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Abstract: Hazardous object detection (escalators, stairs, glass doors, etc.) and avoidance are critical
functional safety modules for autonomous mobile cleaning robots. Conventional object detectors
have less accuracy for detecting low-feature hazardous objects and have miss detection, and the false
classification ratio is high when the object is under occlusion. Miss detection or false classification of
hazardous objects poses an operational safety issue for mobile robots. This work presents a deep-
learning-based context-aware multi-level information fusion framework for autonomous mobile
cleaning robots to detect and avoid hazardous objects with a higher confidence level, even if the
object is under occlusion. First, the image-level-contextual-encoding module was proposed and
incorporated with the Faster RCNN ResNet 50 object detector model to improve the low-featured and
occluded hazardous object detection in an indoor environment. Further, a safe-distance-estimation
function was proposed to avoid hazardous objects. It computes the distance of the hazardous object
from the robot’s position and steers the robot into a safer zone using detection results and object
depth data. The proposed framework was trained with a custom image dataset using fine-tuning
techniques and tested in real-time with an in-house-developed mobile cleaning robot, BELUGA.
The experimental results show that the proposed algorithm detected the low-featured and occluded
hazardous object with a higher confidence level than the conventional object detector and scored an
average detection accuracy of 88.71%.

Keywords: autonomous mobile robot; environment recognition; DCNN; image classification; contex-
tual features; supervised learning; hazardous object detection

1. Introduction

Over the last two decades, Autonomous Mobile Cleaning Robots (AMCR) have been
promising and viable assistive technologies in the cleaning industry. Chen et al. [1] men-
tioned that there is a high demand for mobile cleaning robots in commercial and industrial
applications such as the floor, wall, and table cleaning tasks and they involve a cleaning
audit service [2,3]. Hazardous object detection and avoidance are critical functions for
autonomous mobile cleaning robots that work alongside humans. Generally, the commer-
cial and industrial sectors are more dynamic; robots and people interact with each other
at a high frequency. Moreover, it could be furnished with many objects, and some object
robots cannot properly recognize by the perception system. Generally, a staircase, escalator,
glass door, and transparent objects are hazardous to mobile robots and need an advanced
perception system to detect and avoid these objects under occlusion.

Currently, AMCR’s navigation system widely utilizes 2D LiDAR and 1D laser sen-
sors [4,5], IMU, and Position Sensitive Detectors PSD [6,7] for environment recognition and
obstacle detection. However, these sensors’ performances are stable in static environments
and relatively weak in accurately recognizing hazardous objects. Moreover, mapping
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dynamic, highly reflective, or opaque environments using 2D LiDAR can result in incom-
plete or inaccurate maps [8]. As a result, it could pose a safety issue and cause the robot
to make wrong decisions or act incorrectly in autonomously navigating. Recently [9], a
shopping mall’s cleaning robot fell from an escalator and slightly injured travellers. This
might happen due to the robot’s localization system being affected in dynamic environ-
ments or miss detection of the escalator. This incident illustrates that AMCRs need an
advanced perception system with functional safety features to accurately detect and avoid
hazardous objects.

Object detection using computer vision has been extensively researched for autonomous
mobile robot platforms [10–13]. These methods are cost-effective and can operate in a wide
range of scenarios. In recent years, deep-learning-based place recognition, scene recog-
nition, and object detection have been a new paradigm in computer vision techniques
and widely used in mobile robot platforms to recognize the environment and avoid obsta-
cles [14–16]. Generally, Single Shot multibox Detector (SSD) MobileNet, You only look once
(YOLO) and Faster RCNN are widely used deep-learning-based object detectors in mobile
robotic applications. In contrast with SSD MobileNet and YOLO, Faster RCNN is widely
used for high-precision and safety-critical mobile robot applications. However, Faster
RCNN is also weak for detecting low-feature or occluded objects and has miss detection
and false classification [17]. Generally, the indoor environment is more challenging than
outdoor object detection due to severe occlusions of objects, objects with fewer features, and
cluttered backgrounds. In a number of small proposals extracted from the environment,
the features computed from a small fraction of the feature map may not be sufficient to
accurately determine the object class or provide a high level of confidence in the object
detector’s predictions. Furthermore, the object with less confidence can be suppressed
by Non-Max Suppression (NMS) algorithms and thus lead the miss-detection of things.
Consequently, it creates serious safety issues for mobile robots. One approach to addressing
this issue is adding contextual information with a Faster RCNN object detector. Generally,
image-level contextual details are more beneficial for visual recognition and object detection
applications, mainly when the object of interest is small, blurred, partially occluded, etc.
Image-level contextual information provides the semantics of the entire image. Fusing the
image-level contextual information with the object proposal feature map will improve the
detection algorithms’ classification and regression function and boost the object detector’s
confidence level.

