
Citation: Wang, H.; Li, J.; McDonald,

B.E.; Farrell, T.R.; Huang, X.; Clancy,

E.A. Comparison between Two Time

Synchronization and Data Alignment

Methods for Multi-Channel Wearable

Biosensor Systems Using BLE

Protocol. Sensors 2023, 23, 2465.

https://doi.org/10.3390/s23052465

Academic Editor: Francesco

Carlo Morabito

Received: 26 January 2023

Revised: 8 February 2023

Accepted: 20 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparison between Two Time Synchronization and Data
Alignment Methods for Multi-Channel Wearable Biosensor
Systems Using BLE Protocol
He Wang 1, Jianan Li 1, Benjamin E. McDonald 2 , Todd R. Farrell 2, Xinming Huang 1

and Edward A. Clancy 1,*

1 Worcester Polytechnic Institute, Worcester, MA 01609, USA
2 Liberating Technologies, Inc. (LTI), Holliston, MA 01746, USA
* Correspondence: ted@wpi.edu

Abstract: Wireless wearable sensor systems for biomedical signal acquisition have developed rapidly
in recent years. Multiple sensors are often deployed for monitoring common bioelectric signals, such
as EEG (electroencephalogram), ECG (electrocardiogram), and EMG (electromyogram). Compared
with ZigBee and low-power Wi-Fi, Bluetooth Low Energy (BLE) can be a more suitable wireless
protocol for such systems. However, current time synchronization methods for BLE multi-channel
systems, via either BLE beacon transmissions or additional hardware, cannot satisfy the requirements
of high throughput with low latency, transferability between commercial devices, and low energy
consumption. We developed a time synchronization and simple data alignment (SDA) algorithm,
which was implemented in the BLE application layer without the need for additional hardware. We
further developed a linear interpolation data alignment (LIDA) algorithm to improve upon SDA.
We tested our algorithms using sinusoidal input signals at different frequencies (10 to 210 Hz in
increments of 20 Hz—frequencies spanning much of the relevant range of EEG, ECG, and EMG
signals) on Texas Instruments (TI) CC26XX family devices, with two peripheral nodes communicating
with one central node. The analysis was performed offline. The lowest average (±standard deviation)
absolute time alignment error between the two peripheral nodes achieved by the SDA algorithm
was 384.3 ± 386.5 µs, while that of the LIDA algorithm was 189.9 ± 204.7 µs. For all sinusoidal
frequencies tested, the performance of LIDA was always statistically better than that of SDA. These
average alignment errors were quite low—well below one sample period for commonly acquired
bioelectric signals.

Keywords: biosensor; BLE (Bluetooth Low Energy); biomedical signal; time synchronization; wireless
sensor network

1. Introduction

Recent studies have shown the rapid development and expanded use of wearable
sensor systems for human study, medical research, and healthcare [1–9]. Low-power trans-
mission protocols, such as BLE (Bluetooth Low Energy), ZigBee, and low-power Wi-Fi,
are commonly applied in various wireless applications, including human rehabilitation,
biomedical signal monitoring, and healthcare systems [10–13]. The monitoring and collec-
tion of bioelectric signals such as EEG (electroencephalogram), ECG (electrocardiogram),
and EMG (electromyogram) require low power consumption, low latency, high accuracy,
and a relatively high bandwidth compared to other biomedical signals [14–16]. ZigBee
does not meet the bandwidth requirement for these bioelectric signals, especially for EMG
signals. Compared with low-power Wi-Fi, BLE has lower power consumption of ~1 mA
and a high transmission speed of 2 Mbps [17–19]. Due to the rapid upgrade rate of these
protocols, we chose standard BLE version 5.0 to develop our wireless wearable biomedical
signal system.

Sensors 2023, 23, 2465. https://doi.org/10.3390/s23052465 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8657-4213
https://orcid.org/0000-0003-0584-3448
https://orcid.org/0000-0002-0729-2523
https://doi.org/10.3390/s23052465
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052465?type=check_update&version=1

Sensors 2023, 23, 2465 2 of 19

Most bioelectric signal applications require multiple channels (and, thus, peripheral
nodes) for signal collection and processing [20]. Each peripheral node consists of its own
analog-to-digital-converter (ADC) which follows its local clock, and each ADC will run at a
slightly different sampling rate and phase [21]. These differences cause asynchronization
between the peripheral nodes within the system. However, the native time synchronization
methods supported by these protocols cannot satisfy the required high sampling rate of
common bioelectric systems [22]. Hence, a well-designed, transferable time synchronization
method is needed in order to support various wireless devices.

Previously, several time synchronization methods have been introduced [23–25], specif-
ically for use with BLE. In particular, the BLE beacon role or connection events tend to
be feasible methods [26,27]. Using the beacon role, the central node periodically broad-
casts clock information to the peripheral nodes to maintain high synchronization accuracy
(drift of <1 µs/min [26]). However, while broadcasting the clock information, the central
node cannot receive data packets from peripheral nodes in real time. Alternatively, time
synchronization can occur if multiple nodes are connected near-simultaneously (time syn-
chronization differences of 39.92 ± 14.19 µs [27]). Again, this synchronization method
cannot be maintained during data collection, as nodes would need to constantly disconnect
and re-connect. Thus, these methods are not feasible for continuous, high-throughput,
low-latency applications. Another solution is to implement additional hardware. One such
approach provided time synchronization precision of 9 ± 17 µs [28]. However, customized
hardware is not transferable for the large variety of commercial devices. The additional
hardware also increases power consumption, which decreases the battery life of the wireless
wearable system in daily use.

We previously developed a peripheral–central node time synchronization method
that operates by exchanging periodically generated timestamp information in the software
application layer, without the need for additional hardware. Our method is transferable
between software versions and different manufacturers’ devices. We found that a simple
data alignment algorithm (SDA) achieved precise time synchronization and data align-
ment (error of approximately one sample period) in real time [29]. However, this method
can only adjust the time difference between peripheral nodes to within one half sample
period, at best. In this paper, we describe a linear interpolation data alignment (LIDA) algo-
rithm that can adjust time differences between data samples to precision levels below one
half sample.

The primary objective of this study, therefore, was to characterize the data alignment
performance of peripheral BLE wireless nodes, contrasting the SDA and LIDA algorithms
over a range of input signal frequencies. We hypothesized that the increased temporal
resolution of the LIDA algorithm (due to its between-sample interpolation) would produce
better data alignment. Of course, high-precision data alignment relies entirely on the
performance of time synchronization between peripheral nodes and the central node.
Hence, our tests also demonstrate the precision of our time synchronization method. This
characterization was completed using two peripheral nodes and one central node as part
of a wireless demonstration system operated at the benchtop in our laboratory.

2. Materials and Methods
2.1. Paired Timestamp Generation and Peripheral ADC Timestamp

A wireless microcontroller (MCU) can query its clock and return a “timestamp”, which
is an integer count of the number of fixed microsecond-scale clock tick periods that have
occurred since device power-up. On many microcontrollers, this timestamp rolls over after
several minutes or hours, this roll over duration being based on the clock tick period and
the number of bits used to store a timestamp. To avoid rollover, we cast this timestamp
into an unsigned 64-bit integer [29]. These timestamps were used to synchronize each
peripheral node to the central node’s clock. The challenge of programming this functionality
in the application layer—which facilitates transferability between BLE MCUs from various
manufacturers—is in finding a manner by which a timestamp from the central node can be

Sensors 2023, 23, 2465 3 of 19

“paired” with a timestamp from a peripheral node. Pairing refers to the two timestamps
corresponding to either the same actual time, or to times with a consistent time offset
between them. So long as all peripheral nodes in a system receive paired timestamps with
the same time offset, the various peripheral nodes can be mutually time synchronized.

Generating paired timestamps in BLE systems that are continuously sampling ADC
data at rates up to 2000 Hz (e.g., for EMG acquisition) is challenging. Many systems use
beacon transmissions to achieve paired timestamps [26,27,30]. However, when the central
node broadcasts a beacon transmission, it cannot receive data from peripheral nodes, thus
risking interruption of the high-bandwidth, continuous peripheral data streams needed for
these bioelectric signals. Data loss could occur. Alternatively, researchers have used custom
add-on hardware to detect a synchronizing signal [28]. Custom design is required and is
specific to that implemented system. Hence, the system may require a complete re-design
as each new hardware microcontroller or BLE software version is released (which occurs
quite frequently, i.e., yearly, or even more frequently in some cases).

Thus, we utilized a time synchronization method that produces paired timestamps
using methods from within the BLE application layer [29]. When a timestamp pair is
desired, this method initiates peripheral–central data exchange from the central node. We
achieved this via a central-to-peripheral node BLE notification that can include a small
amount of data transmission, sufficient in size to include a central timestamp.

