Each of the 18 tests (with 4 traces per test) presented in the table (Table 2) was also
performed for different time ranges: 1 h, 3 h, 6 h, 9 h, and 12 h (360 logs per architecture):

• K1 = {Test1, Test2, Test3, Test4}—is characterized by a change in the number of replicas,
• K2 = {Test5, Test6, Test7, Test8, Test9}—is characterized by a different times between

transactions,
• K3 = {Test10, Test11, Test12, Test13}—is characterized by a different times between

requests,
• K4 = {Test14, Test15, Test16, Test17, Test18}—is characterized by a different number

of players realising a given algorithm (strategy).

Table 2. Test scenarios for 8CPU_20RAM (AR1) and 12CPU_30RAM (AR2) architectures for 4
groups a.

Test Number Test Name T [s] R S1 S2 S3 TR [ms] TT [s]

Test1 5repl 3600 5 200 0 0 500 180
Test2 2repl 2 200 0 0 500 180
Test3 4repl 10,800 4 200 0 0 500 180
Test4 6repl 6 200 0 0 500 180

Test5 trans_60s 21,600 5 200 0 0 500 60
Test6 trans_120s 5 200 0 0 500 120
Test7 trans_180s 32,400 5 200 0 0 500 180
Test8 trans_240s 5 200 0 0 500 240
Test9 trans_300s 43,200 5 200 0 0 500 300

Test10 req_250ms 5 200 0 0 250 180
Test11 req_500ms 5 200 0 0 500 180
Test12 req_1000ms 5 200 0 0 1000 180
Test13 req_2000ms 5 200 0 0 2000 180

Test14 A1_200− A3_100 5 200 0 100 500 180
Test15 A2_200 5 0 200 0 500 180
Test16 A2_200− A3_100 5 0 200 100 500 180
Test17 A1_100− A2_100− A3_100 5 100 100 100 500 180
Test18 A3_200 5 0 0 200 500 180

a Explanations: T[s]—test duration, R—number of the OSTS replicas, S1—number of players with game strategy
A1, S2—number of players with game strategy A2, S3—number of players with game strategy A3, TR[ms]—time
between player requests, TT [s]—time between the execution of the transaction.



Sensors 2023, 23, 2274 10 of 19

After the set time limit had elapsed, it was possible to download the data collected by
the benchmark:

• logs of queries made by the player, e.g., issuing an offer,
• logs of consumption parameters of APP1 replicas—CPU and RAM memory,
• logs regarding the number of issued purchase/sale offers,
• CPU and RAM memory usage logs for APP2.

4.3. Experiment Results

In this subsection, we present the results obtained from the benchmark tests. In many
production situations, direct measurement of resource demands is not feasible. Benchmark
testing is a normal part of the application development life cycle and is performed on a
system to determine performance. Finally, we describe the conducted experiments in detail
and present the results obtained from them. During the experiments, we monitored each
container as well as every request. Benchmark tests are based on repeatable environments.
We carried out experiments in realistic environments to obtain measurement traces.

4.3.1. Impact of the Number of Replicas of the Stock Exchange Application on Performance

The OSTS is scalable; i.e., it allows the determination of the number of replicas of the
application to increase the efficiency and responsiveness of the entire system. The desired
feature of scalability in the OSTS it has been implemented with the use of containerization
software and the Swarm mode built into it, which implements this mechanism. As you
can easily guess, increasing the number of replicas of the OSTS should allow the server to
better use the available resources and the operation of the application itself. In the case of
the APP1 architecture, the difference in processor utilization after increasing the number
of replicas from 2 to 6 increases by a maximum of a few percent, in the K1 test group
(Figure 6), which allows for a slightly larger number of requests during a given time limit
T, e.g., offers to buy and sell shares (Figures 7 and 8).

Figure 6. Percentage of CPU usage in the AR1 architecture depending on the number of replicas of
the stock exchange application (repl test group).



Sensors 2023, 23, 2274 11 of 19

Figure 7. The number of processed stock sales offers in relation to the number of stock exchange
application replicas.

Figure 8. The number of processed stock buy offers in relation to the number of stock exchange
application replicas.

