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Abstract: Electrodermal Activity (EDA) has become of great interest in the last several decades, due
to the advent of new devices that allow for recording a lot of psychophysiological data for remotely
monitoring patients’ health. In this work, a novel method of analyzing EDA signals is proposed
with the ultimate goal of helping caregivers assess the emotional states of autistic people, such as
stress and frustration, which could cause aggression onset. Since many autistic people are non-verbal
or suffer from alexithymia, the development of a method able to detect and measure these arousal
states could be useful to aid with predicting imminent aggression. Therefore, the main objective of
this paper is to classify their emotional states to prevent these crises with proper actions. Several
studies were conducted to classify EDA signals, usually employing learning methods, where data
augmentation was often performed to countervail the lack of extensive datasets. Differently, in this
work, we use a model to generate synthetic data that are employed to train a deep neural network for
EDA signal classification. This method is automatic and does not require a separate step for features
extraction, as in EDA classification solutions based on machine learning. The network is first trained
with synthetic data and then tested on another set of synthetic data, as well as on experimental
sequences. In the first case, an accuracy of 96% is reached, which becomes 84% in the second case,
thus demonstrating the feasibility of the proposed approach and its high performance.

Keywords: wearable; EDA; emotion recognition; skin conductance; NN; deep learning

1. Introduction

Nowadays, wearable and implantable technologies in healthcare have become a reality
with the progress in engineering technologies, and will promote next generation healthcare
to enable personalized medicine through real-time physiological monitoring [1,2].

Wearable sensors are non-invasive and more comfortable, and have already been
employed for stress detection. In [3], the authors introduce a new and unobtrusive wearable
monitoring device based on electrodermal activity (EDA) to be used in health-related
computing systems. The acquired EDA of a subject is used to detect his/her calm/distress
condition, placing the wearable device on the wrist of the subject to allow continuous
physiological measurements.

Since autistic people can face problems tolerating invasive electrodes [4], wearable
sensors may be extremely useful for estimating emotional state changes in non-verbal
people [5]. According to that, in [4], the authors assess tactile perception in early childhood
autism by means of psychophysical approaches.

Some reliable and available technologies are magnetoencephalography (MEG), func-
tional magnetic resonance imaging (fMRI), electroencephalography (EEG), and heart rate
variability (HRV). The main drawbacks are cost and hindrance; thus, the need for a non-
intrusive sensor arises.

Electrodermal Activity (EDA) is one of the promising and non-invasive technologies
for detecting people emotional state variations. EDA was already observed from the late
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1880s [6], but only in the last four/five decades has the research intensified, due mainly
to the technology progress and miniaturization [7]. Despite that, only a few commercial
wearable devices include this feature. The fact that only the autonomous nervous system is
responsible for EDA has been studied [8], so that the measured signal is used mainly to
assess distress, anxiety, and attention. Recently, EDA measurements were also exploited for
other applications, from pain detection to dementia monitoring [7].

Following this reasoning, we aim to use the detected EDA signal to infer emotional
state variations in autistic people. This could be useful since, in an overwhelming or
overstimulating environment, autistic people may face meltdowns, which are a loss of
behavioural control [9]. Knowing this information in advance could enable caregivers, or
the autistic person himself, to take appropriate action to prevent such crises, thus enabling
a higher quality of life.

Usually, the EDA signal is analyzed by extracting some features related to arousal and
stress states such as the number of peaks per minute [6] or the skin conductive response
(SCR) [10], considering both their time and frequency analysis. However, often these studies
on EDA signal collection and analysis are difficult to replicate [10]. As better detailed in
Section 2, existing works for EDA classification usually employ machine learning methods,
such as [11], leveraging on features extraction and available experimental datasets.

In this work, a different approach is proposed: a deep neural network (DNN) is used
with a synthetic data model to generate the sequences for training the network. The fea-
tures are thus implicitly extracted and engineered by the network and the need for a high
number of data points is fulfilled by the synthetic data without using the available datasets,
which often show some criticalities such as the short length of the recorded sequences. This
problem is well known, as seen in [12], and synthetic data represent one of the solutions
proposed in the literature. In this way, the proposed approach ensures an inexhaustible
source of data, thus overcoming the difficulty in finding available datasets, as well as the
high number of samples required for artificial intelligence approaches. In addition, the
obtained synthetic data can be considered well annotated, as stress details are set as param-
eters. Moreover, they are ground-truth error-free and annotated consistently, while it is still
difficult to improve realism and close the gap between synthetic and experimental data.