For optimal synchronization of peripheral devices, upon arrival on the central node of
every Kth new data packet from a peripheral node, the central node immediately queries
its clock for a timestamp. This timestamp is incremented by one transmit interval and
forms an excellent estimate of the central timestamp (TSc) corresponding to the ensuing BLE
notification when received on that specific peripheral node. Timestamp TSc is transmitted to
that peripheral as part of the ensuing central-to-peripheral notification. Once a notification
is received by a peripheral node, it immediately queries its clock for a timestamp, denoted
TSp. The timestamp pair TSc and TSp, to the best of their ability, represent the same times
on each of the central and peripheral devices. Because our method generates timestamps
every Kth data packet, the timestamps are generated at a nominally periodic rate.

In addition to this timestamp pair, each peripheral node queries its timestamp clock
immediately after an ADC packet has been sampled. This timestamp (TSADC) closely
corresponds to the peripheral time associated with the last ADC sample in the packet and
is used to align data after time synchronization. The three timestamps can be used on the
peripheral node for time synchronization and data alignment and/or returned to the central
node (in the ensuing peripheral-to-central data packet) for downstream synchronization
and alignment. In this manner, synchronization and alignment can be performed in real
time on either the peripheral or central node. In addition, the ADC data and timestamps
could be transmitted over the serial port of the central node to a PC for the offline analysis
reported herein.

2.2. Affine Model Time Synchronization

The N most recent timestamp pairs from each peripheral node were used to synchro-
nize their respective times to that of the central clock via an affine regression model that
estimated central time from peripheral time. Let xm[n], 0 ≤ n < N be the most recent N
peripheral timestamps and ym[n], 0 ≤ n < N be the most recent N paired central times-
tamps, where 1 ≤ m ≤ M indexes the peripheral nodes. The affine model that estimates
the floating point formatted central timestamp (T̂Sc,m) based on peripheral timestamps
(TSp,m) is:

T̂Sc,m = β0,m + β1,m·TSp,m + εm, (1)

Sensors 2023, 23, 2465 4 of 19

where β0,m is the intercept parameter for peripheral node m, β1,m is the slope parameter
for peripheral node m, and εm is a random error term. Parameters β0,m and β1,m were
estimated for each peripheral using linear least squares [29,31] as follows: β1,m =

N·Σxy,m−Σx,m ·Σy,m
N·Σxx,m−Σx,m ·Σx,m

β0,m =
Σy,m−β1·Σx,m

N

, (2)

where Σxy,m =
N−1
∑

n=0
xm[n]·ym[n], etc. We chose the least squares method of parameter

optimization because it minimizes the mean squared estimation error, is a non-iterative
optimization technique with no expected convergence issues (and is thus robust), and has
a low computational cost. Note that slope parameters β1,m will have values very close to
1.0 (depending on the accuracies of the central and peripheral node clocks). The affine
regression model is updated for each respective peripheral node when each new timestamp
pair is received, hence, every K transmit intervals.

2.3. Simple Data Alignment (SDA) Algorithm

Given a clock model (updated every K transmit intervals) that relates time on the
peripheral node to time on the central node, and the ADC timestamp for each data packet
from a peripheral (TSADC,m), peripheral data samples can now be time-aligned. Our
methods align each peripheral device to central time, thus mutually time synchronizing
them indirectly to each other. We begin by applying the respective affine clock model
to a peripheral data packet’s ADC timestamp, producing an estimate of the central time
corresponding to the last sample in the packet (T̂SADC,m).

Since different peripheral nodes complete the sampling of ADC packets asynchronously,
we begin our SDA algorithm by utilizing the estimated central timestamps (T̂SADC,m) of the
very first packets (generated after device power-up and the initialization of time synchro-
nization) from all M peripheral nodes to align each peripheral node to the last peripheral
node that transmits packets. That is, the estimate of central time produced from the last
connected peripheral node serves as the “primary” clock. ADC data samples collected
before the arrival of packets from this last recognized peripheral are discarded. This process
is shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 19

𝑇𝑆, = 𝛽, + 𝛽ଵ, ∙ 𝑇𝑆, + 𝜀, (1)

where 𝛽,୫ is the intercept parameter for peripheral node 𝑚, 𝛽ଵ,୫ is the slope parameter
for peripheral node 𝑚, and 𝜀 is a random error term. Parameters 𝛽,୫ and 𝛽ଵ,୫ were
estimated for each peripheral using linear least squares [29,31] as follows:

⎩⎨
⎧𝛽ଵ, = 𝑁 ∙ Σ௫௬, − Σ௫, ∙ Σ௬,𝑁 ∙ Σ௫௫, − Σ௫, ∙ Σ௫,𝛽, = Σ௬, − 𝛽ଵ ∙ Σ௫,𝑁 , (2)

where Σ௫௬, = ∑ 𝑥ሾ𝑛ሿ ∙ 𝑦ሾ𝑛ሿேିଵୀ , etc. We chose the least squares method of parameter
optimization because it minimizes the mean squared estimation error, is a non-iterative
optimization technique with no expected convergence issues (and is thus robust), and has
a low computational cost. Note that slope parameters 𝛽ଵ,୫ will have values very close to
1.0 (depending on the accuracies of the central and peripheral node clocks). The affine
regression model is updated for each respective peripheral node when each new
timestamp pair is received, hence, every K transmit intervals.

2.3. Simple Data Alignment (SDA) Algorithm
Given a clock model (updated every K transmit intervals) that relates time on the

peripheral node to time on the central node, and the ADC timestamp for each data packet
from a peripheral (𝑇𝑆,), peripheral data samples can now be time-aligned. Our meth-
ods align each peripheral device to central time, thus mutually time synchronizing them
indirectly to each other. We begin by applying the respective affine clock model to a pe-
ripheral data packet’s ADC timestamp, producing an estimate of the central time corre-
sponding to the last sample in the packet (𝑇𝑆,).

Since different peripheral nodes complete the sampling of ADC packets asynchro-
nously, we begin our SDA algorithm by utilizing the estimated central timestamps
(𝑇𝑆,) of the very first packets (generated after device power-up and the initialization
of time synchronization) from all M peripheral nodes to align each peripheral node to the
last peripheral node that transmits packets. That is, the estimate of central time produced
from the last connected peripheral node serves as the “primary” clock. ADC data samples
collected before the arrival of packets from this last recognized peripheral are discarded.
This process is shown in Figure 1.

Figure 1. Aligning the 𝑀 peripheral nodes at startup. Red blocks represent the data packet streams.
The black dashed line marks the arrival of the last peripheral into the configuration, signifying the
start time of the whole system. Blue dashed lines mark discarded ADC data samples.

Figure 1. Aligning the M peripheral nodes at startup. Red blocks represent the data packet streams.
The black dashed line marks the arrival of the last peripheral into the configuration, signifying the
start time of the whole system. Blue dashed lines mark discarded ADC data samples.

Sensors 2023, 23, 2465 5 of 19

Once initialized, our SDA algorithm need only account for diverging clock rates
(and clock variations) between the various peripheral nodes. When we detect that the
accumulated time drift between the clock on peripheral m and the clock on peripheral M
(the primary clock) has exceeded a time threshold (in our case, equal to one ADC period),
we remove or interpolate (as needed) one sample within a packet from peripheral m. In
doing so, we entrain time in the data stream from peripheral m to time in the data stream
from peripheral M. Since the ADC timestamps from all nodes estimate time on the central
node, the data streams from all peripheral nodes closely reflect time on the central node.

In practice, implementing SDA from the least squares estimated ADC timestamps
(T̂SADC,m) is computationally expensive and potentially subject to round-off error, since
these estimates of central time are floating point values. However, once data stream
alignment is initialized (see Figure 1), we need only track changes in the passage of time
between peripheral node M and each other peripheral node. We can do so in a more
computationally efficient manner using the original timestamp pairs, which are integer
values. To do so for peripheral m, we utilize two of its successive timestamps from the
central node, TSc,m[i] and TSc,m[i + 1], and two corresponding paired timestamps from
peripheral node m, TSp,m[i] and TSp,m[i + 1] (i.e., two successive timestamp pairs). We
define the central timestamp difference for timestamp i as:

∆TSc,m[i] = TSc,m[i + 1]− TSc,m[i], (3)

Similarly, the corresponding peripheral timestamp difference is:

∆TSp,m[i] = TSp,m[i + 1]− TSp,m[i], (4)

Ideally, ∆TSc,m[i] = ∆TSp,m[i], ∀ i. However, the clock rate of each node within the
BLE system will vary, which results in a difference between ∆TSc,m and ∆TSp,m:

∆TSdi f f ,m[i] = ∆TSc,m[i]− ∆TSp,m[i], (5)

Once the absolute sum of successive ∆TSdi f f ,m[i] values is greater than the
threshold (tc): ∣∣∣∣∣∑i

∆TSdi f f ,m[i]

∣∣∣∣∣ > tc, (6)

there are one or more extra or missing data samples. To be specific, if ∑ ∆TSdi f f ,m[i] > tc,
there are one or more data samples missing; thus, we inserted one data sample into the
current packet. If ∑ ∆TSdi f f ,m[i] < −tc, there are one or more extra data samples; thus,
we removed one data sample from the current packet. We chose to insert/remove one
sample per packet for stability. In preliminary testing (partial results available in [32]), we
evaluated the threshold values (tc) of 1, 1.1, 1.25, 1.5, 1.75, 2, and 2.5 samples. Thresholds
that are too small risk alternately interpolating and deleting values in the data stream
(overly sensitive), whereas thresholds that are too large risk retaining true synchronization
errors for a longer duration. We found minimal data alignment performance differences as
a function of the threshold values tested. Thus, we used a threshold value of tc = 1 sample.

