Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors
Abstract
:1. Introduction
2. Methodology
2.1. Production of TiN Electrodes and Nafion Deposition
2.2. Nafion Deposition and Annealing
2.3. SEM Characterization
2.4. Sensing Protocol
2.5. Response Time, Sensitivity, and Stability
3. Results and Discussions
3.1. Nafion Deposition and Annealing
3.2. SEM Analysis
3.3. Sensitivity Testing
- (i)
- Pristine TiN (no layer of Nafion modification)
- (ii)
- TiN + N1 (N1—one layer of 5 µL of Nafion)
- (iii)
- TiN + N2 (N2—two layers of 5 µL of Nafion)
- (iv)
- TiN + N3 (N3—three layers of 5 µL of Nafion)
3.4. Response Time
3.5. Sensor Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagy, G.; Nagy, L. Potentiometric Sensors; John Wiley & Sons, Inc.: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Li, C.A.; Han, K.N.; Pham, X.H.; Seong, G.H. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip. Analyst 2014, 139, 2011–2015. [Google Scholar] [CrossRef]
- Kulasekaran, A.; Gopal, A.; Lakshimipathy, R.; Alexander, J. Modification in pH measurements for getting accurate pH values with different pH meters irrespective of aging and drifts in the meters. Int. J. ChemTech. Res. 2015, 16, 8–24. [Google Scholar]
- Romanenko, S.; Radenkov, T.; Newsky, E.; Kagirov, A. Differential Sensor for PH Monitoring of Environmental Objects. MATEC Web Conf. 2016, 79, 01008. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.; Liao, C.; Liang, R.; Du, S.; Zhong, L.; Tang, Y.; Han, T.; Bao, Y.; Sun, Z.; Ma, Y. A Solid-Contact Reference Electrode Based on Silver/Silver Organic Insoluble Salt for Potentiometric Ion Sensing. ACS Meas. Sci. Au 2022, 2, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Manjarrés, C.; Garizado, D.; Obregon, M.; Socarras, N.; Calle, M.; Jimenez-Jorquera, C. Chemical sensor network for pH monitoring. J. Appl. Res. Technol. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Patil, P.H.; Kulkarni, V.V.; Jadhav, S.A. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. J. Compos. Sci. 2022, 6, 363. [Google Scholar] [CrossRef]
- Uddin, M.T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Müller, M.M.; Kleebe, H.J.; Rachut, K.; Ziegler, J.; Klein, A.; Jaegermann, W. Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. J. Phys. Chem. C. 2013, 117, 22098–22110. [Google Scholar] [CrossRef]
- Wedege, K.; Dražević, E.; Konya, D.; Bentien, A. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. Sci. Rep. 2016, 6, 39101. [Google Scholar] [CrossRef] [Green Version]
- Pálla, T.; Mirzahosseini, A.; Noszál, B. Species-Specific, pH-Independent, Standard Redox Potential of Selenocysteine and Selenocysteamine. Antioxidants 2020, 9, 465. [Google Scholar] [CrossRef]
- Lonsdale, W.; Wajrak, M.; Alameh, K. Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages. Talanta 2018, 180, 277–281. [Google Scholar] [CrossRef]
- Maurya, D.; Sardarinejad, A.; Alameh, K. Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview. Coatings 2014, 4, 756–771. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.L.; Chou, J.C.; Lei, Z.C.; Sun, T.P.; Chung, W.Y.; Hsiung, S.K. Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology. Jpn. J. Appl. Phys. 2001, 40, 6311. [Google Scholar] [CrossRef]
- Berlinger, S.A.; McCloskey, B.D.; Weber, A.Z. Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation. J. Phys. Chem. B. 2018, 122, 7790–7796. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Terao, K.; Sato, T. Colloidal Dispersion of a Perfluorosulfonated Ionomer in Water–Methanol Mixtures. Polymers 2018, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Xin, L.; Uzunoglu, A.; Stanciu, L.; Ilavsky, J.; Son, S.; Xie, J. Investigation of Solvent Effects on the Dispersion of Carbon Agglomerates and Nafion Ionomer Particles in Catalyst Inks Using Ultra Small Angle X-ray Scattering Method. ECS Trans. 2016, 75, 361–371. [Google Scholar] [CrossRef]
- Yang, F.; Xin, L.; Uzunoglu, A.; Qiu, Y.; Stanciu, L.; Ilavsky, J.; Li, W.; Xie, J. Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. ACS Appl. Mater. Interfaces. 2017, 9, 6530–6538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, M.; Carvetta, C.; Sisodia, N.; Shirley, L.; Day, C.D.; McGuinness, K.L.; Wadhawan, J.D.; Lawrence, N.S. Nafion® Coated Electropolymerised Flavanone-based pH Sensor. Electroanalysis 2022, 34, 1273–1279. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Li, Y.C.; Liu, J.; He, J.; Wang, L.Y.; Lei, J.D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Pet. Sci. 2022, 19, 1371–1381. [Google Scholar] [CrossRef]