Going into more detail, starting from [13,14], we developed a synthetic data model,
based on the usual decomposition of the signal in a slow varying skin conductance level
(SCL), called baseline, and the SCR, which contains more neuronal spikes due to the
sympathetic activity related to the stressful condition. The parameters of this model were
set by considering what is reported in literature [6,13,14] and our previous data exploration
on other experimental sequences [15]. The obtained synthetic data are used to train a DNN,
and experimentally recorded data are employed to test the network classifier. Very good
performance is obtained with an accuracy of around 84%, which becomes 96% when testing
the classifier with another set of synthetic data. Very good performance is obtained with
an accuracy of 96% when testing the classifier with another set of synthetic data, while
around 84% on experimental data. The synthetic test data were generated in the same
way, i.e, through the same model, as the original training and validation data. In this way,
the problem of lacking a large amount of training data can be overcome and overfitting
effects can be avoided at the same time. In addition, the proposed algorithm could be easily
implemented in a smart band device.

The rest of the paper is organized as follows: Section 2 presents previous works on
EDA signal classification and the strategies to overcome the lack of experimental data.
Section 3 details the data model to generate synthetic data, which are used in the training
phase of the neural network described in Section 4. Experimental results are shown in
Section 5 and Section 6 closes the paper with some summarizing conclusions.

2. Related Work

In the last several decades, EDA has been used to understand the nervous system
activity. The sweat glands are innervated by the sympathetic nervous system, which is
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involved in emotions regulation. The activity of sweat glands is triggered by postganglionic
sudomotor fibres that are also responsible for thermoregulation. For this reason, the EDA
signal is often decomposed into two different overlying signals: one is the SCL and the
other is the SCR. The former is due to the presence of sweat on the skin, mainly for
thermoregulation purposes, while the latter is related to emotional arousal [6].

These two components, also named tonic and phasic, respectively, can be decomposed
and analyzed using different techniques [13,14,16]. The phasic component is related to
arousal and stress states, and is characterized by the presence of peaks corresponding
to the onset of stimuli. After obtaining this component, usually, a peak extraction is
performed [16] to understand the arousal level. In several works, the SCR activity level has
been assessed by counting the number of peaks over time, such as [6,16].

Identification of emotional states can be viewed as a classification task [17], and it
has been demonstrated that it is possible to infer human emotional activities from EDA
measurements without the need for other physiological signals [17].

A common step in classifying emotional states is data annotation [18], which is usually
performed manually or with a self-assessment manikins (SAM) questionnaire, as in [17].
The SAM proposes different intermediate levels of choices from ‘happy’ to ‘unhappy’ state,
from ‘excited’ to ‘calm’ state, and from ‘controlled’ to ‘in control’ state.

For automatic classification, often deconvolution techniques are employed as a first
step to analyze EDA sequences [15]. Then, after a feature extraction step, classification-
based solutions are employed to classify the emotional state [3,19,20].

In [3], the skin conductivity response (SCR) is estimated by means of discrete decon-
voluton and time-frequency extracted features. A statistical analysis of the features was
performed by means of an analysis of variance (ANOVA) test and then an SVM was used
for classification.

Since deconvolution techniques are usually based on parametric models, in [15], some
of the authors of this work have investigated the possibility to improve the extraction of
features related to arousal emotional states by designing an adaptive blind deconvolution
filter. It is demonstrated that adaptive filtering can be used to deconvolve the measured
EDA sequences by extracting the SCR peaks, which should carry the information about the
subject’s activity level.

Learning methods are usually used for classification, such as a support vector ma-
chine with recursive feature elimination (SVM-RFE) [11], a convolutional neural network
(CNN) [21], a principal component analysis (PCA) followed by SVM [22], and a radial basis
function kernel (SVMR) with multilayer perceptron (MLP) and random forest (RF) [23].

Differently, some methods were developed that do not require a separate step for
feature extraction since they leverage on neural network (NN), such as [24,25], and the
proposed solution.