This algorithm cannot target the exact moment that the drift occurs; in fact the drift
occurs over a range of sample times. Thus, when interpolating an extra data sample,
we chose to do so prior to the oldest sample of the current data packet. Similarly, when
removing one data sample, the oldest sample of the current data packet was removed.

2.4. Linear Interpolation Data Alignment (LIDA) Algorithm

By its design, the SDA algorithm—assuming perfect timestamp pairs—can align
the peripheral nodes to a resolution of approximately one half of a sample period, since
data alignment corrections consist only of deleting one sample or inserting one sample.
In practice, a higher worst-case alignment error may occur, depending on the value of
the correction threshold (set to one sample period above). A threshold greater than one

Sensors 2023, 23, 2465 6 of 19

sample is used to prevent deletions from being quickly followed by interpolations in
the data stream. Such alignment corrections are attributed to being overly sensitive to
small timing variations. Conversely, larger thresholds permit misalignment to persist for
longer durations.

In some applications (e.g., measures of cross-channel mutual information, such as
cross-correlation), finer alignment (e.g., lower than half of a sample period) is desired. Since
each data packet has a central timestamp estimate (based on the affine time synchronization
model) corresponding to its last ADC sample, this clock can be combined with the known
ADC sampling period to assign an estimated central clock time to each ADC sample—not
just the last sample in a packet. Over the time span of one packet (herein, 15 ms), this
assignment is quite precise. Thus, the interpolation between adjacent sample values in
each peripheral stream can be used to resample the original signal periodically at times
referenced to a common central clock. Herein, we develop a straight-line approximation of
peripheral data sample values at times between the available sample times.

Consider two consecutive data samples, Dm[i] and Dm[i + 1] (units of volts or ADC
counts), from peripheral node m and their corresponding linear regression-generated
timestamps T̂Sc,m[i] and T̂Sc,m[i + 1]. These timestamps refer to time on the central node.
A straight-line model of the data values between successive samples would require that:

Dm[i] = αm[i]·T̂Sc,m[i] + δm[i]

Dm[i + 1] = αm[i]·T̂Sc,m[i + 1] + δm[i]
, (7)

where αm[i] is the slope and δm[i] is the offset for the interval between the given data
samples. From these two equations, we can solve for αm[i] and δm[i] as follows:

αm[i] =
Dm[i + 1]− Dm[i]

T̂Sc,m[i + 1]− T̂Sc,m[i]
, (8)

δm[i] =
Dm[i + 1]·T̂Sc,m[i]− Dm[i]·T̂Sc,m[i + 1]

T̂Sc,m[i]− T̂Sc,m[i + 1]
, (9)

Given any desired timestamp value within this interval, T̂Sc,m[j], the interpolated
value of the corresponding data sample, Dm[j], can be calculated as follows:

Dm[j] = αm[i]·T̂Sc,m[j] + δm[i], (10)

Hence, by applying this algorithm, the peripheral data samples can be resampled to
time locations selected by the central node, e.g., sequential periodic times in phase with the
true central node clock. When the selected central time advances outside of the timestamp
range given by T̂Sc,m[i + 1], the algorithm proceeds to the next timestamp interval (and its
corresponding data samples). By aligning the data stream from each peripheral node to the
true central clock, the peripheral data streams become mutually aligned. A fundamental
advantage of this method is that it does not rely on the availability of a primary clock from
one of the peripheral nodes.

2.5. Methods of Analysis

The time synchronization and data alignment methods were evaluated using BLE as
implemented on the TI CC26XX family of microcontroller (MCU) modules. We used a TI
CC2652R1 as the central node and two TI CC2640 modules as the peripheral nodes. Each
peripheral incorporated a 12-bit, unipolar (0–3.3 V) ADC, with the sampling rate set to
1000 Hz. Embedded software for the TI CC2652R1 central nodes was developed using the
TI SimpleLink software development kit: version 3.10.01.11, compiler version TI v18.12.2
LTS. For the TI CC2640 peripheral nodes, we similarly used a TI software development
kit: version 1.40.00.45, compiler version TI v16.9.1 LTS. In each case, we programmed in
the “C” language using Code Composer Studio (TI, version 9.0.1). Off-line data analysis

Sensors 2023, 23, 2465 7 of 19

was completed using MATLAB (The MathWorks, version R2022a) on a Dell OptiPlex
3010 desktop computer.

A signal generator (Hewlett Packard 33120A) generated sine waves (800 mVp-p,
with a 1 V DC offset) as the common analog input to the ADC on each peripheral node.
This setup is shown in Figure 2. To explore the performance of the two data alignment
algorithms, we varied the frequency of the input sine wave signal between each trial from
10 Hz to 210 Hz in increments of 20 Hz, for a total of 11 frequencies. Almost all the power
in the EEG signal is found below 40–50 Hz [33]. For ECG, most of the power is below
30–40 Hz and most diagnostic information is located below 100 Hz in adults (150 Hz in
infants) [34,35]. For EMG, most of the signal power lies below 400–500 Hz, with a mode
frequency of approximately 70 Hz (depending on the electrode configuration) [36–38].
Hence, the frequency range of the input sine wave signals used in our performance tests
spans much of the relevant range of these three common bioelectric signals.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19

was completed using MATLAB (The MathWorks, version R2022a) on a Dell OptiPlex 3010
desktop computer.

A signal generator (Hewlett Packard 33120A) generated sine waves (800 mVp-p, with
a 1 V DC offset) as the common analog input to the ADC on each peripheral node. This
setup is shown in Figure 2. To explore the performance of the two data alignment algo-
rithms, we varied the frequency of the input sine wave signal between each trial from 10
Hz to 210 Hz in increments of 20 Hz, for a total of 11 frequencies. Almost all the power in
the EEG signal is found below 40–50 Hz [33]. For ECG, most of the power is below 30–40
Hz and most diagnostic information is located below 100 Hz in adults (150 Hz in infants)
[34,35]. For EMG, most of the signal power lies below 400–500 Hz, with a mode frequency
of approximately 70 Hz (depending on the electrode configuration) [36–38]. Hence, the
frequency range of the input sine wave signals used in our performance tests spans much
of the relevant range of these three common bioelectric signals.

Figure 2. TI platform (one central node and two peripheral nodes) and the Hewlett Packard 33120A
signal generator. The signal generator sine wave output is simultaneously connected to the ADC
input of both peripheral nodes.

Each testing trial lasted 12 min. Each input frequency was recorded 5 times. Hence,
there were 55 testing trials in total. The data packet transmit interval (i.e., connection in-
terval) between each peripheral node and the central node was 15 ms (hence, 15 samples
per packet). This packet transmit interval minimized latency while reliably maintaining
two connected peripheral nodes for these TI CC26XX MCUs. The timestamp transmit in-
terval was 990 ms, that is, one new timestamp update every K = 66 data packets. We se-
lected this interval to minimize time synchronization error, based on prior evaluation of
this system [29]. We used a UART to transfer data (and timestamps) received at the central
node to a PC for offline analysis in MATLAB. In this manner, the same recorded data were
separately processed and compared for mutual time alignment using the SDA algorithm
and the LIDA algorithm. All other parameters of the two peripheral BLE nodes were the
same.

Analysis using the PC began with time synchronization, which used a buffer of
timestamp pairs of length N = 128, corresponding to synchronization over a time duration
of 127 × 990 ms = 125.73 s (approximately 2 min) [29]. After data alignment using the PC
via one of the two algorithms, the first 2 min of each trial were removed to account for
startup transients in time synchronization. The remaining 10 min were separated into con-
tiguous epochs, each containing 100 sine wave cycles. Thus, epoch duration varied with
sine wave frequency. The data within each epoch were upsampled 100 times, and then,

Figure 2. TI platform (one central node and two peripheral nodes) and the Hewlett Packard 33120A
signal generator. The signal generator sine wave output is simultaneously connected to the ADC
input of both peripheral nodes.

Each testing trial lasted 12 min. Each input frequency was recorded 5 times. Hence,
there were 55 testing trials in total. The data packet transmit interval (i.e., connection
interval) between each peripheral node and the central node was 15 ms (hence, 15 samples
per packet). This packet transmit interval minimized latency while reliably maintaining
two connected peripheral nodes for these TI CC26XX MCUs. The timestamp transmit
interval was 990 ms, that is, one new timestamp update every K = 66 data packets. We
selected this interval to minimize time synchronization error, based on prior evaluation
of this system [29]. We used a UART to transfer data (and timestamps) received at the
central node to a PC for offline analysis in MATLAB. In this manner, the same recorded
data were separately processed and compared for mutual time alignment using the SDA

Sensors 2023, 23, 2465 8 of 19

algorithm and the LIDA algorithm. All other parameters of the two peripheral BLE nodes
were the same.