This work proposes a deep-learning-based context-aware multi-level information
fusion framework for an indoor mobile robot to detect and avoid hazardous object detection
in its operational environment. First, the image-level-contextual-encoding module was
proposed and incorporated with the Faster RCNN ResNet 50 object detector model to
improve the performance of hazardous object detection. Then, a safe-distance-estimation
function was proposed. It performs the depth data fusion with detection results to compute
the distance of the hazardous object from the robot’s position and steer the robot to a
safe zone.

The rest of the article is structured as follows: Section 2 describes the detailed literature
survey about related work. Section 3 presents the architecture of the proposed system.
The algorithm and experiments are explained in Section 4. Finally, Section 5 concludes the
results and future works.

2. Related Work

Understanding and exploiting context information is a fundamental problem in
computer vision, which has been explored extensively and plays a vital role in many
fields [18–22]. Jurang et al. [23] proposed a context-aware co-supervision method to im-
prove the performance of the object detection algorithm, Faster RCNN. The authors devel-
oped the context-aware module to assist the Faster RCNN object detection head, which
fuses the high-level contextual information with a low-level feature map to detect tiny
objects from an input image accurately. The fully convolutional architecture was proposed
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by Kevin et al. to improve the DL-based object detector’s performance [24]. The author
modifies the two-stage DCNN architecture, where the first stage extracts the feature map
from the image. The second stage had to learn the local contextual information from
the feature map and perform the object detection task. In [25], Zhao et al. developed
context-aware deep neural networks for visual content recognition. The author generated
the Semantic Feature Map (SFM) by extracting the high-level semantic object features on
the input image and applying the Fully Convolutional Networks (FCN) on top of SFM for
better visual content recognition.

Raphael et al. [26] proposed a context-aware visual navigation approach for an au-
tonomous mobile robot to find the occluded object in an indoor environment using Yolo v3
and the deep RL algorithm. Here, the authors constructed the context grid from object de-
tection results and then applied the RL algorithm on the context grid to learn the contextual
relation between objects. In another study, Luo et al. [27] proposed a contextual-YOLOV3
framework to detect small objects from an input image. The framework builds a contextual
relationship matrix and combines contextual semantic information for detecting small
objects more accurately. In [28], Ayub et al. proposed a cognitively inspired computational
system for an autonomous mobile robot to predict missing items from the household.
The system was composed of perceptual learning algorithms and cognitive models of
memory encoding to learn the contextual relationship between household environment
and use that knowledge to predict missing items from the household. In [29], Li et al.
proposed a Cross-Modal Attentional Context (CMAC) method to improve the performance
of a region-based object detection framework. Here, the authors used an attention-based
context encoding function and a fine-grained object part attention function to extract both
global and local feature and fuse it with a region-based object detection feature map to
improve the model’s performance and proved 5% improvement over conventional object
detectors. Many studies have used context-aware and depth-based fusion to improve
object detection, and environment recognition [30]. Li et al. [31] introduced an adaptive
fuzzy control algorithm with a 3D mapping guidance system for the underactuated surface
vehicle (USV) and unmanned aerial vehicle (UAV). Here, the 3D mapping guidance system
provides the reference signals of the yaw degree of freedom for the USV and UAV, and the
adaptive fuzzy control algorithm provides position and attitude information by fusing the
dynamic surface control (DSC) and the backstepping techniques.

