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Abstract: Due to the complexity of the fracture mechanisms in composites, monitoring damage using
a vibration-based structural response remains a challenging task. This is also complex when consider-
ing the physical implementation of a health monitoring system with its numerous uncertainties and
constraints, including the presence of measurement noise, changes in boundary and environmental
conditions of a tested object, etc. Finally, to balance such a system in terms of efficiency and cost,
the sensor network needs to be optimized. The main aim of this study is to develop a cost- and
performance-effective data-driven approach to monitor damage in composite structures and validate
this approach through tests performed on a physically implemented structural health monitoring
(SHM) system. In this study, we combined the mentioned research problems to develop and im-
plement an SHM system to monitor delamination in composite plates using data combined from
finite element models and laboratory experiments to ensure robustness to measurement noise with a
simultaneous lack of necessity to perform multiple physical experiments. The developed approach
allows the implementation of a cost-effective SHM system with validated predictive performance.

Keywords: structural health monitoring; delamination detection; optimal sensor placement; modal
analysis; composite structure

1. Introduction

Polymer matrix composite (PMC) materials, in addition to their superior mechanical
properties and resistance to numerous environmental conditions and chemical solutions,
are prone to various types of structural damage that appear during the operation of
structures and components made of them. The most typical types of operational damage
of such materials are matrix cracks, delamination and impact damage, among others.
Due to their specific composition, PMCs are especially susceptible to different types of
damage. In numerous structures, such as aircraft, marine and civil structures, a timely
detection of damage is crucial for structural integrity and safety; therefore, continuous
control of a structural condition is often essential for effective operation of PMC structures
in such applications.

Due to the significant increase in the application of composite materials in numerous
industries, primarily for load bearing structures, structural health monitoring (SHM) sys-
tems have gained much attention both from the viewpoints of scientific developments and
their practical application [1]. Such systems are usually based on strain sensors, piezoelec-
tric elements or optical fibers with fiber Bragg gratings (FBG). Numerous implementations
of such systems used to monitor damage in PMCs can be found for structural applications
in aircraft, marine and civil structural applications. The authors of [2] developed an SHM
system for aircraft wing inspection, Baker et al. [3] developed a strain-based SHM system
to monitor the repaired F-111C aircraft wing, and the authors of [4] presented several
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examples of SHM systems for various structural elements and components. In [5], an SHM
system for aircraft structures using piezoelectric transducers was presented. An overview
of such systems using piezoelectric transducers can be found in [6]. Some examples of
the implementation of FBG-based SHM systems for monitoring boat hulls can be found
in studies by Mieloszyk et al. [7] and Min et al. [8]. The SHM systems developed for civil
engineering applications are summarized in review papers [9–12], while some previous
developments of such systems for monitoring crack propagation in reinforced concrete
bridges are presented in [13,14]. As has been mentioned in numerous studies, the high
cost of a sensor network, especially for large structures, remains the primary aspect which
limits the wide applicability of SHM systems. Therefore, one of the emerging problems
that deserves attention is the optimization of the number and location of SHM systems,
whose main aim is to effectively monitor structural damage with a possibly small number
of sensors.

As discussed in our previous study [15], the oldest and most widespread SHM ap-
proach is based on monitoring the vibration response of a structure, which is considered in
many applications, including composite beams [16] and plates [17–19]. An overview of the
variety of approaches to the problem of optimal sensor placement (OSP) in vibration-based
SHM presented in [15] clearly shows the necessity of developing effective algorithms fo-
cused on minimizing the number of sensors in the measurement network without losing the
quality and accuracy of structural damage. The fundamentality of solving an OSP problem
in SHM systems is underlined in many recent studies; see, e.g., [20–22]. Taking into account
the variety of factors that influence OSP, which include numerous uncertainties, assumed
criteria, optimization algorithms and strategies, the problem is not trivial, especially when
it is implemented physically as an SHM system on a composite structure. In this case,
additional uncertainties, such as variation of local stiffness and material properties due
to possible manufacturing defects, noise in acquired signals, sensor accuracy, physical
constraints on sensor placement, etc., need to be taken into consideration.

In our previous study [15], we focused on the appropriate selection of sensor network.
The networks were a result of the application of different algorithms of optimal sensor
networks, which were evaluated using some of the criteria. The algorithms which provided
sensor networks based on the access to healthy condition strain maps only of the analyzed
composite plate. Apart from the main criteria of optimal placement, the minimum sufficient
number of sensors and used modes were also factors that were taken into account. The
effectiveness of this approach was evaluated on the basis of well-trained classifiers which
were able to evaluate the response of sensor networks to damage detection and to effectively
detect delamination with an arbitrary location.

This paper is a continuation of a previous computational study, which is focused on
the practical implementation of the developed OSP procedure in PMC plates with the
analysis of the effectiveness of this procedure in the presence of numerous uncertainties,
constraints and limitations present in physical SHM systems. These include the presence
of measurement noise, changes in boundary and environmental conditions of a tested
object, numerous aspects related to the manufacturing process of composite structures
and the resulting homogeneity of material properties, which may affect the correctness
of the damage detection procedure, and many others. In contrast to previous research
studies presented in [15], which were focused on the selection of the most effective OSP
procedure and based on numerical simulations only, in this study, we focus on the exper-
imental implementation of the selected procedure. Systematic studies on the detection
of delamination in PMCs using the optimized sensor network demonstrated satisfactory
results. The novel data-driven experimental approach proposed in this study, which was an
improvement to previous computational results [15], is robust to measurement noise and
reveals a high effectiveness in damage detection due to the applied combination of both
numerical and experimental results in the learning algorithm. The developed data-driven
approach falls into the current trends in the development of SHM systems, a concept which
was recently used, e.g., by the authors of [23]. It should be mentioned that the data used in
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this study were acquired from physical experiments and were additionally experimentally
validated using the NDT ultrasonic testing technique. The machine learning algorithm
k-NN within two supervised learning schemes is used to create classification models by
learning from simulated response data. The predictive performance of the developed clas-
sification models is evaluated by introducing trained models to unseen experimental data
and identifying the damage in the composite plates. The main advantage of this approach
is the development of an economically reliable SHM system robust to measurement noise
and changes in boundary conditions of a tested structure with an optimized number and
location of sensors, which is achievable without the need to perform a limited number of
physical experiments.

2. Materials and Methods

The following study focused on the determination of the detectability of artificially
introduced delamination in a composite plate. Details on the manufacturing of the tested
plates and its initial examination are presented in this section.

2.1. Specimen Preparation

In the study, two CFRP plates (healthy and with artificial delamination) with spatial
dimensions of 490 × 240 mm were considered for experimental testing and the validation
of the developed concepts and methods. The staking sequence and other dimensions are
presented in Figure 1.
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Figure 1. The schematic representation of the CFRP plate with an artificial delamination damage and
piezo ceramic actuator.

The plates were manufactured using the hand layup method by assembling individual
prepreg layers cut from a roll of the UNIPREG® Carbon non-crimp fabric of 100 g/m2

(Unicarbon, Kaunas, Lithuania) into a laminate structure according to the (0/90)5s laminate
lay-up. Artificial damage in the form of delamination simulating low-velocity impact is
introduced in one of the plates by placing Teflon® inserts of different sizes between the
respective plies according to the scheme presented in Figure 1. The center point coordinates
for all delamination inserts are as follows: dxc = 160 mm and dyc = 80 mm. The planar size
of the delamination varies according to Figure 1, for instance, the size of the insert between
layers 2 and 3 is d = 20 mm, while d = 80 mm for the insert between layers 8 and 9. The
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assembled laminates are covered with a vacuum bag and sealant tape to create mechanical
pressure and cured in an oven.