Analysis using the PC began with time synchronization, which used a buffer of
timestamp pairs of length N = 128, corresponding to synchronization over a time duration
of 127 × 990 ms = 125.73 s (approximately 2 min) [29]. After data alignment using the
PC via one of the two algorithms, the first 2 min of each trial were removed to account
for startup transients in time synchronization. The remaining 10 min were separated into
contiguous epochs, each containing 100 sine wave cycles. Thus, epoch duration varied
with sine wave frequency. The data within each epoch were upsampled 100 times, and
then, the first and last 40 data samples (0.4 ms) were discarded, to account for the startup
transients in the upsampling filter [39]. Upsampling increased the time resolution from
1 ms to 10 µs. The epoch mean value was subtracted from each value, separately for each
of the two peripheral channels. The cross-correlation coefficient function between the
two peripheral channels was then computed from each epoch. We limited the computation
to lags over a range of −0.75 to +0.75 times the sine wave period. For each epoch, the
absolute value, in ms, of the location of the correlation maximum was the estimate of
the absolute time alignment error between data streams from the two peripheral nodes.
The mean and standard deviation of the absolute time alignment error, the 90th and 95th
percentile absolute time alignment errors, and the corresponding correlation coefficient
function maximum value were determined across all epochs per input frequency (i.e., across
the time alignment error results from all epochs in each of the five trials per sine wave).
Since the correlation function of a sine wave is, itself, periodic in the sine wave period,
the limited search range prevented noise from erroneously identifying the maximum at
periodic multiples of the true maximum, especially when the input frequency was high.
We also made histogram plots of the absolute time alignment errors for each sine wave
frequency and one histogram concatenating the absolute time alignment errors from all
trials. The histogram bin edges were incremented by 0.1 ms, and the histogram plots were
normalized so that the heights of the bins represent probabilities.

3. Results

Figure 3 shows a portion of 10 Hz sine waves from two peripheral nodes before any
alignment and after applying LIDA. It is obvious that after applying LIDA to the raw input
signal, the time alignment difference between them becomes barely noticeable visually.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19

the first and last 40 data samples (0.4 ms) were discarded, to account for the startup tran-
sients in the upsampling filter[39]. Upsampling increased the time resolution from 1 ms
to 10 μs. The epoch mean value was subtracted from each value, separately for each of the
two peripheral channels. The cross-correlation coefficient function between the two pe-
ripheral channels was then computed from each epoch. We limited the computation to
lags over a range of –0.75 to +0.75 times the sine wave period. For each epoch, the absolute
value, in ms, of the location of the correlation maximum was the estimate of the absolute
time alignment error between data streams from the two peripheral nodes. The mean and
standard deviation of the absolute time alignment error, the 90th and 95th percentile ab-
solute time alignment errors, and the corresponding correlation coefficient function max-
imum value were determined across all epochs per input frequency (i.e., across the time
alignment error results from all epochs in each of the five trials per sine wave). Since the
correlation function of a sine wave is, itself, periodic in the sine wave period, the limited
search range prevented noise from erroneously identifying the maximum at periodic mul-
tiples of the true maximum, especially when the input frequency was high. We also made
histogram plots of the absolute time alignment errors for each sine wave frequency and
one histogram concatenating the absolute time alignment errors from all trials. The histo-
gram bin edges were incremented by 0.1 ms, and the histogram plots were normalized so
that the heights of the bins represent probabilities.

3. Results
Figure 3 shows a portion of 10 Hz sine waves from two peripheral nodes before any

alignment and after applying LIDA. It is obvious that after applying LIDA to the raw in-
put signal, the time alignment difference between them becomes barely noticeable visu-
ally.

Figure 3. Example time-series plots from one trial (10 s to 11 s time range) of 10 Hz input frequency.
(a) Input signals from two peripheral nodes without alignment; (b) same signals after applying
LIDA.

Figure 4 shows the probability density function estimate derived from the absolute
time alignment errors using input frequencies of 10 Hz, 110 Hz, and 210 Hz (a–c) and all
input frequencies (d). Despite minor differences, the general shapes of the probability den-
sity function estimates at each sine wave frequency exhibit a similar trend. From Figure 3,
it is obvious that the errors generated using LIDA tended to be closer to 0 ms than the
errors generated using SDA. Using LIDA, 25.6% of the absolute errors were below 0.1 ms,

Figure 3. Example time-series plots from one trial (10 s to 11 s time range) of 10 Hz input frequency.
(a) Input signals from two peripheral nodes without alignment; (b) same signals after applying LIDA.

Sensors 2023, 23, 2465 9 of 19

Figure 4 shows the probability density function estimate derived from the absolute
time alignment errors using input frequencies of 10 Hz, 110 Hz, and 210 Hz (a–c) and all in-
put frequencies (d). Despite minor differences, the general shapes of the probability density
function estimates at each sine wave frequency exhibit a similar trend. From Figure 3, it is
obvious that the errors generated using LIDA tended to be closer to 0 ms than the errors gen-
erated using SDA. Using LIDA, 25.6% of the absolute errors were below 0.1 ms, 56.2% were
below 0.3 ms, and 92.4% were below 1 ms. Meanwhile, using SDA, 12.2% of the absolute
errors were below 0.1 ms, 35.5% were below 0.3 ms, and 86.6% were below 1 ms. Among
all 38,115 epochs from the 55 testing trials, the absolute time alignment errors generated
by LIDA were lower than those generated by SDA 24,756 times (65%), greater than those
generated by SDA 12,797 times (34%), and the errors were tied 562 times (1%). The overall
average (±standard deviation) absolute time alignment error generated by LIDA using all
epochs was 0.38 ± 0.40 ms, while for SDA, it was 0.5442 ± 0.4481 ms. The correlation coef-
ficients generated by LIDA were higher than those generated by SDA 29,397 times (77%),
and lower than those generated by SDA 8718 times (23%). The overall average (±standard
deviation) correlation coefficient generated by LIDA was 0.9983 ± 0.0083, and for SDA
was 0.9945 ± 0.0261. Thus, both data alignment methods produced extremely high
correlation coefficients.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19

56.2% were below 0.3 ms, and 92.4% were below 1 ms. Meanwhile, using SDA, 12.2% of
the absolute errors were below 0.1 ms, 35.5% were below 0.3 ms, and 86.6% were below 1
ms. Among all 38,115 epochs from the 55 testing trials, the absolute time alignment errors
generated by LIDA were lower than those generated by SDA 24,756 times (65%), greater
than those generated by SDA 12,797 times (34%), and the errors were tied 562 times (1%).
The overall average (± standard deviation) absolute time alignment error generated by
LIDA using all epochs was 0.38 ± 0.40 ms, while for SDA, it was 0.5442 ± 0.4481 ms. The
correlation coefficients generated by LIDA were higher than those generated by SDA
29,397 times (77%), and lower than those generated by SDA 8718 times (23%). The overall
average (± standard deviation) correlation coefficient generated by LIDA was 0.9983 ±
0.0083, and for SDA was 0.9945 ± 0.0261. Thus, both data alignment methods produced
extremely high correlation coefficients.

Figure 4. Histogram plot generated from absolute time alignment errors using input frequencies of
10 Hz, 110 Hz, and 210 Hz (a–c) and all input frequencies (d). The red bins were generated using
LIDA and the white bins were generated using SDA, with the overlapped parts colored pink.

Tables 1 and 2 show summary performance results comparing the SDA algorithm
and the LIDA algorithm vs. the input sine wave frequency. The results list the average (±
standard deviation) absolute time alignment error between two aligned channels, the 90th
and 95th percentile absolute time alignment errors, and the mean (± standard deviation)
maximum correlation coefficients. At each input frequency, the average absolute time
alignment errors generated using LIDA (all LIDA average absolute time errors were ≤0.58
ms) were always lower than those generated using the SDA algorithm (all SDA average
absolute time errors were ≤0.70 ms). The average error did not trend as a function of input
frequency, indicating that the implementation of both algorithms is feasible regardless of
the frequency of the input signal (over the range of frequencies tested).

Figure 4. Histogram plot generated from absolute time alignment errors using input frequencies of
10 Hz, 110 Hz, and 210 Hz (a–c) and all input frequencies (d). The red bins were generated using
LIDA and the white bins were generated using SDA, with the overlapped parts colored pink.

Sensors 2023, 23, 2465 10 of 19

Tables 1 and 2 show summary performance results comparing the SDA algorithm
and the LIDA algorithm vs. the input sine wave frequency. The results list the average
(±standard deviation) absolute time alignment error between two aligned channels, the
90th and 95th percentile absolute time alignment errors, and the mean (±standard devi-
ation) maximum correlation coefficients. At each input frequency, the average absolute
time alignment errors generated using LIDA (all LIDA average absolute time errors were
≤0.58 ms) were always lower than those generated using the SDA algorithm (all SDA
average absolute time errors were ≤0.70 ms). The average error did not trend as a func-
tion of input frequency, indicating that the implementation of both algorithms is feasible
regardless of the frequency of the input signal (over the range of frequencies tested).