In Table 1, different works are reported, highlighting the achieved classification ac-
curacy and the publishing year. It is clear that the comparison is made between different
techniques that are used on EDA sequences, which are recorded in different ways. These
methodologies were used, in fact, on actually different online available datasets. Every
dataset represents a different experiment and a different way of labelling the data, even
though they are still EDA signals.

In the above-mentioned table, the accuracy reported is on the ones taken from the
studies, which categorize the arousal and not the valence of the emotion (if they were both
present in the paper, the former was chosen). The difference between valence and arousal
is based on the fact that the arousal can be described as the intensity of the emotion, while
the valence refers to the fact that it can be seen as positive or negative, like happiness vs.
sadness. A better understanding can be achieved by looking at Figure 1, where it presents
how they labelled the experimental data in [26].
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Table 1. Comparison of different EDA classification techniques. These classifications are made
considering arousal and not valence.

Paper Accuracy Year

CNN + SVM [21] 74% 2021
CNN + Decision Tree [21] 70% 2021
CNN + LDA [21] 72% 2021
CNN + MLP [21] 71% 2021
CNN [17] 85% 2019
ANOVA + SVM [3] 89% 2017
SVM-RFE [11] 94% 2021
SVM [19] 86% 2021
Fisher projection and LDA [20] 82% 2018
TSD + LSVM [22] 77% 2018

Figure 1. The way the data are annotated and the difference between arousal and valence in [26].

In [24], a Long Short-Term Memory Neural Network (LSTM NN) was used to predict
stress using EDA data and a regression was made to predict the forthcoming stress level.
The results from [15] can be replicated using an NN with LSTM layers, using it for the
deconvolution of the sequences obtaining the peaks. Indeed, the problem, related to how
to use this information, still remains and a classificator should still be used.

LSTM are also used in Auto Encoders (AEs), which are employed to obviate the need
of anomalous data, which are very often lacking. This is the case of the considered scenario,
since it is not possible to trigger a meltdown to record the EDA signal, representing the
abnormal signals. However, it may happen that an AE reconstructs not only signals similar
to those used for training, but also abnormal signals that have never been seen before by
the AE [25].
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A training mechanism was proposed to avoid such issue [25]. Indeed, this AE be-
haviour may pose a challenge for emotional state classification from EDA signals. Specif-
ically, assuming to use only neutral signals for training, if the AE can reconstruct both
neutral and stress signals, it is not possible to select features to distinguish between them
in order to classify the emotional state. However, this may be due to the nature of EDA
signals since the two types of signals show the same shape and differ only in the number
of peaks per minute.

Figure 2 illustrates the results that we obtained employing an AE, trained only on
neutral samples and then tested on both neutral and active signals. Figure 2(1a,1b) represent
the distribution of the error over all the sequences during the reconstruction performed by
the AE.

Figure 2. (1a) Number of samples vs. Mean Absolute Error (MAE) obtained when reconstructing the
normal sequences; (1b) as 1a, but for anomalous data; (2a) example of an original signal (blue) and
the corresponding reconstructed one (orange); (2b) same as (2a), but for anomalous data.

The figures show that it is not possible to discriminate the anomalous data with
respect to the normal ones because the bell-shaped curves of the error distribution overlap
completely. What could be desirable is shown in Figure 3, where the two sets of data (train
and anomalous) are easy to distinguish. In Figure 4, it is possible to observe what typically
happens when using this technique. It is common, in fact, that the autoencoder makes some
mistakes on normal data and/or reconstructs some of the anomalous ones well, leading to
some superimposition of the calculated MEA. In this case, the threshold would be chosen
to optimize the results, analyzing the problem and understanding if it is more acceptable to
categorize anomalous data as normal or the contrary. In Figure 5, it is possible to see our
case, in which the superposition does not allow for distinguishing the two cases at all.

Thus, it is not feasible to set a threshold for the Mean Absolute Error (MAE) to
distinguish the two types of sequences. If the errors made on the anomalous sequences
were higher than the other sequences, it would be possible to set an error threshold above
which the signal would be categorized as anomalous. In this way, the sequences would
be reconstructed, the error calculated and then compared to this threshold, allowing the
discrimination.
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For this reason, we propose to generate EDA synthetic data for both normal and
anomaly conditions and use them for training a DNN.

Figure 3. Number of samples vs. Mean Absolute Error (MAE) obtained when reconstructing the
normal sequences and the anomalous data. In this case, which is ideal, the classification would be
easy and the threshold for the MEA would be around 0.05.