4.3.2. Impact of Architecture on the Stock Exchange Application Operation

The obvious fact is that the operation of the system in terms of its performance depends
on the platform on which it is running. Carrying out system load tests in a test environment
allows us to answer the question of how the application will behave, e.g., in the case of a
very high load, and whether the tested architecture has sufficient resources to handle all
incoming requests. This is a very important consideration when working on more sensitive
systems that need to be available 24/7 with downtime kept to a bare minimum. Both tested
hardware architectures, AR1 and AR2, meet the requirements of all test scenarios, i.e.,
they allow for their trouble-free completion within the desired time limit, and there are no
complications related to the lack of hardware resources. As a consequence, the generated
logs are complete. The mixed K4 test (A1_100, A2100, A3_100) simulates more similar real
conditions (each player performs different actions and works according to the different
scheme) to some extent represents the approximate load of the real system. According to
the chart (Figure 9), we could decide which architecture solution we are going to use. By
choosing the AR1 solution, we will meet the demand for server resources from clients, but
for more future-proffing, this solution may not be enough, as the popularity of the service
increases (peak load is a maximum of 75%). An alternative is the AR2 architecture, which
will provide a greater reserve of computing power (peak load lower by 15%), and thanks
to the application scalability mechanism, it is possible to change the server’s hardware
configuration. Similarly, in the case of RAM memory, by monitoring current consumption,
we could determine whether its level is sufficient (Figure 10).



Sensors 2023, 23, 2274 12 of 19

Figure 9. CPU usage of two architectures-mixed scenario.

Figure 10. Memory consumption of two architectures-mixed scenario.

4.3.3. Impact of the Type of User Requests on the Stock Exchange Application Load

The characteristics of the system load depend primarily on the type of requests pro-
cessed by the system-actions performed at the moment by the players. As you can see in
the figure (Figure 11), the time course experiment data series of most tests is sinusoidal
when players use the strategies A1 and A2 (buying and selling stocks). This is because
an algorithm has been implemented in the OSTS that handles transactions every TT in-
terval, due to which there is a break between generated requests. Only in the scenario
of 200 concurrent A3_200 players, where users only view offers (A3 strategy), the load is
relatively constant and has lower load-amplitude fluctuations in the graph. In summary,
the algorithm plays a key role in the load on the OSTS and stresses the system the most
when it performs its task. The transaction algorithm is discussed in Section 3.4.



Sensors 2023, 23, 2274 13 of 19

(a)

(b)

(c)

Figure 11. Measuring CPU usage of two architectures-test scenarios K4: (a) algorithm A1 with
200 players and algorithm A3 with 100 players, (b) algorithm A2 with 200 players and algorithm A3
with 100 players, (c) algorithm A3 with 200 players.

4.3.4. The Influence of the Transaction Algorithm on the Operation of the Stock
Exchange Application

The transaction algorithm executes transactions, i.e., it combines buy and sell offers
based on the queuing mechanism (First In First Out) and checks a number of conditions
that have to be met for the exchange of shares to take place. An important parameter of the
OSTS is to specify the time interval (TT) in which successive batches of buy/sell offers will
be processed using this algorithm. Setting it at the right time can have a positive effect on
the processing of offers and has the correspondingly benefitial effect on load-balancing of
the server. Time periods of 1 to 5 min delay between processing have been tested.

For the AR1 architecture (Figure 12), the most appropriate delay between transactions
K2 was the time lower than 60 [s]. Execution of requests on a regular basis results in lower
consumption of server resources resulting in the lack of a long queue of buy/sell offers



Sensors 2023, 23, 2274 14 of 19

(Figure 13). This results in a smaller number of processed offers within TT (Figure 14),
leading to less impact on server resources (Figure 12).

Figure 12. Measuring CPU usage for the latency parameter of the transaction algorithm (AR1
architecture).

(a)

(b)

Figure 13. An example of an increase in pending requests in the queue for adding purchase offers for:
(a) TT = 60 [s], (b) TT = 120 [s].



Sensors 2023, 23, 2274 15 of 19

(a)

(b)

Figure 14. Number of sell (a) and buy (b) offers carried out during the one-hour test for the test
group examining the transaction delay parameter (trans).