Table 1. Summary of absolute alignment errors and correlation coefficients of simple data alignment
(SDA) algorithm as a function of input sine wave frequency.

Input
Frequency

(Hz)

Absolute Alignment Error (ms) Ave. ± Std. Dev.
Correlation

Coeff.
Ave. ± Std.

Dev. 90th% 95th%

10 0.38 ± 0.39 0.87 1.19 0.9997 ± 0.0002
30 0.70 ± 0.73 1.53 2.03 0.9991 ± 0.0016
50 0.64 ± 0.59 1.39 2.01 0.9983 ± 0.0031
70 0.59 ± 0.53 1.23 1.61 0.9974 ± 0.0074
90 0.66 ± 0.50 1.40 1.62 0.9966 ± 0.0094

110 0.55 ± 0.43 1.13 1.37 0.9959 ± 0.0125
130 0.49 ± 0.35 0.95 1.10 0.9954 ± 0.0183
150 0.53 ± 0.44 1.17 1.35 0.9947 ± 0.0211
170 0.63 ± 0.48 1.26 1.52 0.9937 ± 0.0260
190 0.45 ± 0.31 0.88 0.98 0.9930 ± 0.0345
210 0.50 ± 0.41 1.06 1.29 0.9919 ± 0.0404

Table 2. Summary of absolute alignment errors and correlation coefficients of linear interpolation
data alignment (LIDA) algorithm as a function of input sine wave frequency.

Input
Frequency

(Hz)

Absolute Alignment Error (ms) Ave. ± Std. Dev.
Correlation

Coeff.
Ave. ± Std.

Dev. 90th% 95th%

10 0.30 ± 0.41 0.87 1.15 0.9999 ± 0.00008
30 0.58 ± 0.63 1.29 1.82 0.9997 ± 0.0004
50 0.47 ± 0.57 1.22 1.75 0.9996 ± 0.0008
70 0.41 ± 0.52 1.10 1.48 0.9995 ± 0.0010
90 0.52 ± 0.46 1.21 1.50 0.9991 ± 0.0016

110 0.37 ± 0.37 0.84 1.07 0.9992 ± 0.0020
130 0.34 ± 0.30 0.70 0.87 0.9984 ± 0.0116
150 0.38 ± 0.37 0.85 1.08 0.9988 ± 0.0023
170 0.48 ± 0.42 1.07 1.35 0.9983 ± 0.0043
190 0.19 ± 0.20 0.50 0.63 0.9965 ± 0.0140
210 0.36 ± 0.38 0.83 1.19 0.9978 ± 0.0107

Similarly, the average correlation coefficients generated using LIDA were always
higher (closer to 1) than those generated using SDA. However, all average correlation
coefficients were very close to 1, with the lowest average correlation coefficient being 0.9919
when using SDA at an input frequency of 210 Hz.

These differences were next evaluated statistically. A Kolmogorov–Smirnov test found
the absolute time differences and the correlation coefficients each to be non-normally
distributed (p < 10−5). Thus, the Wilcoxon signed-rank test was applied between the SDA
and LIDA results at each input frequency value, with Bonferroni–Holm correction for
multiple comparisons. For each input frequency, the absolute time differences generated

Sensors 2023, 23, 2465 11 of 19

using LIDA were always significantly lower than the differences generated using SDA
(p = 10−5 for each test), and the correlation coefficients generated using LIDA were always
significantly higher than the correlation coefficients generated using SDA (p < 10−5 for
each test).

4. Discussion
4.1. Overall Performance of SDA and LIDA Algorithms

In this paper, we introduced the LIDA algorithm as a method to achieve higher-
accuracy data alignment than the SDA algorithm in a multi-channel wireless wearable
sensor system. Our wireless evaluation system consisted of one TI CC2652R1 board as
the central node and two TI CC2640 boards, with an ADC sampling rate of 1k Hz each,
as the peripheral nodes. For our testing, we varied the frequency of our input sine wave
from 10 Hz to 210 Hz. Offline, we compared the performance of LIDA and SDA. After time
synchronization and data alignment, the absolute time alignment error and correlation
coefficient between the two peripheral nodes were calculated to evaluate the performance
of the two algorithms.

For each tested input frequency, the performance of LIDA was always statistically
significantly better than that of SDA. In particular, LIDA achieved its lowest average
absolute time alignment error of 0.19± 0.20 ms at an input frequency of 190 Hz. Meanwhile,
SDA achieved its lowest average time alignment error of 0.38 ± 0.39 ms at an input
frequency of 10 Hz. Across all tested frequencies, the average time alignment error for LIDA
was 0.38 ± 0.40 ms, and for SDA was 0.54 ± 0.45 ms. Hence, the average performance of
LIDA across all frequencies was better than the best average performance at any frequency
of SDA. Since the absolute alignment errors have large standard deviations, which are close
in magnitude to the mean values, we also measured the 90th and 95th percentile errors. For
each input frequency, the 90th and 95th percentile errors of LIDA were always less than or
equal to those of SDA. For both algorithms, the 95th percentile errors were around 1–2 ms
(typically around 1.5 ms). Additionally, these 90th and 95th percentile errors did not tend
to vary with the input sine wave frequency. As noted above, another clear advantage of the
LIDA algorithm is that data from each peripheral node are independently aligned directly
to time on the central node. Data alignment from one peripheral node is not a function
of any other peripheral node. For our SDA algorithm, we needed to select one primary
peripheral clock to which all other peripheral clocks were aligned. Hence, if that primary
clock became unavailable (e.g., due to loss of that peripheral node from the network), the
SDA algorithm must be restarted (or otherwise modified mid-alignment). A temporary loss
of alignment may result. No such issue occurred with the LIDA algorithm. In the future,
it is possible that the SDA algorithm could be altered to time-align each peripheral node
directly to the estimated central clock times, in much the same fashion as is performed by
the LIDA algorithm. Doing so would simplify the overall system complexity, hopefully at
little or no cost to performance.

This finding that LIDA out-performed SDA met our expectations, since the SDA algo-
rithm only inserts or removes one data sample at the head of each data packet. Conversely,
the LIDA algorithm interpolates sample values between two samples, providing higher
precision, at a relatively low computational cost. Overall, considering that the purpose of
our wireless wearable system is to acquire high-frequency bioelectric signals, both SDA
and LIDA had small time alignment errors. In particular, for EEG and ECG signals, which
usually have a sampling rate below 500 Hz, the 95th percentile errors were less than one
sample period; for EMG signals, which usually have a sampling rate of 1000–2000 Hz (or
higher), the 95th percentile errors were about 1–4 sample periods.

We might improve interpolation performance by upgrading the algorithm by smooth-
ing interpolated values from additional adjacent data samples (e.g., higher-order poly-
nomial or a spline-fit approach). However, it is unclear if the additional smoothing will
provide substantive improvement, or if the achieved improvement would be worth the
additional computational cost.

Sensors 2023, 23, 2465 12 of 19

4.2. Consideration of Previous Time Synchronization Methods

Previously published methods for BLE time synchronization (reviewed above) have
demonstrated lower errors than our own, but have some clear disadvantages compared
to our methods. The prior method, with the lowest average (±standard deviation) error
of 9 ± 17 µs, requires that custom hardware be added to the MCU system [28]. Its time
synchronization performance is impressive, but the custom hardware incurs additional
non-recurring engineering design effort which might need to be repeated each time the
MCU is updated. New MCUs are being offered frequently, often in timeframes of less than
one year, by an array of manufacturers, with newer model performance “leapfrogging”
that of existing models. Thus, many users might struggle to repeatedly update their custom
hardware to take advantage of the improved MCUs. Additionally, the additional hardware
adds weight, volume, and battery consumption to the wearable device. Hence, this option
is not preferred by many users. Alternatively, high time synchronization precision of
39.92 ± 14.19 µs was achieved when a connection was established simultaneously for
multiple nodes [27]. However, this method would either only provide synchronization
once at startup (which would drift over time) or require continuously disconnecting and
reconnecting devices, interrupting the data stream. Hence, it is not clear that this method
is appropriate for high-bandwidth, continuous data acquisition. The use of a beacon role
to broadcast clock information [26] has similar issues—the central node cannot receive
data packets while broadcasting. Again, since the broadcast would need to be repeated
periodically, high-bandwidth, continuous acquisition is not facilitated. Each of the prior
methods fills a distinct niche, as does our method. In particular, our method operates in
the application layer, making it easily transferable to updated devices or those of other
manufacturers. In fact, we have already transferred our SDA algorithm to run on the
Nordic nRF5280 microcontroller unit. Finally, our method’s existing performance is already
sufficient for many biomedical signal applications.