Yu et al. [32] proposed a multi-level information fusion framework to build the robust
Vision-Based Simultaneous Localization and Mapping (SLAM) framework. The author
used different segmentation methods to extract high and low-level features to facilitate
robust localization. The proposed system was tested with real-time driving datasets,
scoring better robustness and consistency than the SOTA schemes. The Soldier-Body
Sensor Network (S-BSN) was proposed by Han et al. [33], where the network collects the
different types of data such as behaviours, physiology, emotions, fatigue, environments, and
locations using wearable body sensors and performs the multi-level fusion to analyze and
alerts the soldier’s health when involved in extreme events. Wang et al. proposed context-
aware compositional nets for detecting an object on different levels of occlusions [17]. The
author segmented the contextual information via bounding box annotations and used the
segmented information to train the context-aware CompositionalNet. The trained model
has been validated with PASCAL3D+ and MS-COCO datasets and scored 41% improved
detection accuracy than the conventional scheme. Abid and Tahir proposed the multi-sensor
fusion-based mobile robot fault detection and isolation (FDI) method [34] where the authors
incorporate preprocessing, local-data fusion, change detection, credibility computation, and
decision-level information fusion to assist the robot in navigation and fault detection. Saeedi
et al. proposed context-aware multi-sensor data fusion algorithms that include preprocessing,
feature detection, feature selection, and classification to improve the accuracy and robustness
of the Personal Navigation System (PNS). The authors proved that the context-aware sensor
fusion scheme had improved the performance of PNS by 23% compared to conventional GPS-
based navigation [35]. The above survey indicates that deep-learning-based context-aware
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multi-sensor fusion systems can enhance the functional safety of robots by providing them
with a deeper understanding of their surrounding environments. However, context-aware
vision pipelines for mobile robots’ hazardous object detection still need to be studied. Hence,
this study proposed a context-aware, multi-level information fusion system for indoor mobile
robot’s hazardous object detection application.

3. Proposed System

Figure 1 shows the block diagram of deep learning (DL)-based context-aware multi-
level information fusion systems for indoor mobile robots’ hazardous object detection
and avoidance. The framework comprises context-aware DCNN-based object detection
algorithms and a safe-distance-estimation function.

Figure 1. Block diagram of proposed system.

3.1. Context Aware DCNN-Based Object Detection

In this paper, we incorporated an image-level-contextual-encoding module to the
two-stage object detector Faster RCNN to build the context-aware object detector as shown
in Figure 2. It comprises a backbone network, a Regional Proposal Network (RPN), an
image-level context encoding module, and a context-aware object detection head.

Figure 2. Context aware DCNN-based object detection framework.

3.1.1. Backbone Network

ResNet 50 Deep Neural Network (DNN) was used as a backbone for our proposed
system. It contains 48 convolutions layers and one max pooling and average pooling layer.
The first layer includes 64, 7 × 7 kernel convolution with the stride of 2 and 3 × 3 max
pooling function with a stride of 2. The next four stages are made up of a mix of residual
convolution blocks, and identity blocks contain (1× 1, 3× 3, 1× 1) convolution filters with
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different counts. The backbone network extracts the feature map from the image and serves
to image-level context encoding module, the Region Proposal Network (RPN), and the
context-aware object detection head.

3.1.2. Region Proposal Network

RPN is an FCN (Fully Convolutional Network) trained end-to-end to produce object
proposals. It uses the backbone-generated feature map as input and creates object proposals
using fixed-size anchor boxes. RPN uses nine different size & ratio anchor boxes and applies
a 3 × 3 sliding window function to detect the object in the feature map. After that, each
object proposal is assigned a score, with the highest-scoring proposals given the highest
priority. This ranking helps to ensure that the most promising proposals are examined first,
which can help to save time and computational resources. Besides that, the object proposal
with a high degree of overlap is considered redundant and removed by NMS. After the
object proposals are scored and ranked, they are fused with the last convolutional feature
map of the backbone network. In RoI pooling, each feature region in each object proposal
is max-pooled into a regional object feature map with a dimension of 7 × 7 × 512.

3.2. Image-Level Context Encoding Module

The image-level context encoding module constructs the global feature map from
the backbone-generated feature map. Then, it fuses it with the RPN-generated feature
map to bring the clues to the detection head. First, it applies an encoding operation using
two parallel dilated convolutional layers with 512 convolutions filters to capture object
classes appearing in the entire image. Then, a global average pooling operation is applied
to the encoded feature map and sent to feature map fusion and object detection tasks.