2.2. Initial Validation Using Ultrasonic Testing

The quality of the manufactured plates and the introduced delamination damage
was assessed using an ultrasonic non-destructive technique. Initial validation tests were
performed using the USPC 3010 Industrial ultrasonic defect detector (Ingenieurbüro Dr.
Hillger, Braunschweig, Germany). The scanner performed pulse-echo C-scans using a
10 MHz probe (broadband dual transmitting-receiving transducer with the focal length of
25.4 mm). The specimens were immersed in a water tank during testing and the scanning
procedure was performed with a motor-controlled stepper XYZ manipulator that drives
the probe (shown in Figure 2).
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Figure 2. The ultrasonic experimental setup.

The exemplary A-scan acquired from the intact region of the tested plate is presented
in Figure 3. The dedicated Hilgus software used for evaluation of scanning results makes it
possible to define 3 different gates of acquiring signals. The first gate (marked with the red
box in Figure 3) captures a signal reflected from the first limiting surface. When a defect in
the material is present, a part of the introduced ultrasonic wave reflects from this defect
and returns to the receiving transducer. Due to this, the signal is recorded as an echo of this
defect, which is marked by the blue box in Figure 3. The other part of this wave propagates
through the defect to the surface of a specimen opposite to the scanned surface and reflects
from it. This reflection returns to the receiver with a certain delay in the form of a backwall
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echo (marked with the green box in Figure 3). The depth of a defect from the scanned
surface is determined based on the time-of-flight principle, i.e., based on the time delay of
an ultrasonic wave represented by a distance between signals in red and blue boxes.
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The Hilgus software provides imaging of test results in A-, B-, C-, and D-scans. A
typical C-scan image combines A-scan data and is plotted on a plan view of the plate. The
C-scan image for the tested plates was recorded with a resolution step of 0.5 mm on both
principal axes of the plate. The results of the ultrasound imaging given in Figure 4 clearly
show the difference between the two plates.
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Figure 4. Ultrasonic C-scan (time-of-flight mode) images of the plates: (a) healthy plate; (b) plate
with an artificial delamination.

In Figure 4b, only the largest Teflon insert (d = 80 mm) is captured because it is the
first limiting surface from which the ultrasonic wave is reflected. The software records this
signal as the echo of the defect and also uses it to calculate the depth of the defect. To fully
reveal the structure of the introduced delamination damage, the plate was scanned from
the opposite side (Figure 5a). The zoomed C-scan image shows the pyramidal structure of
the delamination damage and the planar size of each insert that forms it (Figure 5b).
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3. Development of Optimal Sensor Networks

In this study, the concept and methods for determining the optimal sensor networks
presented in [15] are evaluated based on the experimental approach. Furthermore, the anal-
ysis of the effectiveness of proposed procedure in the presence of numerous uncertainties,
constraints and limitations present in physical SHM systems is investigated.

The optimal sensor network presented in this work was obtained based on the con-
ducted research presented in [15]. During this study, many different methods were tested
to determine the optimal sensor network. They include the method based on the absolute
strain values calculated for appropriate numerically calculated modes, with each mode hav-
ing a different weight (method represented as A1), the method based on normalized strains
where all modes are equally weighted (method depicted as A2) and the method based on
the modified version of an effective independence method (designated as A3) [24–27]. Each
of the methods contains some distance constraints of the distance required between two
neighbor sensors and the distance required between the position of sensors and edges of
the plate and clamping elements. In the above-mentioned methods, the optimal sensor
networks were calculated independently for each direction treating the modal matrix (built
on the basis of strain map values for corresponding modes) independently in each direction.
Therefore, variants of the methods, called B1, B2 and B3, were also investigated. In these
methods, the modal matrix for both directions were treated as a common data set, which
may result in a different number of sensors in each of the directions. For detailed informa-
tion on these methods, developed algorithms and applied constraints, please see Section 3.3
of [15]. All the sensor networks obtained in the mentioned study were developed on the
basis of the modal matrix of a calibrated FE model for the healthy condition of the plate
only. The modal matrix was obtained as a composition of the strain values in different
directions and for seven different modes. The modes were first ordered according to the
value of the highest energy modal shape value based on information from the experimental
frequency response function.

The concept of the research on the optimal sensor placement was based not only on
determining the distribution of the sensor localization, but also on the required number
of sensors to be used and the appropriate number of considered mode shapes. For this
purpose, many different evaluation functions were used based on the RMS MAC criterion,
Fisher matrix determinant and condition number [28–31]. The aggregation operator of
the mentioned evaluation functions, based on the Hamacher function [32], was used in
the assessment of sensor networks obtained using different methods, different constraints
and different sensor numbers and numbers of modes. The details of this approach and the
results are presented in Sections 3.3 and 3.4 in [15].

Finally, this approach was initially evaluated based on a trained, validated and tested
set of classifiers prepared on the learning data set. This set was collected on the basis of
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developed numerical FE models of the plate for healthy and damaged conditions with
different localization of the delamination. This localization was not known during the
development of the sensor network apart from one sample of data for the healthy condition
of the plate. A binary classifier for damage detection and multiclass classifiers for damage
localization were used for this initial evaluation (see Sections 4 and 5 of [15]). Performed
analysis allows the selection of k-NN classifier as the best performance classifier, robust
to noisy data. Additionally, the results of the evaluation of the optimal sensor placement
approach indicate that A2 and B2 are the best methods assuming that the number of sensors
is not less than four sensors in both directions. These results are presented in Tables 11–14
in [15] and the discussion of these results is presented in Section 5.3 and Section 6 [15]. It is
worth mentioning that previously obtained results were evaluated based on numerically
derived data and this paper is aimed at the empirical evaluation of the presented approach.
For that purpose, results obtained using the A2 method with four sensors in the X direction
and four sensors in the Y direction with the application of seventh modes are evaluated
with the data-driven experimental approach presented in this paper. This sensor network
is presented in Figure 6, where Figure 6a presents the positions of sensors oriented in
the X direction and Figure 6 presents the positions of sensors oriented in the Y direction.
Dots in Figure 6a (blue) and 6b (green) present the localization of sensors, and the contour
lines present the isolines of the sum of absolute normalized strains for seven modes in X
(Figure 6a) and Y (Figure 6b) directions, correspondingly.
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sensor network in X (a) and Y directions (b). Shaded regions represent the mounting clamps.

For the experimental validation of the developed concepts and methods, the CFRP
plates were equipped with a strain sensor network (Figure 7) obtained using the A2
method. HBM® 1-CLY41 6/350ZE strain gauges and the MacroFiber Composite™ MFC
P1 type piezoelectric actuator were bonded to the surface using Cold Curing Superglue
Z70 provided by HBM®. The strain gauges were prewired with a 50 mm fluoropolymer-
insulated stranded wire by the manufacturer. Copper wires with a cross-sectional area
of 0.04 mm2 were connected to stranded prewires and glued to the plate surface using
the Z70 glue. To minimize the influence of wiring on the experimental results, flexible
four-core cables with stranded wires were selected for connecting the sensors to the data
acquisition box.
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Table 1. The configuration of the sensor network for the dynamic strain measurements.

Sensor # 1 2 3 4 5 6 7 8

x, mm 25 30 465 460 165 200 290 325
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orientation 0
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4. Preparatory Studies

These preparatory studies present experimental dynamic strain measurements based
on the selected sensor network localization on the damaged and undamaged plate, as
well as the FE model with piezoelectric transducer preparation and its calibration to these
experimental measurements. Both of these steps are used to prepare the modal matrices of
the sensor network used in the further evaluation of the proposed sensor network.

