A Wavelet Derivative Spectrum Length Method of TFBG Sensor Demodulation
Abstract
:1. Introduction
2. Derivation of Derivatives Using the Wavelet Transform
3. Derivatives and Contour Length for TFBG Spectra
4. Comparison of First Difference and Wavelet Transform for Calculation of Derivative and Spectrum Length
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Wang, H.; Sun, X. Study on the performance of polarization maintaining fiber temperature sensor based on tilted fiber grating. Measurement 2021, 168, 108421. [Google Scholar] [CrossRef]
- Jin, Y.X.; Chan, C.C.; Dong, X.Y.; Zhang, Y.F. Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber. Opt. Commun. 2009, 282, 3905–3907. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, B.; Zhang, W.; Dong, B.; Zhou, H.; Zhao, Q. Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings. IEEE Photonics Technol. Lett. 2008, 20, 1393–1395. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, C.; Chen, D.; Chu, J.; Wang, Q.; Dong, X. Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties. Opt. Fiber Technol. 2014, 20, 491–494. [Google Scholar] [CrossRef]
- Takeda, S.I.; Sato, M.; Ogasawara, T. Simultaneous measurement of strain and temperature using a tilted fiber Bragg grating. Sens. Actuators A Phys. 2022, 335, 113346. [Google Scholar] [CrossRef]
- Alberto, N.J.; Marques, C.A.; Pinto, J.L.; Nogueira, R.N. Three-parameter optical fiber sensor based on a tilted fiber Bragg grating. Appl. Opt. 2010, 49, 6085–6091. [Google Scholar] [CrossRef]
- Fazzi, L.; Struzziero, G.; Dransfeld, C.; Groves, R.M. A single three-parameter tilted fibre Bragg grating sensor to monitor the thermosetting composite curing process. Adv. Manuf. Polym. Compos. Sci. 2022, 8, 33–41. [Google Scholar] [CrossRef]
- Fazzi, L.; Dias, N.; Holynska, M.; Tighe, A.; Rampini, R.; Groves, R.M. Monitoring of silicone adhesive in space solar cells with an embedded multi-parameter TFBG sensor in a simulated space environment. Meas. Sci. Technol. 2022, 33, 085108. [Google Scholar] [CrossRef]
- Laffont, G.; Ferdinand, P. Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 2001, 12, 765. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, B.; Tian, S.; Zhao, Q. Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating. Microw. Opt. Technol. Lett. 2009, 51, 479–483. [Google Scholar] [CrossRef]
- Fazzi, L.; Groves, R.M. Demodulation of a tilted fibre Bragg grating transmission signal using őĪ-shape modified Delaunay triangulation. Measurement 2020, 166, 108197. [Google Scholar] [CrossRef]
- Pham, X.; Si, J.; Chen, T.; Qin, F.; Hou, X. Wide range refractive index measurement based on off-axis tilted fibre Bragg gratings fabricated using femtosecond laser. J. Light. Technol. 2019, 37, 3027–3034. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, T.; Zhang, S.; Zhang, S.; Mei, Y.; Liu, Z.; Li, Z. Improved Spectral Interrogation of Tilted Fiber Bragg Grating Refractometer Using Residual Convolutional Neural Networks. J. Light. Technol. 2022, 40, 7403–7411. [Google Scholar] [CrossRef]
- Erdogan, T.; Sipe, J.E. Tilted fiber phase gratings. J. Opt. Soc. Am. A 1996, 13, 296–313. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, N.; Xie, J.; Han, X.; Yan, X.; You, D.; Xiao, G. Improving accuracy and sensitivity of a tilted fiber Bragg grating refractometer using cladding mode envelope derivative. J. Light. Technol. 2022, 20, 1. [Google Scholar] [CrossRef]
- Skorupski, K.; Cięszczyk, S.; Panas, P. The Structure and Preparation Method of Spectrally Shifted Double-Comb Tilted Fibre Bragg Gratings. IEEE Photonics Technol. Lett. 2021, 33, 723–726. [Google Scholar] [CrossRef]
- Cięszczyk, S.; Skorupski, K.; Panas, P. Single-and Double-Comb Tilted Fibre Bragg Grating Refractive Index Demodulation Methods with Fourier Transform Pre-Processing. Sensors 2022, 22, 2344. [Google Scholar] [CrossRef]
- Manuylovich, E.; Tomyshev, K.; Butov, O.V. Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings. Sensors 2019, 19, 4245. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Huang, W.; Liu, Y.; Chen, X.; Qu, H.; Hu, X. Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. Sensors 2022, 22, 3032. [Google Scholar] [CrossRef]