Figure 4. Number of samples vs. Mean Absolute Error (MAE) obtained when reconstructing the
normal sequences and the anomalous data. This case represents the most common situation, in which
there is an overlap between the two different error distributions. The classification is still possible,
but not accurate, since the overlap does not allow for establishing a threshold to separate the two
different kinds of sequences. It is still possible to choose a value for the error, which would implicate
that some of the normal sequences would be seen as anomalous and vice versa.
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Figure 5. Number of samples vs. Mean Absolute Error (MAE) obtained when reconstructing the
normal sequences and the anomalous data. This is what happens with our sequences, as seen also
in Figure 2. In this figure, it is possible to see, in more detail, how the two distributions almost
completely overlap, preventing the discrimination between the two.

3. Synthetic Data Model

In this section, we present the model used to generate training data for the NN devoted
to stress state classification, which will be discussed in Section 4. This model was used also
in [15], but, for this work, it was improved to take into account some variability in the data.

Electrodermal activity signal refers to the variation of the skin electrical conductance,
and is made up of two components: a phasic one, which is event related and impulsive,
and a tonic response that is slowly varying. Moreover, an additive, white noise component
is added to take into account thermal noise effects.

The main goal of this work is to exploit an EDA model in order to train a classification
algorithm able to recover the emotional state of a subject after collecting real-life experimen-
tal data. To this end, the pseudo-random variability of the EDA model is used to generate a
sufficient number of training sequences for the NN subsequently used for classifying real
data signals.

The usual way to classify the emotional arousal is to count the number of peaks [6], and
this is made possible, as shown in many works such as [14], after a subtraction procedure,
in which the slowly varying part is removed. In [15], we followed a similar method, using
an adaptive deconvolution filter for estimating the spike-driven signal.

The model from [15] assumes to have a discrete-time EDA signal with a sampling
frequency equal to fs. At every time step, a peak can arise, following the human physiology
variations, for which the pulse train is sparse. The main model is built considering the
slowly varying signal, i.e., the baseline, b(nTs) ≡ b(n) with Ts = 1/ fs, a Gaussian noise
v(n), while the phasic component is modeled as a sparse impulse signal x(n) convolved
with an impulse response h(n):

y(n) = h(n) ∗ x(n) + b(n) + v(n) (1)

where h(n) is usually defined according to the Bateman model [14]:

h(n) = g(e
−nTs

τ1 − e
−nTs

τ2 ), (2)
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in which the suitable time constants τ1 and τ2 are set as follows. The baseline is modeled as
a slow varying signal added to the phasic one. In this way, the overall signal is the sum of
the baseline, the Gaussian noise, and the convolution of x with the sweat response signal h,
as in (1).

In this work, the model was further improved, with respect to [15], to take into consid-
eration variability across different situations and individuals and improve generalization,
which is very important to avoid overfitting. The resultant sequences were still given by
the sum of the previous three components, but the convolution is obtained using different
filter parameters for each peak. In more details, the number of peaks is randomly generated
following a uniform distribution, and considering the interval (1, 5) for the neutral state
and (6, 20) for the active one.

The constant time parameters τ1 and τ2 can vary respectively in the intervals (1, 40)
and (0.2, 1) s, by randomly generating these filter parameters each time a peak occurs.
In this way, we expect to obtain a higher agreement with experimental data and a better
performance of the NN, avoiding at the same time overfitting phenomena. In Figure 8, a
typical EDA signal is represented with a comparison between active and neutral sequences.

3.1. Data Preparation

The synthetic sequences were generated at a sampling frequency equal to 5 Hz, with
a length of 600 samples that corresponds to a duration of 2 min, like the experimental
data. The two model parameters τ1 and τ2, and the number of the peaks per minute were
randomly generated as defined above.

In Figure 6, we can see an example of both neutral and active synthetic sequences that
can be compared with the two experimental ones shown in Figure 8.

Figure 6. Example of active state (above) and neutral state (below) of synthetic signals; Conductance
[µS] vs. number of samples (total sequence length—2 min).
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3.2. Experimental Data

The experimental data were recorded by means of a Mind f ield eSense Skin Response [27],
at a sampling frequency of 5 Hz. In Figure 7, an example of the placement of the electrodes
is shown.