4.1. Experimental Dynamic Strain Measurements

In the first stage of experimental testing, the acquisition of natural frequencies and
corresponding mode shapes of CFRP plates was performed using a Polytec® PSV-500-3D
scanning laser vibrometer. For two opposite edges of the plate, the clamped boundary
conditions were applied. The clamping was performed using the frame and solid aluminum
bar and bolts spaced with a distance of 50 mm and with the fastening torque of 20 Nm. The
clamping was performed at a distance of 20 mm from the edge of the plate.

The plates were excited via a MacroFiber Composite™ MFC P1 type piezoelectric
actuator (with the d33 effect) by introducing a periodic input chirp signal with a bandwidth
of 0÷400 Hz bandwidth with a frequency resolution of 0.195 Hz. A 2 V vibration amplitude
was generated by the internal generator of the vibrometer and amplified by a factor of
200 using a TREK PA05039 signal amplifier delivered by Smart Materials. The normalized
frequency response functions for both plate conditions are shown in Figure 8, while the
resonant frequencies are given in Table 2.

The obtained results show that the difference in the measured resonant frequencies
varies in the range from −6.9% to 7.5%, suggesting that the introduced delamination has a
smaller effect on the stiffness of the plate and, correspondingly, on the frequencies compared
to the differences in the plates in general. The plates were produced manually in a scientific
laboratory, and, thus, their consistency can be guaranteed only to a certain degree. This also
suggests that natural frequencies cannot directly be used for damage identification, and
other means of exploiting measured data should be sought for this purpose. Normalized
frequency response functions show that the largest vibration magnitude is obtained for the
first frequency for both plates. Modes 3 and 4 are in close range for both plates in terms of
vibration amplitude, while other modes differ significantly.

For dynamic strain measurements, the plate was excited by a periodic sine wave signal
according to the measured resonant frequencies with peak-to-peak vibration amplitudes of 1, 2
and 3 V generated by a waveform generator Agilent 3322A (Agilent Technologies, Santa Clara,
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CA, USA). Different vibration amplitudes were chosen to evaluate the effect of excitation force
on strain measurements and to test the robustness of the damage identification procedure.
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The strain measurements were recorded using the HBM® MGCplus data acquisition
system manufactured by HBM (Darmstadt, Germany) and interpreted by Catman software.
The present system (Figure 9) is able to simultaneously record data from eight channels
with a maximum sampling frequency of 2400 Hz for each channel. To acquire compatible
dynamic strain data, an equal number (4) of sensors was chosen in both principal directions
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of the plate. Sensors for the network were selected based on the order of the magnitude
of the strain values determined by numerical analysis according to the sensor network
placement shown in Figure 6. The location of the selected sensors for both plates is given in
Table 1.
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In general, the selection of the resonant frequencies for the strain sensing depends
on the maximum available sampling frequency of the data acquisition system. To acquire
meaningful strain data, one would need at least six data points to draw a corresponding
response to the sinusoidal excitation signal. Thus, 2400/6 = 400 Hz is the maximum
resonant frequency for which meaningful strain data could be acquired for the present
composite plate. Dynamic strain data are collected by following these steps:

1. The data acquisition system is activated and the measurement channels starts record-
ing strain data with a sampling frequency of 2400 Hz (Figure 10, time t = 0.2 s).

2. The plate is excited (Figure 10, time t = 2 s) by a periodic sine wave signal corresponding
to one of the first seven resonant frequencies with a duration of t = 20 s.

3. The recorded time series of the strain response are imported into Matlab and the
average peak-to-peak strain values are calculated in the period t = 8–18 s. Outlier
peak values are filtered out using the 2 standard deviation approach. Then, the mean
strain value is determined by diving the sum of the absolute average peak values by
a factor of 2. For illustration, a recorded strain signal in a very narrow time frame
together with the calculated mean and average peak-to-peak values are shown in
Figures 10–13.

4. The mean strain values for all sensors and resonant frequencies are collected in
a matrix of 8 × 7 data points. Calculated strain data are given in Appendix A,
Tables A1–A3, for the undamaged condition of the plate excited using 1, 2 and 3 V
vibration amplitudes, respectively. To separate strain data from the effect of the
loading conditions and turn them dependent only on the condition of the structure, it
is proposed to scale all sensor measurements with respect to the strain value of the
first sensor in a considered direction.

In Figures 10a and 11a, one can see that at the excitation moment (time t = 2 s) there is a
large spike in the strain plot, which decays in a few seconds and then the signal normalizes
for the rest of the measurement time. This effect is observed only for the first resonant
frequency, while for the other modes, strain measurements are in the range of peak values
starting from the excitation moment (Figures 12a and 13a). However, it should be noted
that average peak-to-peak strain values are calculated in the period t = 8–18 s; thus, these
disturbances do not affect the calculated values. Figure 11b shows a smooth sinusoidal
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response of strain gauge 1 to the 3 V excitation amplitude of the plate corresponding to the
first resonant frequency.
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All recorded peak values (both positive and negative) are in close proximity to the
calculated average peak-to-peak strain values. In turn, in Figure 10b, one can see that in
this narrow time frame, some recorded strain values differ significantly from the calculated
average peak-to-peak strain values. This is explained by the fact that, by using the peak-
to-peak vibration amplitude of 1 V, the recorded strain values are also significantly lower
(three times) compared to the ones obtained by the 3 V excitation amplitude, and are,
therefore, influenced by the measurement noise to a greater extent. The obtained results
showed that for low strain amplitudes (below 15 µm/m), the recorded signal is inconsistent.
For this reason, the 2 instead of the 3 standard deviation approach was adopted for the
removal of outliers. To provide the same preprocessing conditions for every excitation
signal and amplitude, it was decided to employ the 2 standard deviation approach for
signal conditioning and acquisition of peak strain values in all cases. It must be noted that
in the time frame used for the calculation of average strain values, there are 600 positive and
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600 negative peaks for the first resonant frequency, which allows one to obtain reasonably
good average strain values.
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4.2. Evaluation of Experimental Data

To evaluate the consistency of the experimental strain data, statistical methods for
the comparison and quantitative correlation between the measured dynamic properties
were looked up. One of the most popular tools for quantifying modal vectors is the
Modal Assurance Criterion (MAC). MAC is a statistical indicator, similar to the coherence
feature, which reveals a sensitivity to a difference between compared values, and similarly
remains relatively insensitive to small changes or small magnitudes. This gives a good
statistical indicator and a degree of consistency between the compared mode shapes and
its effectiveness is confirmed in practical applications (see, e.g., [33]). It is limited between
0 and 1, with 1 showing completely consistent mode forms. It can only show consistency
and does not show validity or orthogonality. A value close to 0 indicates that the modes
are not consistent [34].

Firstly, it was of interest to compare the consistency of the measured strain data of the
test plates excited by different vibration amplitudes (Appendix A, Tables A1–A3). It must
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be noted that calculated and then scaled mean strain data for eight sensors are treated as
the mode shape of a particular resonant frequency for the calculation of the MAC. The 3D
MAC plots for healthy and damaged plates are given in Figure 14.
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For the record, in Figure 14, Case 1 corresponds to the mode shape obtained by a
vibration amplitude of 1 V, and Cases 2 and 3 correspond to vibration amplitudes of 2 V
and 3 V, respectively. One can see that for the first resonant frequency, there is a slight
deviation between the mode shape obtained using the 1 V excitation amplitude and the
mode shapes acquired using 2 and 3 V (the maximum ‘1-MAC’ value is 0.04). In turn,
in Figure 14, the MAC values are close to 1 for the mode shapes of the seventh resonant
frequency, showing good consistency between them (the maximum ‘1-MAC’ value being
6 × 10−5). Similar MAC results are also obtained for mode shapes of the third to sixth
resonant frequencies. It can be explained by the fact that the strain values (in µm/m)
obtained for the first two frequencies of the plates excited by the 1 V peak-to-peak vibration
amplitude are comparatively lower than for the higher resonant frequencies and are, thus,
affected by the measurement noise to a greater extent.

