Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals
Abstract
:1. Introduction
2. Participants and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Recordings
2.3.1. EMG Data
2.3.2. EEG Data
2.4. Experimental Procedure
2.5. Data Analysis
2.5.1. Median Frequency
2.5.2. Power Spectral Density
2.5.3. Coherence Analysis
2.6. Statistical Analysis
3. Results
3.1. Median Frequency
3.2. PSD
3.3. Coherence
3.3.1. CMC
3.3.2. CCC
4. Discussion
4.1. Median Frequency of EMG
4.2. EEG PSD
4.3. CMC
4.4. CCC
4.5. CMC and CCC Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Stulen, F.B.; DeLuca, C.J. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng. 1981, 28, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Cifrek, M.; Tonković, S.; Medved, V. Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions. Measurement 2000, 27, 85–92. [Google Scholar] [CrossRef]
- Lin, Y.T.; Kuo, C.H.; Hwang, I.S. Fatigue effect on low-frequency force fluctuations and muscular oscillations during rhythmic isometric contraction. PLoS ONE 2014, 9, e85578. [Google Scholar] [CrossRef]
- Fry, A.; Mullinger, K.J.; O’Neill, G.C.; Brookes, M.J.; Folland, J.P. The effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex. Acta Physiol. 2017, 220, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Suviseshamuthu, E.S.; Shenoy Handiru, V.; Allexandre, D.; Hoxha, A.; Saleh, S.; Yue, G.H. EEG-Based Spectral Analysis Showing Brainwave Changes Related to Modulating Progressive Fatigue During a Prolonged Intermittent Motor Task. Front. Hum. Neurosci. 2022, 16, 770053. [Google Scholar] [CrossRef]
- Liu, J.Z.; Shan, Z.Y.; Zhang, L.D.; Sahgal, V.; Brown, R.W.; Yue, G.H. Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: An FMRI study. J. Neurophysiol. 2003, 90, 300–312. [Google Scholar] [CrossRef]
- Shaw, J.C. An introduction to the coherence function and its use in EEG signal analysis. J. Med. Eng. Technol. 1981, 5, 279–288. [Google Scholar] [CrossRef]
- Tecchio, F.; Porcaro, C.; Zappasodi, F.; Pesenti, A.; Ercolani, M.; Rossini, P.M. Cortical short-term fatigue effects assessed via rhythmic brain-muscle coherence. Exp. Brain Res. 2006, 174, 144–151. [Google Scholar] [CrossRef]
- Yang, Q.; Fang, Y.; Sun, C.K.; Siemionow, V.; Ranganathan, V.K.; Khoshknabi, D.; Davis, M.P.; Walsh, D.; Sahgal, V.; Yue, G.H. Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res. 2009, 1250, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Poortvliet, P.C.; Tucker, K.J.; Finnigan, S.; Scott, D.; Sowman, P.; Hodges, P.W. Cortical activity differs between position- and force-control knee extension tasks. Exp. Brain Res. 2015, 233, 3447–3457. [Google Scholar] [CrossRef]
- Gray, H.; Clemente, C.D. Anatomy of the Human Body, 30th American ed.; Lea & Febiger: Philadelphia, PA, USA, 1985; Volume 8. [Google Scholar]
- Acharya, J.N.; Hani, A.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol. 2016, 33, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Aprigio, D.; Bittencourt, J.; Gongora, M.; Marinho, V.; Teixeira, S.; Bastos, V.H.; Cagy, M.; Budde, H.; Ribeiro, P.; Basile, L.F.; et al. Methylphenidate decreases the EEG mu power in the right primary motor cortex in healthy adults during motor imagery and execution. Brain Struct. Funct. 2021, 226, 1185–1193. [Google Scholar] [CrossRef]
- Gonzalez-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Y.; Liu, H. Corticomuscular Coherence and Its Applications: A Review. Front. Hum. Neurosci. 2019, 13, 100. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.R.; Amjad, A.M.; Breeze, P.; Brillinger, D.R.; Halliday, D.M. The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog. Biophys. Mol. Biol. 1989, 53, 1–31. [Google Scholar] [CrossRef]
- De Luca, C.J. Myoelectrical manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 1984, 11, 251–279. [Google Scholar]