Note that in addition to these past time synchronization methods developed specifi-
cally for BLE, there exist more traditional methods in wired and wireless networks. None
were studied herein as they are not considered appropriate for our application (due to
their high bandwidth, low latency, and continuous data stream) [40,41]. A network time
protocol (NTP) was developed for large-node wired systems. This typically utilizes a
hierarchy of many nodes and complex methods for excluding outlier synchronization
information. Due to its large volume of synchronization messages, high computation, and
poor energy inefficiency, it is not considered appropriate for BLE systems. Traditional time
synchronization (TTS) uses two-way messaging between wireless nodes, assuming those
messages can be exchanged in a short time duration. However, BLE message exchange
times are not tightly controlled in the small MCUs used in wearable devices, making this
technique inappropriate. Reference broadcast synchronization (RBS) is a wireless method
based on beacon transmissions and least squares linear regression (to smooth out varia-
tions from sequential beacon transmissions). As noted above, a beacon role within BLE
would require interruption of the data stream from peripheral to central, and thus, it is
not appropriate. The wireless methods known as time-sync protocol for sensor networks
(TPSN) and flooded time sync protocol (FTSP) do not operate in the application layer (they
operate in the medium access control (MAC) layer). Our method reported herein operates
in the application layer, so is easier to program and is transferable between devices and
software versions.

4.3. Connection Loss and Packet Loss

In our tests, we consistently maintained two peripheral nodes connected to one central
node without connection or packet loss. In fact, to the extent possible, we eliminated all
other active BLE devices from the environment. Doing so was appropriate, since randomly
blocked packets would confound our time and data alignment comparisons.

However, regulating the wireless environment in this manner is not possible in applied
usage. Connections can be lost due to overutilization of the BLE frequency band (including

Sensors 2023, 23, 2465 13 of 19

noise) or simply because the relevant peripheral node has been powered down or has
otherwise voluntarily departed the system. If the departed peripheral node had been
providing the primary peripheral clock for our SDA algorithm, a new primary peripheral
clock must be established. Switching mid-alignment to another peripheral node is possible,
but might cause a small transient change in data alignment performance. For our test
system consisting of only two peripheral nodes, this issue was moot, as we purposely
maintained connection throughout each data collection trial. Further, if one peripheral
node were to depart our test system, only one peripheral node would remain; hence, no
data alignment between peripheral nodes would be required. Thus, we did not account for
this occurrence. Nonetheless, this issue is relevant for systems consisting of more than two
peripheral nodes.

For our laboratory tests, it was convenient to wait for all peripheral nodes to connect
to the central node, and then, select the last connected peripheral node as the primary clock.
Our laboratory work always connected all devices (two, in our case) and maintained the
connection for each completed trial. Yet, in fielded systems using the SDA algorithm, it
might make more sense to assign the first connected peripheral node as the primary clock.
In this way, data alignment can begin as soon as a second peripheral node connects to the
network. However, a new primary clock would still have to be established if this first node
later departed the network.

Again, for the purposes of our testing, we chose to maintain a low-noise environment,
resulting in no packet loss. However, the applied use of such a system would not prevent
packet loss. In this case, our timestamps can be used to quickly and reliably detect packet
loss. Successive ADC timestamps from each peripheral node should ideally differ by one
connection interval. Even with clock variation between nodes, actual time differences
between successive ADC timestamps on one particular peripheral node should easily be
within 1% of the connection interval (albeit with a few exceptions; see below). Thus, we
can test these time differences as soon as packets arrive on the central node. For example,
with our connection interval of 15 ms, a packet has been dropped if the ADC timestamp
difference between successive packets from a given peripheral node is 30 ms. Two packets
have been dropped if the ADC timestamp difference is 45 ms, etc. Knowledge of this loss
of information can be provided to downstream processing for appropriate action.

4.4. Parameters of the Affine Time Synchronization Model

Our affine time synchronization model used the most recent N = 128 timestamp pairs,
which were updated every K = 66 data packets. Since data packets were transmitted every
15 ms, the regression used data that spanned approximately the last 2 min to form each
model. We had previously evaluated the performance of the SDA algorithm on this same
system as a function of the number of timestamp pairs (N ranged from 2–128) and the
timestamp update interval (which ranged from 150–1500 ms) [29]. We did not find strong
dependence on number of timestamp pairs, but an update interval of 750 ms was best.
Using this update interval and only N = 2 timestamp pairs in the affine model, our previous
work found average (±standard deviation) absolute data alignment errors of 69 ± 71 µs,
with a 90th percentile error of 180 µs and a 95th percentile error of 190 µs.

In the experimental work in this manuscript, we opted to use N = 128 timestamp pairs
in our models, with a similar update interval of 990 ms. Both the work in this manuscript
and our prior work acquired test data in a low-noise electromagnetic environment in which
we had purposely limited traffic in the BLE frequency band. This low-noise environment
may have contributed the finding in our prior work of no strong dependence on the number
of timestamp pairs, since we eliminated (or greatly attenuated) blocked transmissions. The
main advantage of using several timestamp pairs in a regression model is the ability to
obtain an average across their variability, and blocked/delayed transmissions contribute
strongly to transmission timing variability. However, fielded systems will need to operate
in noisier electromagnetic environments. In such cases, the use of a larger number of

Sensors 2023, 23, 2465 14 of 19

timestamp pairs in our affine model should reduce time synchronization and data alignment
errors. Hence, we chose to use a larger number of timestamp pairs in the present study.

4.5. Limitations and Future Work

Perhaps the most fundamental limitation of this paper comes from the generation of the
timestamp pairs. Specifically, the central node generates timestamp TSc (queries its clock
and adds a transmit interval) when it receives a data packet from a peripheral node. The
precision of TSc will be affected if the transmission from the peripheral to the central and/or
subsequent notification from the central to the peripheral is not reliable or blocked. (In a
blocked transmission, the packet is resent during the next transmission interval.) The use
of affine model time synchronization with a large timestamp buffer size smooths some of
these possible deviations, but the performance can still be impaired. The more BLE devices
the environment contains, the higher the chance of delayed or blocked transmission. Our
future work will aim to develop a method to detect blocked transmissions and manually
correct TSc to improve time synchronization and data alignment performance.

While it is ideal if timestamp pairs truly reflect time on the central node, it is sufficient
for the mutual synchronization of peripheral nodes that central–peripheral timestamp pairs
have the same time offset from time on the central node. Accordingly, it is necessary that
the difference between successive central timestamps tightly matches the difference between
successive peripheral timestamps. That is, whenever the recording of a central timestamp
is delayed (or advanced), no contribution is made to lowering time synchronization so long
as the paired peripheral timestamp is equivalently delayed (or advanced). Nominally, each
difference will equal the timestamp update rate, which is the connection interval multiplied
by K (the number of connection intervals between new timestamp pairs). Unfortunately,
we did not archive the timestamp pairs in this study, so could not assess this characteristic
in our data.

However, our earlier study on this same system that compared synchronization
performance as a function of the number of timestamps pairs (N) and the timestamp
update interval (K) did retain the timestamp pairs [29]. For that study, timestamp pairs
were available every 1050 ms (this was the closest available interval to our 990 ms interval)
during a 12 min trial (thus, there were 685 paired timestamps in total). Figure 5 separately
cross-plots these time differences between successive central node timestamps on the x-axis
vs. time differences between paired successive peripheral node timestamps on the y-axis for
each of the two peripheral nodes. Ideally, each timestamp pair should cross-plot onto the
line of agreement (x-axis value equals y-axis value) and be clustered about 1050 ms. In fact,
most do so, but a few noticeable outliers exist. As a measure of how well each timestamp
difference pair clustered along the line of agreement, we computed the closest distance (D)
between each x–y location and the line of agreement as [42]: D =

∣∣∆c − ∆p
∣∣/√2, where ∆c

is the central node timestamp difference and ∆p is the peripheral node timestamp difference.
Histograms of these distances are also shown separately in Figure 5 for both peripheral
nodes. Most distances are under 0.5 ms, but large outliers exist. These large outliers may
be associated with rare blocked or delayed transmissions.

Sensors 2023, 23, 2465 15 of 19
Sensors 2023, 23, x FOR PEER REVIEW 15 of 19

Figure 5. (a,b) Cross-plots (one per peripheral node, as labeled) of time differences between succes-
sive central node timestamps on the x-axis vs. time differences between paired successive peripheral
node timestamps on the y-axis. Inset plots show expanded view of points clustered around the nom-
inal time differences of 1050 ms. Line of agreement drawn in each cross-plot. (c,d) Corresponding
histograms of the distances from each x–y timestamp location and the closest point on the line of
agreement. Scales differ in all plots.

A few comments should be noted. First, two outliers from peripheral node 2 exceed
100 ms. For the work described herein, in which ~2 min of timestamp data contributed to
the affine time synchronization model, such large outliers could degrade time synchroni-
zation for up to ~4 min. In the future, analysis of these central–peripheral timestamp dif-
ferences (e.g., deviation from the line of agreement or deviation from the expected differ-
ence between successive timestamps) might allow for the detection of outlier timestamp
pairs. Such pairs could then be discarded. Second, the shapes of the distance histograms
in Figure 5 are similar to those of the time synchronization histograms in Figure 4, but
with smaller standard deviations. However, the timestamp errors from the two periph-
erals would likely have an additive influence on time synchronization (as each peripheral
node timestamp error grows, so does the time synchronization error). Additive error ef-
fects lead to larger standard deviations; this is consistent with our results. Moreover, other
factors can contribute to time synchronization errors. Third, further study beyond the
scope of this work is warranted. For example, it is likely that successive timestamp differ-
ences are correlated. For example, a long-duration timestamp difference resulting from a
blocked transition might be followed by a short-duration difference (since timestamps are

Figure 5. (a,b) Cross-plots (one per peripheral node, as labeled) of time differences between successive
central node timestamps on the x-axis vs. time differences between paired successive peripheral node
timestamps on the y-axis. Inset plots show expanded view of points clustered around the nominal
time differences of 1050 ms. Line of agreement drawn in each cross-plot. (c,d) Corresponding
histograms of the distances from each x–y timestamp location and the closest point on the line of
agreement. Scales differ in all plots.