To evaluate the consistency and performance of sensors and experimental equipment,
as well as the effect of environmental conditions (changes in room temperature and hu-
midity) on strain measurements, additional tests were performed. Within two weeks,
3 × 3 sets of strain data were acquired for both healthy and damaged plates. Furthermore,
the influence of boundary conditions on sensor data was tested by removing the plates
from the test stand and setting up the experiment once more following the same procedure
as before. Again, 3 × 3 sets of strain data were obtained for both plates within the span of
two weeks. Thus, a total of 18 sets of strain data were acquired for the first seven resonant
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frequencies of the healthy plate and the same amount of data for the damaged plate. MAC
results indicated that the performance of the experimental equipment is consistent and that
the effect of environmental conditions on the strain measurements is minimal. On the other
hand, the effect of boundary conditions (replication of the experimental setup between
two tests with clamped boundary conditions can be guaranteed only to a certain degree) is
evident, although not to a large extent. Details about the MAC results comparing strain
data obtained between two experimental setups are shown in Appendix B. Selected MAC
plots for the entire set (in total, 18 sets comprising 9 sets for each experimental setup) of the
strain measurement data are shown in Figure 15.
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Figure 15. The MAC values for 18 sets of strain data: (a) healthy plate for the second resonant
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4.3. Finite Element Model with Piezoelectric Transducers

The development of the proposed data-driven monitoring system requires the prepa-
ration of a data set which contains strain values for the localizations related to the selected
optimized sensor network. To reduce the number of experiments that allow one to gather
experimental strain data, numerical experiments are also conducted. In this case, appro-
priately prepared and tuned FEM models, which are presented in this section, are used
to perform numerical simulations to obtain the learning data set. This data set is used
mainly for training and validation, but sometimes also for initial testing of the data-driven
system response, excluding experimental validation cases. In this approach, these learning
data sets are intentionally noisy in order to obtain a unique set of learning samples and to
develop the initial validation of the structural monitoring system.

The development of the plate FE model was performed using material properties (stak-
ing sequence, material constants) obtained in the previous study [15]. The geometric model
of the plate was meshed with SOLSH190 elements and a regular mesh of 90 × 48 elements
was obtained. Two opposite edges of the plate were fixed according to the scheme pre-
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sented in Figure 1. A single element in the thickness direction was attributed to each layer
of a composite, giving a total 20 elements for the entire composite.

For supervised learning oriented to damage detection, an FE analysis of the developed
model was performed. The strain values were acquired in both principal directions of the
plate at the predefined sensor locations (Table 1) in the form of a vector of 56 data points
(seven modes × eight sensors). The class label of ‘0’ was assigned to the vector representing
the undamaged condition of the plate. Further, damage in the form of delamination specific
to the low-velocity impact of a composite plate was implemented in the FE model. To
appropriately train the classifier models, both the dimensions and location of the simulated
delamination were subject to change. The investigation of a dynamic response of the tested
composite structures for the damage scenarios considered in this study was based on the
experiment plan presented in Table 3. The considered damage scenarios were represented
by the center point coordinates (dxc and dyc) of the simulated delamination. The variation in
dimensions and location of simulated delamination d is represented by the assumed scheme
(see Figure 1). The presence of delamination in the numerical model was introduced by
contact deactivation in particular nodes within the delamination area defined by a given
scenario. In total, 288 FE models have been developed to determine the strain values in
both main directions of the plate at predefined sensor positions (Table 1) for the first seven
resonance frequencies. In this way, a matrix of 288 × 56 data points is obtained for the
training of machine learning algorithms.

Table 3. The experimental plan for the considered damage scenarios.

No. dxc dyc Class

1 75 45 1
2 75 55 1

. . .
9 75 125 3

. . .
145 275 45 2
. . .
288 425 195 4
289 – – 0

Within the learning scheme that focuses on the detection of damage, the assignments
of class labels were performed. For all 288 data vectors, which represented the plate with
delamination damage, class label ‘1’was assigned. Additionally, for the learning scheme
used for localization of damage, four class labels (from ‘1’ to ‘4’) were assigned according to
the four substructures defined in Figure 1, which correspond to the coordinates of a center
point of delamination according to Table 3. As a result of the performed FE simulations, 289
and 288 sample points were obtained for the damage detection and localization learning
schemes, respectively. The number of sample points in the first case represents one case for
an undamaged plate and 288 cases for a plate with simulated delamination with various
geometric parameters. In the second case, the number of sample points represents 72 data
vectors for each of the four class labels describing the defined substructures of the location
of the delamination in the plate. Taking into account the fact that experimental testing
involves an MFC actuator for vibration excitation, in this investigation, harmonic analysis
was considered to determine the eigenvalues and corresponding eigenvectors instead of
the modal analysis employed for FE model performed on numerical results in the previous
study [15].

To perform harmonic FE analysis, in addition to elastic constants, damping properties
of CFRP plates are also necessary. For this reason, the experimentally obtained FRF of
the CFRP plates was used for the extraction of the modal loss factors by employing the
half-bandwidth method. The experimental modal loss factors were assessed based on the
frequency-domain single degree of freedom (SDOF) principle. This principle introduced a
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sequential evaluation in the vicinity of each peak of the FRF modulus plot, which can be
represented by the peak amplitude method (see [35] for more details). According to this
method, the following formula can be used to determine the modal loss factor ηn extracted
from the experimental FRF for a given resonance peak:

ηn =
fn2 − fn1

fn
, (1)

where n is the mode number; fn1 and fn2 are the frequencies whose values were interpo-
lated from the FRF modulus plot. Illustration of the method is given by the exemplary
resonant frequencies in Figure 16 and Appendix C. The calculated modal loss factors for
the considered resonant frequencies are given in Table 4. An average modal loss factor was
used for harmonic analysis to obtain numerical FRFs of the CFRP plate in the frequency
range from 0 to 400 Hz with a frequency resolution of 0.25 Hz.
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Table 4. Determined modal loss factors ηn, H- for healthy plate and D for plate with delamination.

Mode 1 2 3 4 5 6 7 Average

H 0.0036 0.0143 0.0546 0.0321 0.0238 0.0226 0.0309 0.026
D 0.0022 0.0027 0.0297 0.0220 0.0016 0.0258 0.0478 0.019

The MFC actuator patch with a size of 30 × 15 mm and a thickness of 0.3 mm was
bonded to the surface of the plate according to the scheme shown in Figure 1. The MFC
actuator was modeled with 20-node coupled-field quadratic brick SOLID226 elements.
The material properties used for the development of a linear electromechanically coupled
finite element model of MFC actuator are given in Table 5, where E33 and E11 are the
tensile moduli in the rod and electrode directions, respectively; G31 is the shear modulus;
ν31 and ν13 are the Poisson ratios with respect to the material coordinate system; d33 and
d32 are the strains per unit electric field in the rod and electrode directions, respectively;
and εT

11, εT
22 and εT

33 are the relative permittivity with respect to the material coordinate
system. For harmonic analysis, the MFC patch is actuated by a drive voltage of 400 V. The
calculated frequency response functions for both plates conditions are shown in Figure 17
with resonant frequencies given in Table 6.
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Table 5. MFC material properties provided by Smart Materials [36].