- Cifrek, M.; Medved, V.; Tonkovic, S.; Ostojic, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Wang, J.; Pang, M.; Yu, P.; Tang, B.; Xiang, K.; Ju, Z. Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation. Appl. Bionics Biomech. 2021, 2021, 8817480. [Google Scholar] [CrossRef]
- Sh, T.; Pirouzi, S.; Zamani, A.; Motealleh, A.; Bagheri, Z. Does Muscle Fatigue Alter EEG Bands of Brain Hemispheres? J. Biomed. Phys. Eng. 2020, 10, 187–196. [Google Scholar] [CrossRef]
- Liu, J.Z.; Lewandowski, B.; Karakasis, C.; Yao, B.; Siemionow, V.; Sahgal, V.; Yue, G.H. Shifting of activation center in the brain during muscle fatigue: An explanation of minimal central fatigue? Neuroimage 2007, 35, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Z.; Yao, B.; Siemionow, V.; Sahgal, V.; Wang, X.; Sun, J.; Yue, G.H. Fatigue induces greater brain signal reduction during sustained than preparation phase of maximal voluntary contraction. Brain Res. 2005, 1057, 113–126. [Google Scholar] [CrossRef]
- Ulloa, J.L. The Control of Movements via Motor Gamma Oscillations. Front. Hum. Neurosci. 2021, 15, 787157. [Google Scholar] [CrossRef]
- Ushiyama, J.; Katsu, M.; Masakado, Y.; Kimura, A.; Liu, M.; Ushiba, J. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle. J. Appl. Physiol. 2011, 110, 1233–1240. [Google Scholar] [CrossRef]
- Ushiyama, J.; Yamada, J.; Liu, M.; Ushiba, J. Individual difference in beta-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans. Clin. Neurophysiol. 2017, 128, 303–311. [Google Scholar] [CrossRef]
- Siemionow, V.; Sahgal, V.; Yue, G.H. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 97–106. [Google Scholar] [CrossRef]
- Carroll, T.J.; Taylor, J.L.; Gandevia, S.C. Recovery of central and peripheral neuromuscular fatigue after exercise. J. Appl. Physiol. 2017, 122, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Watanabe, Y. Supraspinal regulation of physical fatigue. Neurosci. Biobehav. Rev. 2012, 36, 727–734. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Andrew, C. Event-Related changes of band power and coherence: Methodology and interpretation. J. Clin. Neurophysiol. 1999, 16, 512–519. [Google Scholar] [CrossRef]
- Classen, J.; Gerloff, C.; Honda, M.; Hallett, M. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J. Neurophysiol. 1998, 79, 1567–1573. [Google Scholar] [CrossRef]
- di Fronso, S.; Tamburro, G.; Robazza, C.; Bortoli, L.; Comani, S.; Bertollo, M. Focusing Attention on Muscle Exertion Increases EEG Coherence in an Endurance Cycling Task. Front. Psychol. 2018, 9, 1249. [Google Scholar] [CrossRef] [Green Version]
- Forman, C.R.; Jacobsen, K.J.; Karabanov, A.N.; Nielsen, J.B.; Lorentzen, J. Corticomuscular coherence is reduced in relation to dorsiflexion fatigability to the same extent in adults with cerebral palsy as in neurologically intact adults. Eur. J. Appl. Physiol. 2022, 122, 1459–1471. [Google Scholar] [CrossRef]
- Franceschetti, S.; Visani, E.; Rossi Sebastiano, D.; Duran, D.; Granata, T.; Solazzi, R.; Varotto, G.; Canafoglia, L.; Panzica, F. Cortico-muscular and cortico-cortical coherence changes resulting from Perampanel treatment in patients with cortical myoclonus. Clin. Neurophysiol. 2021, 132, 1057–1063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, L.-I.; Lim, K.-W.; Lai, Y.-H.; Chen, C.-S.; Chou, L.-W. Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals. Sensors 2023, 23, 2440. https://doi.org/10.3390/s23052440
Hsu L-I, Lim K-W, Lai Y-H, Chen C-S, Chou L-W. Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals. Sensors. 2023; 23(5):2440. https://doi.org/10.3390/s23052440
Chicago/Turabian StyleHsu, Lin-I, Kai-Wen Lim, Ying-Hui Lai, Chen-Sheng Chen, and Li-Wei Chou. 2023. "Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals" Sensors 23, no. 5: 2440. https://doi.org/10.3390/s23052440
APA StyleHsu, L. -I., Lim, K. -W., Lai, Y. -H., Chen, C. -S., & Chou, L. -W. (2023). Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals. Sensors, 23(5), 2440. https://doi.org/10.3390/s23052440