Considering the second AR2 architecture of the above-mentioned relationships, we
also have observed the same behavior. It is interesting that for TT = 60 [s], AR2 generates
a linear load, except for tests with a higher delay (Figure 15). This phenomenon was also
observed in longer tests. To sum up, the appropriate setting of the TT delay parameter
for the transaction algorithm positively affects the operation of the OSTS; however, the
correct operation of the system should be verified by examining its time logs. The too-low
and too-high values of these delay cause problems with the functioning of the application,
which has been checked.

Figure 15. Measuring the CPU usage of the traffic generator (APP2) of the stock exchange application.

4.3.5. Time between Requests

The last relationship discovered in the log analysis process was based on the K3
scenario group analyzing the impact of the TR parameter (time between player queries) on



Sensors 2023, 23, 2274 16 of 19

the final logs of the OSTS. The smaller the time interval (think time), the more the system
is loaded with player requests and, therefore, requires more resources. The think time
adds delay in between requests from generated clients [4]. Of course, it is unrealistic for
each player to perform various actions on the website in such short time intervals, but the
simulation clearly shows the high impact of this parameter on the test results (Figure 16).
In addition, another dependence was verified, that could be read from the charts—the CPU
consumption is the same on each container.

(a)

(b)

(c)

(d)

Figure 16. CPU consumption measurement for scenarios testing query delay parameter:
(a) TR = 250[ms], (b) TR = 500[ms], (c) TR = 1000[ms], (d) TR = 2000[ms].



Sensors 2023, 23, 2274 17 of 19

5. Conclusions

In the era of intelligent systems, the performance, reliability, and safety of systems
have received significant attention. Predicting all aspects of the system during the design
phase allows developers to avoid potential design problems, which could otherwise result
in reconstructing an entire system when discovered at later stages of the system or software
development life cycle. To ensure the desired level of reliability, software engineering
provides a plethora of methods, techniques, and tools for measuring, modeling, and
evaluating the properties of systems.

In this article, a novel design concept is presented as a case study of a container-based
web system in the cloud. The aim of doing so is to demonstrate the key changes in systems
design activities to address reliability and related performance. It is worth noting that
web system modeling is helpful in the context of both correlated efficiency growth and
behavior recognition.

We designed and implemented a tool for an expanded analysis based on performance
parameters from logs. We conducted a long-term study of the Online Stock Trading System
(OSTS). We applied approaches for analysis using the system logs of the benchmark for
different workload scenarios and different hardware/software parameters. Along with
measurements, we presented some conclusions about the characteristics of requests. Lastly,
we evaluated these values in relation to the suitability for recognizing the request stream.

A benchmark was prepared based on a container structure running in the cloud, which
consists of elements such as exchange replicas, traffic generator, queuing server, OSTS
database, and a traffic generator database. The task of the generator was to run a test
consisting of simulating a certain number of players of the selected class, that then sends
queries to the OSTS via the queuing server. During this test, data on query processing time,
CPU, and RAM usage were collected for each container. The next step was to analyze the
obtained data. We identified the following obvious benefits: CPU usage is the same on
every replica of the exchange, the more requests in the queue, the longer the processing
time, A3 algorithm generates constant CPU usage, CPU usage is much lower on AR2
architecture, AR2 architecture processes more queries than the AR1 architecture, with a
short break between requests, the AR1 architecture is unable to send more requests quickly,
and a short transaction time keeps request-processing times low.

By examining logs, it is possible to gain valuable insights into how the application
is functioning and the manner in which it is being used by users. This information can
be examined to identify any issues that need to be addressed, as well as to optimize the
performance of the application. Logs can be also used to identify elements of the application
that can be further optimized. Additionally, log analysis can be useful for identifying trends
in the use of the application, allowing for a deeper understanding of user preferences. It
remains the choice of system developers to determine how detailed the logs generated by
the system will be. Consequently, this can greatly enrich the results of ongoing research
and provide valuable information.

The main contribution of this paper is the discussion of the issues (e.g., business
models) involved in creating benchmark specifications for up-to-date web systems. The
presented results show that there are many possible links between web requests or web
traffic and the production system. The proposed benchmark can help by providing guide-
lines for the construction of a container-based cloud-based web production system. A
holistic view of the research effort on logging practices and automated log analysis is key
to providing directions and disseminating the state of the art for technology transfer.