Elastic constants
E33, GPa E11, GPa G31, GPa ν31, – ν13, –

30.34 15.86 5.16 0.31 0.16

Piezoelectric
constants

d33, pm/V d32, pm/V εT
11, – εT

22, – εT
33, –

467 −210 712 1.7 737
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One can see that the difference in plots of FRFs is barely visible and changes in
numerical values of resonant frequencies are in the range of −0.6 to 0.6%. Similar to
experimental measurements, this indicates that changes in resonant frequencies may not be
effectively used for damage identification in the present investigation, and other means of
exploiting modal data should be sought for this purpose.

4.4. Finite Element Data Evaluation and Preprocessing

In total, 289 sample points (1 for the healthy condition and 288 for the damaged
condition) were obtained from the FE harmonic analysis. Each sample point consists of a
data vector of 56 sensor measurements, i.e., for each of the seven considered modes within
the FE simulation results, 8 sensor measurements were noted. Due to large differences
in strain magnitudes acquired from strain sensors, a normalization was applied to avoid
a possible problem of ill-conditioning. The normalization procedure was carried out as
follows: the first sensor strain in a specific direction was considered as a reference to
which all the rest values were normalized. It is especially important to appropriately
train classifiers for discriminant features that are not related to loading and environmental
conditions, while remaining dependent on the structural condition only. The goal of the
present investigation is to build classification models on the strain data acquired from the FE
analysis and then use them for the experimental damage identification in composite plates.

Now when strain data is normalized, it was of interest to evaluate obtained data by
statistical methods for the comparison and quantitative correlation. Firstly, it was proposed
to compare the mode shapes of the strain data between two conditions of the plate. The 3D
plots of calculated MAC values for the first and seventh resonant frequencies are given in
Figure 18. The obtained MAC values range from 0.981 to 0.99 depending on a particular
frequency, which corresponds to 1–2% changes and is up to four times higher than changes
in resonant frequencies. Next, of interest was to evaluate the influence of the damage
location on the strain data. In Figure 19, the calculated MAC values comparing strain mode
shapes between eight different damage scenarios (delamination location: dxc = 75 mm,
dyc = 45...105 belongs to the substructure ‘1’ of the plate in all cases) are depicted. One can
see that changes in strain data vectors increase gradually as the location of damage increases
from the first to the last considered damage scenario. The obtained ‘1-MAC’ values range
from 0.12 to 0.04 depending on the distance between the center point coordinates of different
delamination damage scenarios.

Sensors 2023, 23, 2290 19 of 35 
 

 

experimental measurements, this indicates that changes in resonant frequencies may not 
be effectively used for damage identification in the present investigation, and other means 
of exploiting modal data should be sought for this purpose. 

4.4. Finite Element Data Evaluation and Preprocessing 
In total, 289 sample points (1 for the healthy condition and 288 for the damaged con-

dition) were obtained from the FE harmonic analysis. Each sample point consists of a data 
vector of 56 sensor measurements, i.e., for each of the seven considered modes within the 
FE simulation results, 8 sensor measurements were noted. Due to large differences in 
strain magnitudes acquired from strain sensors, a normalization was applied to avoid a 
possible problem of ill-conditioning. The normalization procedure was carried out as fol-
lows: the first sensor strain in a specific direction was considered as a reference to which 
all the rest values were normalized. It is especially important to appropriately train clas-
sifiers for discriminant features that are not related to loading and environmental condi-
tions, while remaining dependent on the structural condition only. The goal of the present 
investigation is to build classification models on the strain data acquired from the FE anal-
ysis and then use them for the experimental damage identification in composite plates. 

Now when strain data is normalized, it was of interest to evaluate obtained data by 
statistical methods for the comparison and quantitative correlation. Firstly, it was pro-
posed to compare the mode shapes of the strain data between two conditions of the plate. 
The 3D plots of calculated MAC values for the first and seventh resonant frequencies are 
given in Figure 18. The obtained MAC values range from 0.981 to 0.99 depending on a 
particular frequency, which corresponds to 1–2% changes and is up to four times higher 
than changes in resonant frequencies. Next, of interest was to evaluate the influence of the 
damage location on the strain data. In Figure 19, the calculated MAC values comparing 
strain mode shapes between eight different damage scenarios (delamination location: dxc 
= 75 mm, dyc = 45...105 belongs to the substructure ‘1’ of the plate in all cases) are depicted. 
One can see that changes in strain data vectors increase gradually as the location of dam-
age increases from the first to the last considered damage scenario. The obtained ‘1-MAC’ 
values range from 0.12 to 0.04 depending on the distance between the center point coor-
dinates of different delamination damage scenarios. 

  
(a) (b) 

Figure 18. The MAC values between two conditions of the plate: (a) first resonant frequency, (b) 
seventh resonant frequency. 

Figure 18. The MAC values between two conditions of the plate: (a) first resonant frequency,
(b) seventh resonant frequency.



Sensors 2023, 23, 2290 19 of 33
Sensors 2023, 23, 2290 20 of 35 
 

 

  
(a) (b) 

Figure 19. The MAC values comparing strain mode shapes for different location of delamination 
damage: (a) first resonant frequency, (b) seventh resonant frequency. 

5. Results on Structural Health Evaluation 
The application of the developed data-driven structural health evaluation method is 

demonstrated experimentally on CFRP rectangular plates. The k-NN machine-learning 
algorithm within two supervised learning schemes is used to create classification models 
by learning from the simulated response data. The first learning scheme (oriented to dam-
age detection) involves the development of a binary classifier model that sets a description 
of normality. This represents healthy conditions and abnormality indicating the presence 
of delamination in a composite structure. The learning data within the damage localiza-
tion learning scheme additionally contain the known class labels pointing to the damage 
location. In both learning schemes, the outputs of the binary classifiers were as follows. In 
the damage detection learning scheme, one obtains a discrete class label representing the 
structural condition (healthy or damaged), while in the damage localization learning 
scheme, the result of classification is represented by a discrete class label describing spatial 
location of damage. The predictive performance of the developed classification models is 
evaluated by introducing the trained models to unseen experimental data and performing 
the damage identification on composite plates based on established locations of sensors. 

5.1. Training Dataset 
In the first learning scheme, the following procedure is implemented: 

• Strain sensor readings for damaged cases represented by 288 data vectors were rep-
licated ten times (with added noise according to the next step of data preparation), 
resulting in 2880 data vectors; 

• The replication factor of 2880 was applied to the data vector of strain sensor readings 
for the undamaged composite structure. This implied obtaining 2880 identical sam-
ple points for the healthy condition; 

• Data vectors replicated in the above readings for damaged and undamaged condi-
tions were made noisy by the addition of 1% noise [15]: 𝑠 = 𝑠́(1 + 𝛿(2𝑟 − 1)) (2)

where 𝑠́ is a noise-free data point, r is the uniformly distributed random values in the 
interval [0,1] and δ is the noise level. 
• Consequently, a total of 5760 balanced sample points (2880 samples each of both 

healthy and damaged conditions on the plate) are obtained for the training data; 
• The testing data contains two equal groups of 576 sample points: the first group con-

tains 288 different sample points for the damaged condition of a structure, while the 
second group contains 288 replications of a single sample point for the healthy condi-
tion. 

Figure 19. The MAC values comparing strain mode shapes for different location of delamination
damage: (a) first resonant frequency, (b) seventh resonant frequency.