3.3. Context Aware Object Detection Head

The context-aware object detection head determines the category of the object con-
tained within each proposal by utilizing an image-level context encoding module 7 × 7 × 512
feature map as well as an RPN-generated 7 × 7 × 512 feature map. In the initial stage,
feature map concatenation is performed, where an RPN-generated feature map is fused
with an image-level contextual feature map. This process enlarges the feature map depth to
7 × 7 × 1024 dimensions. Then, the concatenated feature map is fed into the object recogni-
tion and bounding box refinement module, which detects and classifies the bounding box
of the predicted objects in the image. In the end, NMS is applied to eliminate redundant
bounding boxes.

3.4. Safe-Distance-Estimation Function

The safe-distance-estimation function module measures the distance of the hazardous
object from the robot’s current position using depth data collected from RGB-D vision
sensor data. First, the function takes the bounding box coordinates of the detected object
from the RGB image and fetches the respective depth data for each bounding box from
the depth image. Then, Realsense rs-measure API [36] was applied on selected depth
regions which measured real-world distances of the object from depth data. In the end,
the measured object distance was sent to the robot control. This will aid the robots in
recognizing whether they are operating in a safe zone or close to hazardous regions.

4. Experiments and Results

This section evaluates the effectiveness of the context-aware multilevel information
fusion framework at three levels: dataset preparation and training, validation with test
image datasets, and experimentation with our in-house cleaning audit robot platform,
BELUGA [3].
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4.1. Dataset Preparation

Our dataset contains seven potential hazardous objects, including escalators, moving
walkalator, elevators, glass doors, staircases, glass-made display cabinets, and modern
furniture. The hazardous objects are labeled with the bounding box annotation tool and
have 1200 samples for each class. Furthermore, data augmentation (rotation, scaling, and
flipping) is applied to all collected images to reduce the CNN learning rate and avoid
over-fitting.

4.2. Training Hardware and Software Details

The context-aware object detection algorithm was developed in TensorFlow 2.13 API
and trained using the Nvidia Geforce GTX GPU-enabled workstation. The entire DCNN
network was trained using the fine-tuning method in three phases. In the first phase, the
backbone, RPN, and context-aware object detection head were fine-tuned with image-Net
pre-trained weights for object proposal generation and to detect the objects from the RPN
proposals. The loss function of RPN is given in the equations (Equations (1) and (2)). It
was the sum of classification loss and regression loss. The binary cross-entropy loss was
used to compute loss over the two classes (whether it is an object or background). Further,
L2 regression loss was used to compute the bounding box offset, which computes the
difference between the regression of the foreground box and that of the ground truth box.
Finally, multi-class cross-entropy loss (Equation (3)) was used in the context-aware object
detection head, which computes the multi-class classification loss for each training example.
Further, the global context encoding module CNN layers were fine-tuned with ImageNet
pre-trained weights using a separate ResNet 50 backbone. In the third phase again, the
global context encoding module (initialized from fine-tuning weights of stage 1) and its
fully connected layer were fine-tuned with the stage 1 fine-tuned backbone network to
learn more features about the targeted object feature. In this phase, the layers of backbone
architecture were kept frozen to prevent the update of weights during the backpropagation.
Under the fine-tune method, the detection model was trained with 80 k epochs using
the stochastic gradient descent method, a batch size of 2, an initial learning rate of 0.004,
momentum of 0.9, and weight decay of 0.00001, respectively.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)

L = Lcls + Lreg (2)

In Equations (1) and (2), i is the index of anchor, p is the probability of an object or
not, t is the vector of four parameterized coordinates of the predicted bounding box, and
∗ represents ground truth box. Lcls represents Log Loss over all classes. Ncls and Nreg are
normalization. λ defaults to 10 and it is to scale with the classifier and regressor on the
same level.

L(ŷ, y) = −
K

∑
k

y(k) log ŷ(k) (3)

In Equation (3), y(k) is 0 or 1, indicating whether class label k is the correct classification.

4.3. Prediction of Hazardous Object Detection

Figure 3 shows the prediction results of our proposed system. In total, 200 images
were used for each class to measure the performance of the trained model. The image was
not used for training and cross-validation of the model. Accuracy (Equation (4)), Precision
(Equation (5)), Recall (Equation (6)), and Fmeasure (Equation (7)) IoU (Intersection over Union)
metrics were used to measure the performance of the proposed scheme.