This work also highlights several possible future research directions. In future work,
the limitations to expanding the presented results should be discussed. The main research
topic should center on the use of many request classes in one scenario, which will bring
the model closer to reality. Another step could be to check the players’ behavior in the
second test scenario and its influence on the response time. Building a performance
model with high generalization and providing more interpretable reconstruction results
for the data-driven model are important tasks for our future research. Finally, we consider



Sensors 2023, 23, 2274 18 of 19

proposing a method of discovering anomalies in web systems and application logs based
on user behavior.

Author Contributions: Conceptualization, T.R.; software, R.P.; formal analysis, M.B., validation T.R.;
writing—review and editing, T.R. and M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: New data were created and analyzed in this study. These data can be
accessed here: https://github.com/trak2023z/Stock, accessed on 18 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IBM. IBM DayTrader Benchmark Application. 2023. Available online: https://geronimo.apache.org/GMOxDOC22/daytrader-a-

more-complex-application.html (accessed on 18 December 2022).
2. Korzeniowski, Ł.; Goczyła, K. Landscape of Automated Log Analysis: A Systematic Literature Review and Mapping Study. IEEE

Access 2022, 10, 21892–21913. [CrossRef]
3. Korzeniowski, Ł.; Goczyła, K. Discovering interactions between applications with log analysis. In Proceedings of the 17th

Conference on Computer Science and Intelligence Systems (FedCSIS), Sofia, Bulgaria, 4–7 September 2022; Volume 30, pp. 861–869.
[CrossRef]

4. Rak, T. Response Time Analysis of Distributed Web Systems Using QPNs. Math. Probl. Eng. 2015, 2015, 490835. [CrossRef]
5. Grohmann, J.; Herbst, N.; Chalbani, A.; Arian, Y.; Peretz, N.; Kounev, S. A Taxonomy of Techniques for SLO Failure Prediction in

Software Systems. Computers 2020, 9, 10. [CrossRef]
6. Werewka, J.; Rak, T. Performance Analysis of Interactive Internet Systems for a Class of Systems with Dynamically Changing Offers;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7054.
7. Rak, T. Performance Analysis of Distributed Internet System Models using QPN Simulation. In Proceedings of the 2014 Federated

Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; Volume 2, pp. 769–774.
8. Ge, W.; Di, L.; Shiyong, W.; Minghao, C.; Ziren, L.; Renshun, L. A Formal Performance Evaluation Method for Customised

Plug-and-Play Manufacturing Systems Using Coloured Petri Nets. Sensors 2022, 22, 7845. [CrossRef]
9. Muhammad, W.; Aditya, Y.; Tyler, E.; Anshul, G.; Erez, Z. Analyzing the distribution fit for storage workload and Internet traffic

traces. Perform. Eval. 2020, 142, 102121. [CrossRef]
10. Rak, T.; Żyła, R. Using Data Mining Techniques for Detecting Dependencies in the Outcoming Data of a Web-Based System. Appl.

Sci. 2022, 12, 6115. [CrossRef]
11. Rak, T. Performance Modeling Using Queueing Petri Nets. In Communications in Computer and Information Science; Springer:

Cham, Switzerland, 2017; Volume 718. [CrossRef]
12. Kounev, S.; Lange, K.D.; von Kistowski, J. Measurement Techniques. In Systems Benchmarking; Springer: Berlin/Heidelberg,

Germany, 2020; pp. 131–147. [CrossRef]
13. Parrott, C.; Carver, D. Lodestone: A Streaming Approach to Behavior Modeling and Load Testing. In Proceedings of the 2020 3rd

International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 24–26 June 2020; pp. 109–116.
[CrossRef]

14. Khan, R.; Qahmash, A.; Hussain, M. Soak Testing of Web Applications Based on Automatic Test Cases. Int. J. Eng. Res. Technol.
2020, 13, 4746–4750.