5. Results on Structural Health Evaluation

The application of the developed data-driven structural health evaluation method is
demonstrated experimentally on CFRP rectangular plates. The k-NN machine-learning
algorithm within two supervised learning schemes is used to create classification models by
learning from the simulated response data. The first learning scheme (oriented to damage
detection) involves the development of a binary classifier model that sets a description of
normality. This represents healthy conditions and abnormality indicating the presence of
delamination in a composite structure. The learning data within the damage localization
learning scheme additionally contain the known class labels pointing to the damage location.
In both learning schemes, the outputs of the binary classifiers were as follows. In the
damage detection learning scheme, one obtains a discrete class label representing the
structural condition (healthy or damaged), while in the damage localization learning
scheme, the result of classification is represented by a discrete class label describing spatial
location of damage. The predictive performance of the developed classification models is
evaluated by introducing the trained models to unseen experimental data and performing
the damage identification on composite plates based on established locations of sensors.

5.1. Training Dataset

In the first learning scheme, the following procedure is implemented:

• Strain sensor readings for damaged cases represented by 288 data vectors were repli-
cated ten times (with added noise according to the next step of data preparation),
resulting in 2880 data vectors;

• The replication factor of 2880 was applied to the data vector of strain sensor readings
for the undamaged composite structure. This implied obtaining 2880 identical sample
points for the healthy condition;

• Data vectors replicated in the above readings for damaged and undamaged conditions
were made noisy by the addition of 1% noise [15]:

s = ś(1 + δ(2r − 1)) (2)

where ś is a noise-free data point, r is the uniformly distributed random values in the
interval [0,1] and δ is the noise level.

• Consequently, a total of 5760 balanced sample points (2880 samples each of both
healthy and damaged conditions on the plate) are obtained for the training data;
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• The testing data contains two equal groups of 576 sample points: the first group con-
tains 288 different sample points for the damaged condition of a structure, while the sec-
ond group contains 288 replications of a single sample point for the healthy condition.

The data for the second learning scheme were prepared as follows. For testing pur-
poses, only the original 288 sample points representing the damaged condition of the plate
were considered, while for training, 2800 sample points were used. These sample points
were obtained from the FE data by adding additional noise at the level of 1%. Due to this,
it was possible to reach a situation where there were no identical sample points between
training and testing datasets, so these are not used for classifiers training.

5.2. Training and Classification Validation Procedure

For training and cross-validation, a 10-fold cross-validation scheme (described in [37])
was used. Fine classification results for both learning schemes assumed in this study were
obtained thanks to the large set of training data, 10-fold cross-validation, and fine adjust-
ment of the classifiers’ hyperparameters. In the case of the k-NN algorithm, two of the most
important hyperparameters are the number of nearest neighbors and the distance metric.
The k-fold cross-validation is used to evaluate the performance of different combinations
of these hyperparameters and the best one is selected based on the highest average perfor-
mance across all k folds. Therefore, the combination of the hyperparameters is different for
each of the trained k-NN classifiers. This technique helps to ensure that the hyperparame-
ters of the k-NN algorithm are selected in a rigorous and systematic manner, leading to
better results and a more robust model. The illustration of the technique implemented in
Matlab is given in Appendix D. Table A4 and Figures A6 and A7 show the hyperparameter
optimization results for the k-NN classifier trained for the first mode of the second learning
scheme. The best combination of the hyperparameters for the particular classifier model is
as follows: the number of nearest neighbors—4; the distance metric—‘Minkowski’. The
selected number of objective function evaluations (30 in this case) was sufficient to find
the best combinations of hyperparameters for all trained classifiers. One should note that
classifiers were trained separately for each mode; therefore, seven classification models
have been created for both the considered learning schemes. According to this, we obtained
a much lower probability of accidental erroneous classification, since most of the obtained
results confirmed estimated class of observations, and the possibility of choosing modes
with the best overall accuracy was reached with avoiding the modes with unsatisfactory
classification results if this was confirmed by more than one classifier. An overall classi-
fication accuracy of 99% is observed for binary classifier models, while an 96.8% overall
accuracy is obtained for multiclass classifier models. For the representation of the cross-
validation of the classifiers, the confusion matrices for all seven classification models were
summed in one plot (Figures 20a and 21a). Thus, a total number of 2 × 2880 × 7 class
estimates is observed for the first learning scheme while 4 × 720 × 7 class estimates are
observed for the second learning scheme.

The cross-validation of the developed models was followed by the testing of predictive
performance of classification models on unseen FE strain data—the testing data sets not
used for the training of the classifiers. For the binary learning scheme, the classifiers were
examined using the unseen testing data comprising 288 cases for both conditions of the
plate. The classification results are presented by a confusion matrix containing a total of
2 × 288 × 7 observed class estimates (Figure 20b). The overall accuracy of 99% indicates
the effectiveness and robustness of the k-NN classifier for this task. For the second learning
scheme, the predictive performance of the classifiers was assessed based on unseen testing
data obtained from FEM simulations, which included 288 cases (72 data vectors for every
class label representing four substructures) for the damaged condition of the plate. The
overall classification accuracy for the seven classifier models is presented in Figure 21b.
The k-NN algorithm again demonstrated outstanding performance—the classifier model
can accomplish this task with a total accuracy of 98.3%.
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5.3. Results of Classification for Experimental Data

The experimental investigation is concluded by examining the predictive performance
of the built classifiers in Section 5.2 on unseen experimental strain data.
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5.3.1. Damage Detection

The unseen experimental testing data, which contained 18 cases that represent both
healthy and damaged plate conditions in the first learning scheme, were used for the
examination of the trained classifiers by applying 10-fold cross-validation. The predictive
performance of the k-NN classifier built for each of the seven considered modes indicated
that the poor performance of damaged cases was properly recognized with many false
alarm cases. The explanation can be observed by comparing the experimental and numeri-
cal strain vectors for the undamaged and damaged cases. The changes in strain vectors
between healthy and damaged conditions in the case of FE analysis are relatively small
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(Figure 18). Thus, the classifier models are built using the data where even the slightest
deviation from normality is classified as damage.

To enhance the performance of the classification models, the addition of experimental
data sets to the training data was proposed. For this reason, in the first stage, three sets
of experimental data out of 18 available experimentally measured strain data vectors
biased with a noise level of 1% and included in the training data (strain measurement data
obtained for both conditions of the plate excited with 1, 2 and 3 V vibration amplitudes).
This leads to a considerably high predictive performance (92.5%) of the classification
models (see Figure 22). By examining the performance of classifiers separately, one can
see in Table 7 that six out of seven classifications models have correctly distinguished the
damaged condition of the plate from the undamaged one. The explanation of the poor
performance of the classification model for the second resonant frequency can be found in
Figures 16 and A1 (Appendix B). One can see that the mode shapes of the second resonant
frequency are the least consistent between different experimental setups and excitation
amplitudes. It must also be noted that the added experimental sets are polluted with a
significant noise level, and are, thus, not identical to the unseen experiment data used for
the testing of classification models. Additionally, three sets of added noisy experimental
data comprise only 0.1% of the total number of training data.
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Figure 22. Classification results for the first learning scheme: (a) cross-validation results; (b) predictive
performance on unseen experimental excluding three sets of experimental data that are included.