A few comments should be noted. First, two outliers from peripheral node 2 exceed
100 ms. For the work described herein, in which ~2 min of timestamp data contributed to the
affine time synchronization model, such large outliers could degrade time synchronization
for up to ~4 min. In the future, analysis of these central–peripheral timestamp differences
(e.g., deviation from the line of agreement or deviation from the expected difference
between successive timestamps) might allow for the detection of outlier timestamp pairs.
Such pairs could then be discarded. Second, the shapes of the distance histograms in
Figure 5 are similar to those of the time synchronization histograms in Figure 4, but with
smaller standard deviations. However, the timestamp errors from the two peripherals
would likely have an additive influence on time synchronization (as each peripheral node
timestamp error grows, so does the time synchronization error). Additive error effects lead
to larger standard deviations; this is consistent with our results. Moreover, other factors

Sensors 2023, 23, 2465 16 of 19

can contribute to time synchronization errors. Third, further study beyond the scope of
this work is warranted. For example, it is likely that successive timestamp differences are
correlated. For example, a long-duration timestamp difference resulting from a blocked
transition might be followed by a short-duration difference (since timestamps are issued
nominally in a periodic fashion), and vice versa. It is unclear whether such correlations
are relevant to improving time synchronization performance, e.g., by helping to identify
timestamp pairs that might be discarded.

Note that the computational cost of the LIDA method is already a limitation in our
own implementation on the TI CC2652R1 central node. For our high-throughput real-time
application, it is likely that the central node does not have the capability to complete time
synchronization and the LIDA algorithm with more than two peripheral nodes. However,
SDA has already been implemented on the central node of our real time system and
works reliably. A possible solution for this limitation is to move the LIDA algorithm and
data alignment process from the central node to each peripheral node. In this way, the
central node will directly receive aligned data from each peripheral node, and the repeated
computation on one (central) board will be reallocated to multiple (peripheral) boards.
This option, however, would likely drain battery power faster in the peripheral nodes.
Another alternative is to move the LIDA algorithm computation away from a floating
point implementation. Herein, our online implementation utilized floating point arithmetic.
Perhaps fixed point computation would provide sufficient resolution. In addition, since the
data values are inherently integer-based, portions of the computation might require fewer
computational resources if completed directly using integer arithmetic.

Another limitation of this research is that we only evaluated time synchronization
performance using two peripheral nodes. Many bioelectric systems (especially EEG and
high-density surface EMG) can include more than 100 recording channels. This type of
multi-node evaluation was outside the scope of the present study as our own research is cur-
rently focused on EMG systems utilizing two wireless nodes. Of course, the more wireless
nodes operate in a system, the higher the likelihood of delayed or blocked transmissions—
which can lead to degradation in the quality of the paired timestamps. However, signal
transmission latency is also an issue for systems with a larger number of nodes. In the
research reported herein, we set our connection interval at 15 ms, which was as short a
connection interval as possible and facilitated reliable transmission using the TI CC26XX
MCUs. As more peripheral nodes are added, the connection interval will need to grow (at
least linearly, perhaps at a steeper pace due to the increased packet size), since the central
node must receive data from each peripheral node in a serial fashion (i.e., time-division
multiplexed). Longer latencies occur, which can be detrimental to real-time control appli-
cations such as myoelectric prosthesis control [43] or brain–computer interfaces. In these
situations, it might prove advantageous to wire several adjacent bioelectric channels to a
single peripheral node (e.g., the TI CC26XX MCUs provide eight ADC channels), thereby
reducing the total number of required peripheral nodes. ADC samples from the multiple
channels could be bundled into a single packet. Of course, packet size limitations will also
constrain such a design. If too many channels are wired to the same peripheral, the number
of samples per connection interval may exceed the packet size. In any case, our general
approach to time synchronization and data alignment should remain useful. However, the
options on how to configure such a system are growing exponentially. Additional research
into multichannel systems is warranted.

5. Conclusions

In this paper, our primary objective was to contrast the performance of our two data
alignment methods (SDA and LIDA), both of which utilized time synchronization operating
in the BLE application layer. Both methods were tested using one BLE central node and
two peripheral nodes, forming a prototype wireless wearable biosensor system. Since
the LIDA method aligns data to a fraction of a sample period, we had hypothesized that
it would perform better. The best performance of the SDA method occurred when the

Sensors 2023, 23, 2465 17 of 19

input test frequency was 10 Hz, providing an average (±standard deviation) absolute data
alignment error of 384.3 ± 386.5 µs (90th percentile error of 0.87 ms). For the LIDA method,
the best absolute error performance of 189.9 ± 204.7 µs (90th percentile error of 0.50 ms)
occurred when the input test frequency was 190 Hz. Statistical comparisons found that the
error using LIDA was lower than the error using SDA for every sine wave frequency tested
(p = 10−5 for each test; see also Tables 1 and 2). Hence, the interpolation provided by the
LIDA algorithm was shown to reduce data alignment error compared to the SDA algorithm.
Nevertheless, each method provided average (±standard deviation) data alignment errors
≤0.70 ms, which is sufficient for many target applications, including many EEG, ECG, and
EMG acquisition systems.

Author Contributions: Conceptualization, B.E.M., T.R.F. and E.A.C.; methodology, all authors;
software, H.W. and J.L.; validation, H.W. and J.L.; formal analysis, H.W. and J.L.; investigation,
H.W. and E.A.C.; resources, B.E.M., T.R.F. and E.A.C.; data curation, H.W.; writing—original draft
preparation, H.W. and E.A.C.; writing—review and editing, all authors; visualization, J.L. and E.A.C.;
supervision, B.E.M., T.R.F., X.H. and E.A.C.; project administration, B.E.M., T.R.F., X.H. and E.A.C.;
funding acquisition, B.E.M., T.R.F., X.H. and E.A.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the US Army Medical Research and Materiel Command under
Contract No. W81XWH-18-C-0111. The views, opinions, and/or findings contained in this report
are those of the authors and should not be construed as an official Department of the Army position,
policy, or decision unless specified by other documentation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans.

Syst. Man Cybern. Part C 2009, 40, 1–12. [CrossRef]
2. Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centered human activity recognition in health care.

Expert Syst. Appl. 2019, 137, 167–190. [CrossRef]
3. Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.Y. Recent advances on IoT-assisted wearable sensor

systems for healthcare monitoring. Biosensors 2021, 11, 372. [CrossRef] [PubMed]
4. Azodo, I.; Williams, R.; Sheikh, A.; Cresswell, K. Opportunities and challenges surrounding the use of data from wearable sensor

devices in health care: Qualitative interview study. J. Med. Internet Res. 2020, 22, e19542. [CrossRef] [PubMed]
5. Nesenbergs, K.; Selavo, L. Smart textiles for wearable sensor networks: Review and early lessons. In Proceedings of the 2015

IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Torino, Italy, 7–9 May 2015;
pp. 402–406.

6. Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors.
IEEE Trans Inf. Technol. Biomed. 2011, 16, 279–286. [CrossRef] [PubMed]

7. Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20.
[CrossRef] [PubMed]

8. Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [CrossRef]
9. Lou, Z.; Wang, L.; Shen, G. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018, 3, 1800444. [CrossRef]
10. Zhang, T.; Lu, J.; Hu, F.; Hao, Q. Bluetooth low energy for wearable sensor-based healthcare systems. In Proceedings of the 2014

IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014; pp. 251–254.
11. Montanari, A.; Nawaz, S.; Mascolo, C.; Sailer, K. A study of bluetooth low energy performance for human proximity detection

in the workplace. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications
(PerCom), Kona, HI, USA, 13–17 March 2017; pp. 90–99.

http://doi.org/10.1109/TSMCC.2009.2032660
http://doi.org/10.1016/j.eswa.2019.04.057
http://doi.org/10.3390/bios11100372
http://www.ncbi.nlm.nih.gov/pubmed/34677328
http://doi.org/10.2196/19542
http://www.ncbi.nlm.nih.gov/pubmed/33090107
http://doi.org/10.1109/TITB.2011.2169804
http://www.ncbi.nlm.nih.gov/pubmed/21965215
http://doi.org/10.1109/MEMB.2003.1213622
http://www.ncbi.nlm.nih.gov/pubmed/12845812
http://doi.org/10.1109/JSEN.2014.2370945
http://doi.org/10.1002/admt.201800444

Sensors 2023, 23, 2465 18 of 19

12. Cifuentes, C.; Braidot, A.; Rodríguez, L.; Frisoli, M.; Santiago, A.; Frizera, A. Development of a wearable ZigBee sensor system for
upper limb rehabilitation robotics. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1989–1994.