15. Curiel, M.; Pont, A. Workload Generators for Web-Based Systems: Characteristics, Current Status, and Challenges. IEEE Commun.
Surv. Tutor. 2018, 20, 1526–1546. [CrossRef]

16. Jutla, D.; Bodorik, P.; Shaohua, M.; Yie, W. WebTP: A benchmark for web-based order management systems. In Proceedings of
the 32nd Annual Hawaii International Conference on Systems Sciences, Maui, HI, USA, 5–8 January1999; p. 10. [CrossRef]

17. Hegde, V.P. Web Performance Testing: Methodologies, Tools and Challenges. Int. J. Sci. Eng. Res. 2014, 2, 67–73.
18. Chicas, Y.; Maag, S. An Automated Parallel Compatibility Testing Framework for Web-based Systems. In Proceedings of the

International Conferences on WWW/Internet 2021 and Applied Computing, Online, 13–15 October 2021. [CrossRef]
19. Nengwen, Z.; Honglin, W.; Zeyan, L.; Xiao, P.; Gang, W.; Zhu, P.; Yong, W.; Zhen, F.; Xidao, W.; Wenchi, Z.; et al. An empirical

investigation of practical log anomaly detection for online service systems. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, Athens, Greece, 19–28 August 2021; pp. 1404–1415. [CrossRef]

20. Shilin, H.; Xu, Z.; Pinjia, H.; Yong, X.; Liqun, L.; Yu, K.; Minghua, M.; Yining, W.; Yingnong, D.; Saravanakumar, R.; et al. An
empirical study of log analysis at Microsoft. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Association for Computing Machinery, Singapore, 14–18 November
2022; pp. 1465–1476. [CrossRef]

https://github.com/trak2023z/Stock
https://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-application.html
https://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-application.html
http://doi.org/10.1109/ACCESS.2022.3152549
http://dx.doi.org/10.15439/2022F172
http://dx.doi.org/10.1155/2015/490835
http://dx.doi.org/10.3390/computers9010010
http://dx.doi.org/10.3390/s22207845
http://dx.doi.org/10.1016/j.peva.2020.102121
http://dx.doi.org/10.3390/app12126115
http://dx.doi.org/10.1007/978-3-319-59767-6_26
http://dx.doi.org/10.1007/978-3-030-41705-5_6
http://dx.doi.org/10.1109/ICDIS50059.2020.00021
http://dx.doi.org/10.1109/COMST.2018.2798641
http://dx.doi.org/10.1109/HICSS.1999.772955
http://dx.doi.org/10.33965/icwi_ac2021_202109l020
http://dx.doi.org/10.1145/3468264.3473933
http://dx.doi.org/10.1145/3540250.3558963


Sensors 2023, 23, 2274 19 of 19

21. Debnath, B.; Solaimani, M.; Gulzar, M.A.G.; Arora, N.; Lumezanu, C.; Xu, J.; Zong, B.; Zhang, H.; Jiang, G.; Khan, L. LogLens: A
Real-Time Log Analysis System. In Proceedings of the IEEE 38th International Conference on Distributed Computing Systems,
Vienna, Austria, 2–5 July 2018; pp. 1052–1062. [CrossRef]

22. Deshpande, K.; Rao, M. A Comprehensive Performance Evaluation of Novel Big Data Log Analytic Framework. In Advances in
Computing, Renewable Energy and Communication, Lecture Notes in Electrical Engineering, Proceedings of 3rd International Conference on
Machine Learning, Hyderabad, India, 28–29 March 2022; Springer: Singapore, 2022; Volume 915. [CrossRef]

23. Zhouxian, J.; Honghui, L.; Dalin, Z.; Rui, W.; Junwen, Z.; Xiuru, L.; Meng, Z.; Penghao, W. Review of Software Reliability Testing
Techniques. J. Comput. Inf. Technol. 2020, 28, 147–164. [CrossRef]

24. Zhang, Y.; Liu, F.; Wang, B.; Lin, W.; Zhong, G.; Xu, M.; Li, K. A multi-output prediction model for physical machine resource
usage in cloud data centers. Future Gener. Comput. Syst. 2022, 130, 292–306. [CrossRef]

25. Davila-Nicanor, L. Risk Scenarios on Web Applications. J. Comput. 2018, 13, 979–987. [CrossRef]
26. Amiri, M.; Mohammad-Khanli, L.; Mirola, R. A sequential pattern mining model for application workload prediction in cloud

environment. J. Netw. Comput. Appl. 2018, 105, 21–62. [CrossRef]
27. Matoussi, W.; Hamrouni, T. A new temporal locality-based workload prediction approach for SaaS services in a cloud environment.