- Buzid, A.; McGlacken, G.P.; Glennon, J.D.; Luong, J.H.T. Electrochemical Sensing of Biotin Using Nafion-Modified Boron-Doped Diamond Electrode. ACS Omega 2018, 3, 7776–7782. [Google Scholar] [CrossRef]
- Awasthi, P.; Mukherjee, R.; Okare, S.P.; Das, S. Impedimetric blood pH sensor based on MoS2 –Nafion coated microelectrode. RSC Adv. 2016, 6, 102088–102095. [Google Scholar] [CrossRef]
- Chen, Z.; Patel, R.; Berry, J.; Keyes, C.; Satterfield, C.; Simmons, C.; Neeson, A.; Cao, X.; Wu, Q. Development of Screen-Printable Nafion Dispersion for Electrochemical Sensor. Appl. Sci. 2022, 12, 6533. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Li, S.C.; Chen, J.M. Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function. Langmuir 2005, 21, 3653–3658. [Google Scholar] [CrossRef] [PubMed]
- Stozhko, N.; Bukharinova, M.; Galperin, L.; Brainina, K. A Nanostructured Sensor Based on Gold Nanoparticles and Nafion for Determination of Uric Acid. Biosensors 2018, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.F.B.; Harrison, D.J.; Rojotte, R.V. Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications. Biomaterials 1991, 12, 361–368. [Google Scholar] [CrossRef]
- White, H.S.; Leddy, J.; Bard, A.J. Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes. J. Am. Chem. Soc. 1982, 104, 4811–4817. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Mehaffy, J.; Volckens, J.; Henry, C.S. AgNP/Bi/Nafion-modified Disposable Electrodes for Sensitive Zn(II), Cd(II), and Pb(II) Detection in Aerosol Samples. Electroanalysis 2017, 29, 880–889. [Google Scholar] [CrossRef]
- Myndrul, V.; Iatsunskyi, I.; Babayevska, N.; Jarek, M.; Jesionowski, T. Effect of Electrode Modification with Chitosan and Nafion® on the Efficiency of Real-Time Enzyme Glucose Biosensors Based on ZnO Tetrapods. Materials 2022, 15, 4672. [Google Scholar] [CrossRef] [PubMed]
- Guimerà, X.; Moya, A.; Dorado, A.D.; Illa, X.; Villa, R.; Gabriel, D.; Gamisans, X.; Gabriel, G. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling. Sensors 2019, 19, 4747. [Google Scholar] [CrossRef] [Green Version]
- Miyake, T.; Rolandi, M. Grotthuss mechanisms: From proton transport in proton wires to bioprotonic devices. J. Phys. Condens. Matter. 2016, 28, 023001. [Google Scholar] [CrossRef]
- Sofronov, O.O.; Bakker, H.J. Slow Proton Transfer in Nanoconfined Water. ACS Cent. Sci. 2020, 6, 1150–1158. [Google Scholar] [CrossRef]
- Majsztrik, P.W. Mechanical and Transport Properties of NafionRTM for Pem Fuel Cells; Temperature and Hydration Effects. Master’s Thesis, Princeton University, Princeton, NJ, USA, 2008. [Google Scholar]
- Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 1994, 22, 13–25. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, J.; Ding, B.; Xu, C.; Lee, J.Y. Lithium Salt Inclusion as a Strategy for Improving the Li + Conductivity of Nafion Membranes in Aprotic Systems. Adv. Mater. Interfaces 2016, 3, 1600660. [Google Scholar] [CrossRef]
- Ryder, A.G.; Power, S.; Glynn, T.J. Evaluation of Acridine in Nafion as a Fluorescence-Lifetime-Based pH Sensor. Appl. Spectrosc. 2003, 57, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjakkal, L.; Zaraska, K.; Cvejin, K.; Kulawik, J.; Szwagierczak, D. Potentiometric RuO2–Ta2O5 pH sensors fabricated using thick film and LTCC technologies. Talanta 2016, 147, 233–240. [Google Scholar] [CrossRef]
- Vaidya, R.; Atanasov, P.; Wilkins, E. Effect of interference on the performance of glucose enzyme electrodes using Nafion® coatings. Med. Eng. Phys. 1995, 17, 416–424. [Google Scholar] [CrossRef]
- Lazouskaya, M.; Scheler, O.; Mikli, V.; Uppuluri, K.; Zaraska, K.; Tamm, M. Nafion Protective Membrane Enables Using Ruthenium Oxide Electrodes for pH Measurement in Milk. J. Electrochem. Soc. 2021, 168, 107511. [Google Scholar] [CrossRef]
- Wang, B.; Koo, B.; Monbouquette, H.G. Enzyme Deposition by Polydimethylsiloxane Stamping for Biosensor Fabrication. Electroanalysis 2017, 29, 2300–2306. [Google Scholar] [CrossRef]