Figure 7. Electrodes placement.

Two different tasks were performed during data recording: for the non-active se-
quences, the subject had to stay relaxed and avoid thinking about stressful situations or
thoughts, while for the stressful one, the person had to stay on one leg or perform an
isometric exercise, in order to physically emulate a very stressful situation, such as a melt-
down, avoiding at the same time movement artefacts and preventing sweating due to
thermoregulation.

The length of the sequences was set to a duration corresponding to 5 min, to avoid
changes in emotional state if longer periods of time are considered. For instance, it is
inherently difficult to stay in a relaxed state for a longer time, due to involuntary thoughts.
The total number of recorded sequences is 80, and the obtained dataset is balanced, so
that half of them are non-active, and half active. The final number of sequences, obtained
using a window of 600 samples, is 320. These sequences were obtained with an overlap
of 300 samples, as in [28]. Figure 8 shows an example of two active and non-active
experimental recorded sequences.
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Figure 8. Example of experimental EDA signals: neutral sequence (above), active sequence (below);
conductance [µS] vs. number of samples (total sequence length—2 min).

4. Neural Network

In this work, a DNN is trained to classify EDA recorded signals. The main difference
from previous works, such as [17], is that here we use a model for generating training
data instead of employing experimental ones. This is actually due to the need of a huge
number of sequential training sequences, useful for obtaining satisfactory results from
DNN classification, while each of the datasets available in the literature contains only no
more than 30 sequences [26,29]. The usage of synthetic data for training the NN makes this
technique non-specific and not tuned only on a peculiar experimental case.

Fully Convolutional Network

The network used in this work is the one proposed in [30], where its performance is
compared with the residual network (ResNet) and the multilayer perceptron (MLP) ones.
The net structure can be seen in Figure 9. This network is able to implement features
extraction without the heavy pre-processing usually required with other types of neural
networks. This is very important, especially considering the everyday health monitoring by
means of small and wearable devices, with limited computational resources. In this sense,
the feature engineering is not performed, letting the algorithm find itself the contributing
region of the data for each label.

In [30], it is possible to see how this net was tested on 44 UCR time series datasets [31].
There are four different metrics, three of which indicate that FCN reaches a higher perfor-
mance than the other proposed nets.
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Figure 9. The net structure from [30].

Architecture and Training Options

The network is formed by a block of layers that are stacked onto each other. The basic
layers that are used in each block are a convolutional, a batch normalization and rectified
linear unit (ReLU) activation layers. As reported in [30], these blocks can be formalized as:

y = W ~ x + b
s = BN(y)

h = ReLU(s)
(3)

(where ~ is the convolution operator).
They are followed by a global average pooling layer and a softmax. The batch normal-

ization is used to improve generalization [32] and performance, together with the dropout
layer, while the global average pooling (instead of a fully connected layer) reduces the
number of parameters and, at the same time, the overfitting probability.

In this way, the FCN is used to extract the features and pass them to the global average
pooling layer and the classification performed by the softmax. The net architecture was
developed in Python and can be seen in Table 2, where the summary obtained using Keras
is reported, which was used as an interface for the TensorFlow library.

Table 2. New net architecture (Keras notation).

Layer (Type) Output Shape Param #

input 4 (InputLayer) [(None, 600, 1)] 0
conv1d 9 (Conv1D) (None, 600, 64) 256

batch normalization 9 (BatchNormalization) (None, 600, 64) 256
re lu 9 (ReLU) (None, 600, 64) 0

conv1d 10 (Conv1D) (None, 600, 64) 12,352
batch normalization 10 (BatchNormalization) (None, 600, 64) 256

re lu 10 (ReLU) (None, 600, 64) 0
conv1d 11 (Conv1D) (None, 600, 64) 12,352

batch normalization 11 (BatchNormalization) (None, 600, 64) 256
conv1d 11 (Conv1D) (None, 600, 64) 12,352

re lu 11 (ReLU) (None, 600, 64) 0
global average pooling1d 3 (GlobalAveragePooling1D) (None, 64) 0

dense 3 (Dense) (None, 2) 130

The training dataset was prepared as described above (Section 3.1) and the 40,000 se-
quences were fed into the network. The number of peaks for the active/non-active state
were randomly selected in two different ranges, whose values were set as in [6]. Moreover,
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the synthetic sequences were divided into training and validation ones. We used 80% of
data as the training set and 20% as the validation set. As a metric to evaluate the model,
the sparse categorical accuracy was chosen and the optimized was Adam.