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(4)
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Precision(Prec) =
tp

tp + f p
(5)

Recall(Rec) =
tp

tp + f n
(6)

Fmeasure(F1) =
2× precision× recall

precision + recall
(7)

Here, tp, f p, tn, f n represent the true positives, false positives, true negatives, and
false negatives, respectively, as per the standard confusion matrix.

(a) Elevator (b) Walkalator (c) Staircases

(d) Glass Door (e) Display Cabinet (f) Modern Furniture

(g) Escalator

Figure 3. Experiment results of hazardous object detection.

The experimental results (Figure 3 and Table 1) indicate that our proposed system
detects a hazardous object with an average confidence level of 87%, classification error
(localized correctly but classified incorrectly) of 8% on average, a mean IoU score of 0.77,
and an average detection accuracy of 88.71%.

4.4. Comparison Analysis with Conventional Method

The effectiveness of the proposed system was compared with the state-of-the-art object
detection methods, including Faster RCNN ResNet 50 and Yolo V4. Figure 4 and Table 2
show the proposed system’s comparative analysis and computational time with state-of-
the-art object detection methods. Each algorithm’s computational time was estimated
using the number of images processed per second. The experiment was tested using the
Nvidia Jetson AGX Xavier single-board computer powered with 512 NVIDIA CUDA cores,
64 Tensor cores, and two DL accelerators.
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Table 1. Performance Evaluation.

Class
Proposed System

Precision Recall F1 Accuracy

Elevator 90.35 89.76 87.52 87.76
Escalators 89.84 89.11 88.66 89.18
Walklator 89.76 88.17 86.09 89.33
Glass door 88.54 87.25 87.37 87.22
Staircase 93.51 92.44 91.03 91.77
Display cabinet 86.01 85.31 84.76 85.43
Modern furniture 87.61 86.29 86.18 88.78

(a) (b) (c)

Figure 4. Comparison analysis results of the context-aware object detection algorithm and conven-
tional object detection scheme for the escalator and glass door: (a) Yolo V4; (b) Faster RCNN ResNet
50; (c) Proposed system. From top to bottom, the occlusion conditions are shown from low, medium,
and high levels.

Table 2. Comparison with conventional methods.

Algorithm Detection Accuracy Number of Image Processed per Second

Yolo V4 74.86 23
Faster RCNN ResNet 50 82.33 9
Proposed system 88.71 4
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Figure 4 shows the conventional methods and proposed method detection results for
a hazardous object under different occlusion conditions, such as low, medium, and high
levels. In this analysis, we observe that the single-stage object detector Yolo v4 has failed to
detect the mid- and high-occluded hazardous objects. On the other hand, Faster RCNN
ResNet 50 detects the mid-level-occluded hazardous objects with a lower confidence level
and fails to detect a high-level-occluded hazardous object. In contrast with Yolo v4 and
Faster RCNN ResNet 50, our proposed method detects the low- and mid-level hazardous
object with a higher confidence level and detects the highly occluded hazardous object
with an average confidence level of 85%. Further, the detection accuracy analysis (Table 2)
shows that our proposed method shows 6.38% improved detection accuracy than the
baseline method Faster RCNN ResNet 50 and 13.85% higher detection accuracy than Yolo
V4 algorithms, respectively.

From a computational point of view, the YOLOv4 framework took less execution time
than all other models. Our method has a higher computational time and processes only
four images per second, slightly lower than the conventional method. Due to image-level-
encoding fusion, our scheme consumes more computation time than the other two methods.

4.5. Performance Analysis Survey

Table 3 shows the performance analysis of our proposed work with existing similar
works in the literature. Here, staircase detection was compared with Unmesh et al. [37],
Wang et al. [38], and Afif et al. [39] methods where the authors use the tiny-Yolo V2, SE-
ResNet, YoLov5, and Yolo V3 framework for detecting the staircase. Further, glass door
detection was compared with Mei et al. [40] and Afif et al. [39] schemes, where the author
uses pre-trained ResNet101 and Yolo V3 to extract the contextual features at different
levels to detect the glass door from the RGB image. Elevator and furniture detection was
compared with Afif et al. [39] and Alejandra et al. [41] schemes. Here, Yolo V3 and SVM
algorithms were trained for the elevator and furniture detection tasks.