- Udos, W.; Lim, K.S.; Tan, C.L.; Ismail, M.N.; Ooi, C.W.; Zakaria, R.; Ahmad, H. Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry. Optik 2020, 219, 164970. [Google Scholar] [CrossRef]
- Paladino, D.; Quero, G.; Caucheteur, C.; Mégret, P.; Cusano, A. Hybrid fiber grating cavity for multi-parametric sensing. Opt. Express 2010, 18, 10473–10486. [Google Scholar] [CrossRef]
- Xi, Y.; Li, Y.; Duan, Z.; Lu, Y. A novel pre-processing algorithm based on the wavelet transform for Raman spectrum. Appl. Spectrosc. 2018, 72, 1752–1763. [Google Scholar] [CrossRef]
- Wahab, M.F.; O’Haver, T.C. Wavelet transforms in separation science for denoising and peak overlap detection. J. Sep. Sci. 2020, 43, 1998–2010. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, J.; Lin, J.; Wang, Z. Detection of oil yield from oil shale based on near-infrared spectroscopy combined with wavelet transform and least squares support vector machines. Infrared Phys. Technol. 2019, 97, 224–228. [Google Scholar] [CrossRef]
- Hassan, S.A.; Abdel-Gawad, S.A. Application of wavelet and Fuorier transforms as powerful alternatives for derivative spectrophotometry in analysis of binary mixtures: A comparative study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Elzanfaly, E.S.; Hassan, S.A.; Salem, M.Y.; El-Zeany, B.A. Continuous Wavelet Transform, a powerful alternative to Derivative Spectrophotometry in analysis of binary and ternary mixtures: A comparative study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Cui, X.; Wang, M.; Cai, W. High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Wu, S.; Lin, X.; Zheng, L.; Rui, L. Approximate derivative calculated by using continuous wavelet transform. J. Chem. Inf. Comput. Sci. 2002, 42, 274–283. [Google Scholar] [CrossRef]
- Cięszczyk, S.; Harasim, D.; Kisała, P. A novel simple TFBG spectrum demodulation method for RI quantification. IEEE Photon. Tech. Lett. 2017, 29, 2264–2267. [Google Scholar] [CrossRef]
- Messina, A. Detecting damage in beams through digital differentiator filters and continuous wavelet transforms. J. Sound Vib. 2004, 272, 385–412. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, J. Wavelet derivative: Application in multicomponent analysis of electrochemical signals. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 1514–1520. [Google Scholar] [CrossRef]
- Bak, J. Retrieving CO concentrations from FT-IR spectra with nonmodeled interferences and fluctuating baselines using PCR model parameters. Appl. Spectrosc. 2001, 55, 591–597. [Google Scholar] [CrossRef]
- Kozlov, D.; Besov, A. Method of spectral subtraction of gas-phase fourier transform infrared (FT-IR) spectra by minimizing the spectrum length. Appl. Spectrosc. 2011, 65, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bai, J.; Shao, J. Application of the wavelet transforms on axial strain calculation in ultrasound elastography. Prog. Nat. Sci. 2006, 16, 942–947. [Google Scholar]
Method | Resolution |
---|---|
Contour length, first difference | 2.3 × 10−5 |
Contour length, wavelet difference | 1.2 × 10−5 |
Maximum of derivative, first difference | 2.1 × 10−5 |
Maximum of derivative, wavelet difference | 1.75 × 10−5 |
Method | Resolution |
---|---|
Contour length, first difference | 1.95 × 10−5 |
Contour length, wavelet difference | 1.04 × 10−5 |
Maximum of derivative, first difference | 0.83 × 10−5 |
Maximum of derivative, wavelet difference | 0.75 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cięszczyk, S.; Skorupski, K.; Wawrzyk, M.; Panas, P. A Wavelet Derivative Spectrum Length Method of TFBG Sensor Demodulation. Sensors 2023, 23, 2295. https://doi.org/10.3390/s23042295
Cięszczyk S, Skorupski K, Wawrzyk M, Panas P. A Wavelet Derivative Spectrum Length Method of TFBG Sensor Demodulation. Sensors. 2023; 23(4):2295. https://doi.org/10.3390/s23042295
Chicago/Turabian StyleCięszczyk, Sławomir, Krzysztof Skorupski, Martyna Wawrzyk, and Patryk Panas. 2023. "A Wavelet Derivative Spectrum Length Method of TFBG Sensor Demodulation" Sensors 23, no. 4: 2295. https://doi.org/10.3390/s23042295
APA StyleCięszczyk, S., Skorupski, K., Wawrzyk, M., & Panas, P. (2023). A Wavelet Derivative Spectrum Length Method of TFBG Sensor Demodulation. Sensors, 23(4), 2295. https://doi.org/10.3390/s23042295