J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 3973–3987. [CrossRef]
28. Zhang, J.; Haskins, C.; Liu, Y.; Lundteigen, M.A. A systems engineering–based approach for framing reliability, availability, and

maintainability: A case study for subsea design. Syst. Eng. 2018, 21, 576–592. [CrossRef]
29. Diatte, K.; O’Halloran, B.M.; Bossuyt, D.L. The Integration of Reliability, Availability, and Maintainability into Model-Based

Systems Engineering. Systems 2020, 10, 101. [CrossRef]
30. Yang, T. Based on the Analysis of Interrelation Between Parallel Distributed Computer System and Network. In Computer and

Information Science, Studies in Computational Intelligence; Lee, R., Ed.; Springer: Cham, Switzerland, 2022; Volume 1055. [CrossRef]
31. Giebas, D.; Wojszczyk, R. Detection of Concurrency Errors in Multithreaded Applications Based on Static Source Code Analysis.

IEEE Access 2022, 9, 61298–61323. [CrossRef]
32. Said, S.A.; Habashy, S.M.; Salem, S.A.; Saad, E.L.S.M. A Straggler Identification Model for Large-Scale Distributed Computing

Systems Using Machine Learning. In Lecture Notes on Data Engineering and Communications Technologies, Proceedings of the
8th International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 20–22 November 2022; Springer: Cham,
Switzerland, 2022; Volume 152. [CrossRef]

33. Jitendra, K.; Ashutosh, K.S. Performance evaluation of metaheuristics algorithms for workload prediction in cloud environment.
Appl. Soft Comput. Part A 2021, 113, 107895. [CrossRef]

34. Burlò, C.B.; Francalanza, A.; Scalas, A.; Trubiani, C.; Tuosto, E. PSTMonitor: Monitor synthesis from probabilistic session types.
Sci. Comput. Program. 2022, 222, 102847. [CrossRef]

35. Esteves, T.; Neves, F.; Oliveira, R.; Paulo, J. CAT: Content-aware tracing and analysis for distributed systems. In Proceedings of
the 22nd International Middleware Conference, Association for Computing Machinery, Quebec City, QC, Canada, 6–10 December
2021; pp. 223–235. [CrossRef]

36. Platini, M.; Ropars, T.; Pelletier, B.; De Palma, N. LogFlow: Simplified Log Analysis for Large Scale Systems. In Proceedings of
the International Conference on Distributed Computing and Networking, Association for Computing Machinery, Online, 5–8
January 2021; pp. 116–125. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICDCS.2018.00105
http://dx.doi.org/10.1007/978-981-19-2828-4_33
http://dx.doi.org/10.20532/cit.2020.1005155
http://dx.doi.org/10.1016/j.future.2022.01.002
http://dx.doi.org/10.17706/jcp.13.8.979-987
http://dx.doi.org/10.1016/j.jnca.2017.12.015
http://dx.doi.org/10.1016/j.jksuci.2021.04.008
http://dx.doi.org/10.1002/sys.21462
http://dx.doi.org/10.3390/systems10040101
http://dx.doi.org/10.1007/978-3-031-12127-2_9
http://dx.doi.org/10.1109/ACCESS.2021.3073859
http://dx.doi.org/10.1007/978-3-031-20601-6_10
http://dx.doi.org/10.1016/j.asoc.2021.107895
http://dx.doi.org/10.1016/j.scico.2022.102847
http://dx.doi.org/10.1145/3464298.3493396
http://dx.doi.org/10.1145/3427796.3427808

	Introduction
	Related Works
	Web System Hardware and Software Architecture
	Hardware Architecture
	Software Architecture
	Containers Configuration
	RabbitMQ

	Benchmark
	Transactions Flow

	Analysis of Requests Traffic
	Game Strategies
	Tests Configuration
	Experiment Results
	Impact of the Number of Replicas of the Stock Exchange Application on Performance
	Impact of Architecture on the Stock Exchange Application Operation
	Impact of the Type of User Requests on the Stock Exchange Application Load
	The Influence of the Transaction Algorithm on the Operation of the Stock Exchange Application
	Time between Requests


	Conclusions
	References