Table 7. The results of classification for experimental data for the k-NN classifier trained using FEM
data plus the addition of three sets of experimental data according to the first learning scheme.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Sum

18 0 9 1 18 9 18 0 18 0 18 0 18 0 117 10
0 18 9 17 0 9 0 18 0 18 0 18 0 18 9 116

5.3.2. Damage Localization

For the second learning scheme, the classifiers trained via 10-fold cross-validation
are examined using experimental testing data and three sets of experimental data with
added noise out of 18 sets. A class label of ‘1’ is assigned to all 18 vectors corresponding to
the location of the delamination damage according to the scheme given in Figure 1. The
classification results for all classifiers are summarized in one confusion matrix depicted in
Figure 23. The results show very good accuracy in recognizing damage localization.
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5.3.3. Damage Localization with Refined Division

Particular attention should be applied to maintaining a degree of rational precision of
damage localization, i.e., adequate data granulation [38]. For that purpose, an additional
performance of the analyzed damage localization was performed with the refine division
of the plate in substructures pointing to the geometrical location of the damage. In this case
study, the plate is divided into eight imaginary zones according to the scheme depicted in
Figure 24.
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Figure 24. CFRP plate with substructures for damage localization.

In total, 288 FE models with artificial delamination damage were built and harmonic
analyses were performed for the second learning scheme. Class labels ‘1’ to ‘8’ are des-
ignated for each of the 288 data vectors representing the damaged condition of the plate
corresponding to one of the eight substructures in which the center point of delamination is
located (Table 3). Based on this information (the location of the center point of the delamina-
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tion), 32 data vectors belonging to zones ‘1’, ‘4’, ‘5’ and ‘8’ were assigned, while 40 vectors
belonged to zones ‘2’, ‘3’, ‘6’ and ‘7’. Training and testing of the machine learning algo-
rithms was carried out according to the procedure described in Sections 5.1 and 5.2. The
testing data include only the 288 original samples for the damaged condition of the plate,
while training data of 2880 points are derived from the FE data using the multiplication
factor of 10 and a noise level of 1%. A class label of ‘2’ is assigned to all 18 experimental data
sets that correspond to the location of delamination damage according to the scheme given
in Figure 24. A 10-fold cross-validation scheme is used for the training and cross-validation
of classification models. When testing using experimental data with the incorporation of
the three sets of experimental data with added noise to the learning dataset, the overall
classification accuracy reached 98.4%. This result indicates that the classification accuracy
is still high and allows one to maintain a rational precision degree of damage localization.

Table 8 contains a summary of results obtained in the presented research. Every time
the training data contains experimental data, the fraction of experimental data is 0.1% in
the training data set.

Table 8. Overall classification results for the presented research.

Learning Scheme Training Data Set Predictive Performance Test Data Set

First FEM data 99.0% FEM data

Second FEM data
98.3%

(detection and localization
97.3%)

FEM data

First FEM data and Exp. Data 92.5% Exp. data

Second FEM data and Exp. Data
100%

(detection and localization
92.5%)

Exp. data

Second—higher precision
of localization FEM data and Exp. Data

98.4%
(detection and localization

91%)
Exp. data

5.4. Practical Implications

In practice, the developed structural health evaluation method may be applicable for
composite structural components that are produced in large quantities with a high degree of
replicability and used for designed purposes, for instance rotor blades. In this case, costs of
development and calibration of a high-fidelity FE model would be justified since one model
is valid for millions of produced copies. Additionally, for such a structural component, a
designer of the SHM system can easily define the potential failure modes, their possible
locations in structure, and which of these modes are crucial. This information may then be
used to implement possible damage scenarios in an FE model. Defined damage thresholds
allow us to determine if structural component has to be repaired or replaced according to
the online strain measurements.

For the training of the classification algorithm, the addition of experimental data is
suggested as it may improve the predictive performance of the classifier, as is evident in this
study. For the structural component manufactured on an industrial scale, few experimental
tests would still be cost-effective, taking into account the possible benefits of the integrated
SHM system. The benefits of a permanent and independent SHM system integrated
within a structural component include optimum utilization of the structural component,
reduced maintenance costs, minimization of downtime and avoiding catastrophic failure.
Independent SHM systems will increase the operational safety of structural components,
give them a technological added value and extend the areas of their application.
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6. Conclusions

The paper presents the application of the developed data-driven structural health
evaluation method for the identification of experimental damage in CFRP plates. The
k-NN machine learning algorithm within two supervised learning schemes is used to
create classification models by learning from simulated response data and three sets of
experimental data with added noise. The predictive performance of the developed classifi-
cation models is evaluated to unseen experimental data and is used to identify damage
in composite plates. The classification process is performed on strain values from optimal
sensor placement localizations obtained using method A2 and the methodology presented
in [15].

The first learning scheme involves the development of the binary classifier models
which were used for damage detection to indicate the presence of delamination in a com-
posite structure. In the second learning scheme, the learning data representing the damaged
condition of the structure, also as depicted as class labels, points to the geometrical location
of the damage. The trained k-NN classifiers yielded an overall classification accuracy of 99%
and 98.3% for the respective learning schemes for unseen numerical strain data, thus pro-
viding theoretical confirmation of the effectiveness and robustness of the algorithm for both
damage detection and localization tasks. To enhance the generalization properties of the
obtained classifiers for prediction of the classification models, the addition of experimental
data sets with added noise to the training data was proposed. The obtained results show
that by adding three sets of measurement data, the overall classification accuracy increases
to 92.5% for the binary classification and maintains this value for the multiclass classifica-
tion, including detection and localization. High accuracy is also maintained for a higher
degree of damage localization, resulting in 91% for multiclass classification, including
detection and localization.

The results show that although the k-NN machine learning algorithm theoretically
performs classification tasks with very high accuracy, in practice, strain data is corrupted
by measurement noise, affected by changing environmental conditions, etc., and its effec-
tiveness reduces significantly. To overcome this problem, data that combine numerical
and experimental monitoring data with added noise are proposed. By combining features
extracted from different sensor measurements and integrating them into a single feature, it
was shown that structural health evaluation performance is significantly enhanced.

In summary, the following conclusions can be drawn:

(a) Measurement noise, environmental conditions and boundary conditions strongly
reduce the effectiveness of damage detection and localization using classifiers when
they are trained using only artificial data from numerical simulation.

(b) A high accuracy of delamination detection and localization in composite plates can be
obtained by adding a small amount of the learning examples from the experimental
part (in the considered case, it is only 0.1% of the total number of training data).
These examples include the changing of boundary conditions and are affected by
measurement noise.

(c) In the case of a higher accuracy of the damage localization, a higher precision of the
damage localization can be the subject of optimization. The objective function can
be customized to achieve a trade-off balance between the localization precision and
accuracy of the damage classification.

(d) The proposed approach should be preceded by the reliable application of optimal sen-
sor network selection with a reduced number of sensors (proposed also by the authors)
and the selection of an appropriate classifier based on its predictive performance.

The presented approach demonstrated great performance in identification damage
with a limited number of sensors, which also justifies its economical effectiveness, especially
when large spatial structures are the subject of monitoring. Additionally, the robustness
to measurement noise and changes in boundary conditions, together with the practical
implications mentioned in Section 5.4, justify its practical applicability.
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Appendix A

Tables of strain sensor data for the undamaged plate excited with different amplitudes.

Table A1. Strain sensor data for the undamaged plate excited with 1 V amplitude.