Table 3. Comparison with other defect detection schemes.

Case Study Algorithm Detection Accuracy in (%)

Staircase [37] Yolo V2 CNN 77.00
Staircase [38] SE-ResNet 81.49
Staircase [38] YoLov5 + Gabor 37.3
Staircase [39] Yolo V3 76.88
Glass door [39] Yolo V3 85.55
Glass door [40] ResNet101 81.63
Elevator [39] Yolo V3 85.04
Furniture [41] SVM 71.45
Proposed system Faster RCNN+ image level encoding 88.71

The performance analysis results indicate that our proposed method scored better
detection accuracy than existing methods. Furthermore, our approach has less miss detec-
tion and false classification due to the fusion of global contextual information with object
proposal. Therefore, it could increase detection accuracy compared to existing schemes.

4.6. Real-Time Field Trial with Safe Distance Estimation

The real-time field trial experiments were performed in our Singapore University of
Technology and Design campus using BELUGA (Figure 5). The detailed specification of the
robot is given in Table 4. Initially, the environment was mapped with 2D lidar using hector
SLAM algorithms. After mapping, the mapped environment was tested with BELUGA [3].
The context-aware object detection algorithm and safe-distance-estimation function were
run on Jetson Nvidia AGX SBC to detect the hazardous object in an operational environment.
Whenever a hazardous object detected an input image, the detection results were forwarded
to compute the distance of the object from the robot’s position. The distance estimation
function took the bounding box coordinates of the detected object from the RGB image
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and fetched the respective depth data for each bounding box from the depth image. Then,
Realsense rs-measure API [36] was applied on the selected depth regions which measured
real-world distances of the object from depth data. In the end, the estimated object distance
was sent to the robot control. Figures 6 and 7 shows the robot navigation path for the given
environment with functional safety mapping results when the robot navigates the staircase,
elevator, and glass door region. In Figures 6 and 7, the green, yellow, and red colored dotted
lines indicate the navigation path for the robot. The green navigation path represents the
robot operating in a safe zone. The yellow navigation path represents that the robot is
approaching hazardous objects between 0.5 m to 1 m and regenerates a new path to avoid
them. The red color navigation path represents the robot close to the hazardous object (less
than 0.5 m) and should immediately turn to a safe zone.

Figure 5. Experiment Robot [3].

Table 4. BELUGA Specification.

Components Details

RGB-D Camera Intel Realsense 435i
On-Board IDK NVIDIA’s Jetson AGX GPU

2D LIDAR Sick TIM 581
Power 24VDC LiFePO4 battery powers

Figure 6. Environment: SUTD Mass Rapid Transition (MRT) station.



Sensors 2023, 23, 2337 11 of 13

Figure 7. Environment: SUTD campus.

5. Conclusions

A deep-learning-based context-aware multi-level information fusion framework was
proposed for autonomous mobile cleaning robots to detect and avoid hazardous object
detection in their operational environment. First, an image-level context encoding module
was proposed. Its feature map results were fused with Faster RCNN region proposals to
improve the hazardous object detection confidence level and detect the hazardous object
on a different level of occlusions. Then, depth data fusion was performed with detection
results to compute the distance of the hazardous objects from the robot position. The
proposed framework was trained with a custom dataset using a fine-tuning method. Its
detection accuracy was evaluated offline with a test image dataset and in real-time using
the cleaning audit robot, BELUGA. In our offline test, our proposed scheme scored an
average of 88.71% detection accuracy. It processed four images per second and detected the
occluded hazardous objects with a higher confidence level than conventional methods such
as Faster RCNN and Yolo V4. Compared with existing works, our proposed method scored
better detection accuracy for staircase, elevator, glassdoor, and furniture classes. Further, the
safe distance estimation map results ensure that our proposed system accurately computed
the distance of the hazardous object, which helps steer the robot to a safe zone. Our feature
work is the local and global context feature-map-based hazardous object detection for
the safe navigation of indoor mobile robots. It could further increase the object detector
performance and improve the operational safety of our autonomous mobile cleaning robot.
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