5. Data Analysis and Results

After the training phase using synthetic data, the network was tested on both synthetic
and experimental data as illustrated in the following.

Analysis of Synthetic Data. The network was first tested using synthetic data, reach-
ing an accuracy of 96%, with a loss of 0.14. Figure 10 shows that the network makes errors
only on some neutral sequences, which are detected as active. The number of false positives
is low, and the accuracy is balanced on both classes. This high accuracy value confirms
that using a global average pooling layer, instead of a fully connected one, was enough to
prevent overfitting, as explained in Section 4.

Figure 10. Confusion matrix with synthetic test data.

Analysis of Experimental Data. The recorded experimental dataset is balanced since
it is composed of 160 active sequences and 160 neutral ones. The achieved accuracy was
84%, and the corresponding confusion matrix is shown in Figure 11. The figure illustrates
that the network does not easily recognize the active sequences, which did not occur for
synthetic data. In the latter case, the error was slightly higher on neutral sequences.

The expected different behavior of the network when testing synthetic or experimental
data [12] can be due to our data generation model. Indeed, in future works, we aim at
improving the model by taking into account more variables that have a relevant influence
on the emotional state of the person.

Figure 12 shows the precision–recall curve obtained with the experimental data. The
recall is 0.93, while the precision is 0.74. This means that the network does not miss any
negative (non-active state) while it misses some of the positives (active states).
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Figure 11. Confusion matrix on experimental data.

Figure 12. Precision–recall curve on experimental data.

It is worth noting that the goodness of the results is application-dependent. Specifically,
the method can be used as a complementary tool to deal with stress, or to let caregivers
know if medication is needed to prevent a crisis. In the latter case, it would be better to
avoid unnecessary medication, and this would be guaranteed by the high recall obtained
with the network. On the contrary, if the developed tool is employed alone for the overall
stress assessment, neglecting other warning signs, an unpredicted crisis could happen.
Anyway, a good compromise is reached by the proposed method since, even if some
anomalies are missed, it is highly desirable to avoid unnecessary potentially detrimental
medication.
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Figure 13 shows a recording underlying the different levels of active/non-active state
during a relaxing mode. This confirms that further quantitative studies of the EDA signal
characteristics are needed to better model the data. In this way, a precise synthetic data
model could replace the current need of extensive experimental datasets. Moreover, in
Figure 13, it is possible to see how, at the very beginning, the subject is not relaxed yet, and
the previous activity had an influence on the relaxation task. It is important to understand
the influence of stimuli on people and its duration to simulate it more accurately.

Figure 13. Conductance [µS] vs. number of samples (total sequence length—10 min; recorder with
5 Hz frequency): EDA signal during the relaxing state. In segment A, the meditation starts; in
segment B, the signal intensity decreases; in C, there is an absence of peaks, and the signal is almost
constant; in D, the meditation ends with a consequent signal intensity increasing.

6. Conclusions and Further Developments

A novel method to classify EDA signals was developed, to allow a fast understanding
of the emotional state for non-verbal people, using a DNN. An EDA signal model was
developed to generate synthetic data, which were used for the first time, as far as the
authors know, for NN training purposes. We generated training sequences to represent
the neutral and the active states, by better modelling both the number and the amplitude
of SCR peaks. The achieved accuracy was 84% on the experimental data and 96% on the
synthetic ones, demonstrating the feasibility of the proposed approach.

Future works will focus on the optimization of EDA model parameters setup and on
modelling individual differences by distinguishing not only the activity level but also the
valence of the arousal to gain information about the subject’s comfort. Moreover, we will
improve noise analysis and filtering of experimental data by preprocessing techniques.
Another important task would be the recording and analysis of sequences from several
autistic subjects with different severity levels of autism, since a different neurology has to
be taken into account if a psychophysiological signal is taken into consideration.

Other future research directions include the development of compressive sensing
methods to reduce the complexity of the classification solutions [33], as well as the usage
of multiple wireless battery-powered devices for higher performance and comfort, where
it is essential to develop opportunistic wake-up techniques with location awareness of
devices [34,35] to minimize the energy consumption as required in body area networks.
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