- Wang, B. Biosensors Fabrication by Polydimethylsiloxane Stamping and Nanostructured Platinum for Construction of Improved Reference and Sensing Electrodes; University of California: Los Angeles, CA, USA, 2016. [Google Scholar]
- Flimban, S.G.A.; Hassan, S.H.A.; Rahman, M.M.; Oh, S.E. The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 13643–13651. [Google Scholar] [CrossRef]
- Akl, M.A. An Improved Colorimetric Determination of Lead(II) in the Presence of Nonionic Surfactant. Anal. Sci. 2006, 22, 1227–1231. [Google Scholar] [CrossRef] [Green Version]
- Shylendra, S.P.; Wajrak, M.; Alameh, K.; Kang, J.J. Nafion Modified Titanium Nitride pH Sensor for Future Biomedical Applications. Sensors 2023, 23, 699. [Google Scholar] [CrossRef]
- Lonsdale, W.; Wajrak, M.; Alameh, K. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode. Sensors 2017, 17, 2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul Shylendra, S.; Lonsdale, W.; Wajrak, M.; Nur-E-Alam, M.; Alameh, K. Titanium Nitride Thin Film Based Low-Redox-Interference Potentiometric pH Sensing Electrodes. Sensors 2020, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Hensley, J.E.; Way, J.D.; Dec, S.F.; Abney, K.D. The effects of thermal annealing on commercial Nafion® membranes. J. Memb. Sci. 2007, 298, 190–201. [Google Scholar] [CrossRef]
- Hongsirikarn, K.; Goodwin, J.G.; Greenway, S.; Creager, S. Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane. J. Power Sources 2010, 195, 7213–7220. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, D.; Shi, S.; Liu, F.; Liu, W.; Chen, Q.; Zhao, P.; Li, S.; Wang, J. Superior-performance TiN films sputtered for capacitor electrodes. J. Mater. Sci. 2019, 54, 10346–10354. [Google Scholar] [CrossRef]
- Ramirez-Nava, J.; Martínez-Castrejón, M.; García-Mesino, R.L.; López-Díaz, J.A.; Talavera-Mendoza, O.; Sarmiento-Villagrana, A.; Rojano, F.; Hernández-Flores, G. The Implications of Membranes Used as Separators in Microbial Fuel Cells. Membranes 2021, 11, 738. [Google Scholar] [CrossRef]
- Eastman, S.A.; Kim, S.; Page, K.A.; Rowe, B.W.; Kang, S.; Soles, C.L.; Yager, K.G. Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films. Macromolecules 2012, 45, 7920–7930. [Google Scholar] [CrossRef]
- Uppuluri, K.; Lazouskaya, M.; Szwagierczak, D.; Zaraska, K.; Tamm, M. Fabrication, Potentiometric Characterization, and Application of Screen-Printed RuO2 pH Electrodes for Water Quality Testing. Sensors 2021, 21, 5399. [Google Scholar] [CrossRef] [PubMed]
- Xu, K. Development and Performance of an All-Solid-Stated pH Sensor Based on Modified Membranes. Int. J. Electrochem. Sci. 2018, 13, 3080–3090. [Google Scholar] [CrossRef]
(a) | ||||
---|---|---|---|---|
Time (min) | Temperature (°C) | |||
25 | 50 | 100 | 150 | |
10 | 1 | 1 | 2 | 2 |
15 | 2 | 2 | 2 | 2 |
20 | 2 | 3 | 3 | 4 |
25 | 4 | 4 | 4 | 5 |
(b) | ||||
Ranking | Sensitivity (mV/pH) | |||
1 | 30–35 | |||
2 | 35–40 | |||
3 | 40–45 | |||
4 | 45–55 | |||
5 | 55–58 (Close to Nernstian) |
Amount of Nafion (µL) | Sensitivity (mV/pH) | Hysteresis (mV) | Drift (mV/h) |
---|---|---|---|
50 (thick) | 56 ± 0.92 | 56.1 ± 9.4 | 30.10 |
25 | 56.5 ± 0.88 | 34.5 ± 5.9 | 33.38 |
15 | 57.2 ± 1.7 | 10.7 ± 0.40 | 15.99 |
5 (thin) | 58.5 ± 0.54 | 0.57 ± 0.29 | 0.920 |
pH | Response Time (s) |
---|---|
4.33 | 35 |
6.68 | 12 |
9.21 | 21 |
Interval at Which Linearity Was Measured (Days) | ||||||
---|---|---|---|---|---|---|
1st | 7th | 14th | 21st | 28th | 35th | |
Linearity (R2) | 0.9999 | 0.9999 | 0.9998 | 0.9996 | 0.9991 | 0.9986 |
Sensitivity (mV/pH) | 58.5 | 55.8 | 56.2 | 56.5 | 56.2 | 56.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul Shylendra, S.; Wajrak, M.; Alameh, K. Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors. Sensors 2023, 23, 2331. https://doi.org/10.3390/s23042331
Paul Shylendra S, Wajrak M, Alameh K. Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors. Sensors. 2023; 23(4):2331. https://doi.org/10.3390/s23042331
Chicago/Turabian StylePaul Shylendra, Shimrith, Magdalena Wajrak, and Kamal Alameh. 2023. "Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors" Sensors 23, no. 4: 2331. https://doi.org/10.3390/s23042331
APA StylePaul Shylendra, S., Wajrak, M., & Alameh, K. (2023). Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors. Sensors, 23(4), 2331. https://doi.org/10.3390/s23042331