13. Malhi, K.; Mukhopadhyay, S.C.; Schnepper, J.; Haefke, M.; Ewald, H. A Zigbee-based wearable physiological parameters
monitoring system. IEEE Sens. J. 2010, 12, 423–430. [CrossRef]

14. Rachim, V.P.; Chung, W.Y. Wearable noncontact armband for mobile ECG monitoring system. IEEE Trans. Biomed. Circuits Syst.
2016, 10, 1112–1118. [CrossRef]

15. Brunelli, D.; Farella, E.; Giovanelli, D.; Milosevic, B.; Minakov, I. Design considerations for wireless acquisition of multichannel
sEMG signals in prosthetic hand control. IEEE Sens. J. 2016, 16, 8338–8347. [CrossRef]

16. Contaldo, M.; Banerjee, B.; Ruffieux, D.; Chabloz, J.; Roux, E.L.; Enz, C.C. A 2.4-GHz BAW-based transceiver for wireless body
area networks. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 391–399. [CrossRef] [PubMed]

17. Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance evaluation of bluetooth low energy: A systematic
review. Sensors 2017, 17, 2898. [CrossRef] [PubMed]

18. Omre, A.H.; Keeping, S. Bluetooth low energy: Wireless connectivity for medical monitoring. J. Diabetes Sci. Technol. 2010, 4,
457–463. [CrossRef] [PubMed]

19. Fekr, A.R.; Radecka, K.; Zilic, Z. Design and evaluation of an intelligent remote tidal volume variability monitoring system in
e-health applications. IEEE J. Biomed. Health Inform. 2015, 19, 1532–1548. [CrossRef]

20. Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research
challenges. Inf. Fusion 2017, 35, 68–80. [CrossRef]

21. Tirado-Andrés, F.; Araujo, A. Performance of clock sources and their influence on time synchronization in wireless sensor
networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719879372. [CrossRef]

22. Sichitiu, M.L.; Veerarittiphan, C. Simple, accurate time synchronization for wireless sensor networks. In Proceedings of the 2003
IEEE Wireless Communications and Networking, 2003 (WCNC 2003), New Orleans, LA, USA, 16–20 March 2003; Volume 2,
pp. 1266–1273.

23. Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor networks: A survey. Ad Hoc Netw.
2005, 3, 281–323. [CrossRef]

24. Bello, L.L.; Mirabella, O. Clock synchronization issues in bluetooth-based industrial measurements. In Proceedings of the 2006
IEEE International Workshop on Factory Communication Systems, Torino, Italy, 28–30 June 2006; pp. 193–202.

25. Calado, A.; Macciantelli, G.; Errico, V.; Gruppioni, E.; Saggio, G. Evaluation of dedicated bluetooth low energy wireless data
transfer for an implantable EMG sensor. In Proceedings of the 2020 3rd International Conference on Sensors, Signal and Image
Processing, Prague, Czech Republic, 9–11 October 2020; pp. 52–57.

26. Asgarian, F.; Najafi, K. Time synchronization in a network of bluetooth low energy beacons. In Proceedings of the SIGCOMM
Posters Demos, Los Angeles, CA, USA, 22–24 August 2017; pp. 119–120.

27. Bideaux, A.; Zimmermann, B.; Hey, S.; Stork, W. Synchronization in wireless biomedical-sensor networks with bluetooth low
energy. Curr. Dir. Biomed. Eng. 2015, 1, 73–76. [CrossRef]

28. Rheinländer, C.C.; Wehn, N. Precise synchronization time stamp generation for bluetooth low energy. In Proceedings of the 2016
IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3.

29. Li, J. Advanced Control of Upper-Limb Prostheses with Time-Synchronized Distributed Wireless Electrodes. Ph.D. Thesis,
Worcester Polytechnic Institute, Worcester, MA, USA, December 2022.

30. Sridhar, S.; Misra, P.; Warrior, J. Cheepsync: A time synchronization service for resource constrained bluetooth low energy
advertisers. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA,
USA, 13–16 April 2015; pp. 364–365.

31. Kenney, J.F.; Keeping, E. Linear regression and correlation. In Mathematics of Statistics; Van Nostrand Company: Princeton, NJ,
USA, 1962; pp. 252–285.

32. Quintin, E.; McDonald, B.; Li, J.; Wang, H.; Clancy, T.; Farrell, T. Synchronization of multiple bluetooth low energy sen-
sors for prosthetic control. In Proceedings of the 2021 American Orthotic Prosthetic National Assembly, Boston, MA, USA,
9–11 September 2021.

33. Teplan, M. Fundamentals of EEG measurement. Measure. Sci. Rev. 2002, 2, 1–11.
34. Bailey, J.J.; Berson, A.S.; Garson, A.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for standardiza-

tion and specifications in automated electrocardiography: Bandwidth and digital signal processing. Circulation 1990, 81, 730–739.
[CrossRef] [PubMed]

35. Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Hancock, E.W.; van Herpen, G.; Kors, J.A.; Macfarlane, P.; Mirvis,
D.M.; et al. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram
and its technology. Circulation 2007, 115, 1306–1324. [CrossRef]

36. Hogan, N.; Mann, R.W. Myoelectric signal processing: Optimal estimation applied to electromyography—Part II: Experimental
demonstration of optimal myoprocessor performance. IEEE Trans. Biomed. Eng. 1980, 27, 396–410. [CrossRef] [PubMed]

37. Merletti, R.; Cerone, G.L. Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices.
J. Electromyogr. Kinesiol. 2020, 54, 102440. [CrossRef] [PubMed]

http://doi.org/10.1109/JSEN.2010.2091719
http://doi.org/10.1109/TBCAS.2016.2519523
http://doi.org/10.1109/JSEN.2016.2596712
http://doi.org/10.1109/TBCAS.2010.2081363
http://www.ncbi.nlm.nih.gov/pubmed/23850756
http://doi.org/10.3390/s17122898
http://www.ncbi.nlm.nih.gov/pubmed/29236085
http://doi.org/10.1177/193229681000400227
http://www.ncbi.nlm.nih.gov/pubmed/20307407
http://doi.org/10.1109/JBHI.2015.2445783
http://doi.org/10.1016/j.inffus.2016.09.005
http://doi.org/10.1177/1550147719879372
http://doi.org/10.1016/j.adhoc.2005.01.002
http://doi.org/10.1515/cdbme-2015-0019
http://doi.org/10.1161/01.CIR.81.2.730
http://www.ncbi.nlm.nih.gov/pubmed/2297875
http://doi.org/10.1161/CIRCULATIONAHA.106.180200
http://doi.org/10.1109/TBME.1980.326653
http://www.ncbi.nlm.nih.gov/pubmed/7409805
http://doi.org/10.1016/j.jelekin.2020.102440
http://www.ncbi.nlm.nih.gov/pubmed/32763743

Sensors 2023, 23, 2465 19 of 19

38. Gallina, A.; Disselhorst-Klug, C.; Farina, D.; Merletti, R.; Besomi, M.; Holobar, A.; Enoka, R.M.; Hug, F.; Falla, D.; Sogaard, K.; et al.
Consensus for experimental design in electromyograpy (CEDE) project; high-density surface electromyography matrix.
J. Electromyogr. Kinesiol. 2022, 64, 102656. [CrossRef] [PubMed]

39. Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Pearson Education, Inc.: Hoboken,
NJ, USA, 2022; pp. 65–78.

40. Dian, F.J.; Yousefi, A.; Somaratne, K. A study in accuracy of time synchronization of BLE devices using connection-based event.
In Proceedings of the IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON),
Vancouver, BC, Canada, 3–5 October 2017; pp. 595–601.

41. Kaur, B.; Kaur, A. A survey of time synchronization protocols for wireless sensor networks. Int. J. Comput. Sci. Mob. Comput. 2013,
2, 100–106.

42. Ballantine, J.P.; Jerbert, A.R. Distance from a line, or plane, to a point. Am. Math. Mon. 1952, 59, 242–243.
43. Farrell, T.R.; Weir, R.F. The optimal controller delay for myoelectric prostheses. IEEE Trans. Biomed. Eng. 2007, 15, 111–118.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jelekin.2022.102656
http://www.ncbi.nlm.nih.gov/pubmed/35344841
http://doi.org/10.1109/TNSRE.2007.891391

	Introduction
	Materials and Methods
	Paired Timestamp Generation and Peripheral ADC Timestamp
	Affine Model Time Synchronization
	Simple Data Alignment (SDA) Algorithm
	Linear Interpolation Data Alignment (LIDA) Algorithm
	Methods of Analysis

	Results
	Discussion
	Overall Performance of SDA and LIDA Algorithms
	Consideration of Previous Time Synchronization Methods
	Connection Loss and Packet Loss
	Parameters of the Affine Time Synchronization Model
	Limitations and Future Work

	Conclusions
	References