Sensor #

Mode Strain 1 2 3 4 5 6 7 8

1
µm/m 10.77 12.91 21.28 16.36 4.39 19.59 14.34 6.67
scaled 1.00 1.20 1.98 1.52 1.00 4.46 3.26 1.52

2
µm/m 23.41 33.91 46.78 2.73 7.33 22.98 17.11 10.45
scaled 1.00 1.45 2.00 0.12 1.00 3.14 2.34 1.43

3
µm/m 11.48 33.36 56.01 41.22 20.26 54.07 39.68 24.95
scaled 1.00 2.91 4.88 3.59 1.00 2.67 1.96 1.23

4
µm/m 13.60 31.88 65.25 42.90 21.52 57.51 42.13 26.61
scaled 1.00 2.34 4.80 3.15 1.00 2.67 1.96 1.24

5
µm/m 12.09 44.29 76.86 58.26 26.98 73.09 53.64 33.72
scaled 1.00 3.66 6.35 4.82 1.00 2.71 1.99 1.25

6
µm/m 13.21 50.04 86.12 65.34 30.80 82.46 60.73 38.09
scaled 1.00 3.79 6.52 4.95 1.00 2.68 1.97 1.24

7
µm/m 12.72 50.09 86.37 64.29 30.35 81.33 59.97 37.62
scaled 1.00 3.94 6.79 5.05 1.00 2.68 1.98 1.24

Table A2. Strain sensor data for the undamaged plate excited with 2 V amplitude.

Sensor #

Mode Strain 1 2 3 4 5 6 7 8

1
µm/m 25.49 28.22 43.87 33.86 14.69 39.79 29.19 18.32
scaled 1.00 1.11 1.72 1.33 1.00 2.71 1.99 1.25

2
µm/m 55.47 72.81 98.74 18.35 17.25 46.37 34.73 21.68
scaled 1.00 1.31 1.78 0.33 1.00 2.69 2.01 1.26

3
µm/m 24.15 67.58 112.73 82.31 40.83 108.96 79.90 50.22
scaled 1.00 2.80 4.67 3.41 1.00 2.67 1.96 1.23

4
µm/m 26.95 64.47 131.13 86.78 43.28 115.88 84.86 53.57
scaled 1.00 2.39 4.86 3.22 1.00 2.68 1.96 1.24
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Table A2. Cont.

Sensor #

Mode Strain 1 2 3 4 5 6 7 8

5
µm/m 24.00 88.74 154.45 116.84 53.94 146.76 107.60 67.58
scaled 1.00 3.70 6.43 4.87 1.00 2.72 1.99 1.25

6
µm/m 25.69 100.41 171.95 130.24 61.96 165.49 121.75 76.47
scaled 1.00 3.91 6.69 5.07 1.00 2.67 1.96 1.23

7
µm/m 25.27 100.79 173.41 128.91 61.01 163.53 120.65 75.66
scaled 1.00 3.99 6.86 5.10 1.00 2.68 1.98 1.24

Table A3. Strain sensor data for the undamaged plate excited with 3 V amplitude.

Sensor #

Mode Strain 1 2 3 4 5 6 7 8

1
µm/m 41.62 43.36 66.83 51.51 22.16 59.46 43.52 27.45
scaled 1.00 1.04 1.61 1.24 1.00 2.68 1.96 1.24

2
µm/m 84.82 115.15 155.91 15.62 25.56 69.28 52.02 32.40
scaled 1.00 1.36 1.84 0.18 1.00 2.71 2.04 1.27

3
µm/m 36.75 101.70 169.33 123.34 61.29 163.63 120.01 75.43
scaled 1.00 2.77 4.61 3.36 1.00 2.67 1.96 1.23

4
µm/m 39.57 97.27 196.10 130.74 64.89 173.98 127.43 80.42
scaled 1.00 2.46 4.96 3.30 1.00 2.68 1.96 1.24

5
µm/m 35.97 133.13 232.05 175.37 80.89 220.35 161.52 101.42
scaled 1.00 3.70 6.45 4.88 1.00 2.72 2.00 1.25

6
µm/m 38.12 151.16 258.02 195.67 93.30 249.37 183.23 115.25
scaled 1.00 3.97 6.77 5.13 1.00 2.67 1.96 1.24

7
µm/m 38.67 151.17 259.72 194.22 91.63 245.69 181.35 113.83
scaled 1.00 3.91 6.72 5.02 1.00 2.68 1.98 1.24

Appendix B

This appendix contains the MAC results comparing strain data obtained between two
experimental setups. Both experimental setups, discussed in Section 4.2, include strain data
measured on plates excited by peak-to-peak vibration amplitudes of 1, 2 and 3 V; hence, a
total of six mode shapes are compared. Cases 1 to 3 correspond to the first experimental
setup with excitation amplitudes of 1, 2 and 3 V, respectively, while Cases 4 to 6 correspond
to the second experimental setup with the according vibration amplitudes. Similar to the
MAC plots in Figure 14, the mode shapes of the first two resonant frequencies are the least
consistent, while the mode shapes of the higher resonant frequencies indicate very good
agreement between both experimental setups.
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Appendix D

Table A4. Hyperparameter optimization results for the k-NN classifier trained for the first mode of
the second learning scheme (a higher precision of localization).

Iteration Evaluation
Result Objective Objective

Runtime
Best So Far
(Observed)

Best So Far
(Estimated)

Number of
Neighbors Distance

1 Best 0.2865 0.1525 0.286 0.2865 62 Cosine
2 Accept 0.8889 0.1097 0.286 0.3104 3 Hamming
3 Accept 0.7129 0.3976 0.286 0.3074 846 Chebyshev
4 Error NaN 0.0681 NaN 0.3074 140 Mahalanobis
5 Best 0.0094 0.0863 0.009 0.0348 11 Minkowski
6 Accept 0.3260 0.1101 0.009 0.0456 80 Minkowski
7 Best 0 0.0841 0 0.0000 4 Minkowski
8 Accept 0 0.1226 0 0.0000 1 Cosine
9 Accept 0 0.1006 0 −0.0001 3 Cosine
10 Error NaN 0.1196 0 −0.0001 1 Euclidean
11 Accept 0 0.1027 0 −0.0001 1 Chebyshev
12 Accept 0 0.0770 0 −0.0001 4 Chebyshev
13 Accept 0.0031 0.0963 0 −0.0001 1 Correlation
14 Accept 0.1865 0.1235 0 −0.0001 17 Correlation
15 Accept 0.8056 0.5147 0 −0.0001 1437 Correlation
16 Accept 0 0.0854 0 −0.0001 1 City block
17 Accept 0.1295 0.1102 0 −0.0001 17 City block
18 Accept 0.7604 0.4976 0 −0.0001 1424 City block
19 Accept 0 0.0829 0 −0.0001 3 City block
20 Accept 0 0.0851 0 −0.0001 1 Euclidean
21 Accept 0.1611 0.1017 0 −0.0001 22 Euclidean
22 Accept 0.6080 0.3131 0 −0.0001 1 Spearman
23 Accept 0.8611 0.4804 0 −0.0001 1434 Jaccard
24 Accept 0.7722 0.5063 0 −0.0001 1431 Euclidean
25 Accept 0 0.0835 0 −0.0002 3 Euclidean
26 Accept 0.8191 0.7128 0 −0.0002 1436 Spearman
27 Accept 0.8889 0.1358 0 −0.0002 1 Jaccard
28 Accept 0 0.0858 0 −0.0009 2 Chebyshev
29 Accept 0.0024 0.1024 0 −0.0010 2 Correlation
30 Accept 0.8611 0.4860 0 −0.0010 1439 Hamming
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34. Pastor, M.; Binda, M.; Harčarik, T. Modal assurance criterion. Proc. Eng. 2012, 48, 543–548. [CrossRef]
35. Wesolowski, M.; Ruchwa, M.; Skukis, E.; Kovalovs, A. Numerical and experimental extraction of dynamic parameters for

pyramidal truss core sandwich beams with laminated face sheets. Materials 2020, 13, 5199. [CrossRef]
36. Micro Fiber Composite Properties, Site of Smart Material Manufacture and Developer of Piezoceramic Composites. Available

online: https://www.smart-material.com/MFC-product-propertiesV2.html (accessed on 22 December 2022).
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