Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things
Abstract
:1. Introduction
2. Background of Sensors and Sensor Networks in the Ag-IoT
2.1. Sensors and Sensor Networks
2.2. Agricultural Internet of Things
2.3. Research Status of Ag-IoT Sensors
3. Types and Characteristics of Sensor Faults
3.1. Types of Sensor Faults
3.1.1. Hard Fault
3.1.2. Soft Fault
- (1)
- Drift fault
- (2)
- Bias fault
- (3)
- Stuck fault
- (4)
- Accuracy decline fault
- (5)
- Spike fault
3.2. Characteristics of Sensor Faults
- (1)
- High spatial-temporal correlation
- (2)
- Frequent abnormal data
- (3)
- Different fault duration
4. Strategies for Sensor Fault Diagnosis
4.1. Centralized Strategy
4.2. Distributed Strategy
5. Intelligent Fault Diagnosis of Sensor Faults
5.1. Model-Based Fault Diagnosis Methods
5.2. Artificial Intelligence-Based Fault Diagnosis Methods
5.2.1. Statistical Analysis Methods
5.2.2. Expert System Methods
5.2.3. Machine Learning Methods
5.3. Deep-Learning-Based Fault Diagnosis Method
5.3.1. Autoencoder (AE)
5.3.2. Deep Belief Network (DBN)
5.3.3. Recurrent Neural Network (RNN)
Diagnostic Method | Diagnostic Strategy | Application and Improvement | Applicable Sensor | Applicable Fault Type | References | |
---|---|---|---|---|---|---|
Model-Based | - | Distributed | Adaptive thresholds to ensure robustness to noise and modeling uncertainty | Temperature, CO2 | - | Zidi S et al. (2015) [79] |
- | - | Verification of the reliability of PCA for fault diagnosis of air conditioner sensors | Temperature | Soft fault | Jan et al. (2017) [80] | |
State estimation | - | Fault diagnosis of battery sensor based on PLS and UKF | Voltage, current | - | Banerjee et al. (2021) [81] | |
Artificial Intelligence-Based | TSA | Centralized | Detection of sensor faults of agricultural robot navigation system based on time series theory | Positioning | Drift fault | Bosman et al. (2015) [82] |
NMF | Distributed | Application of NMF to fault diagnosis of soil moisture sensors | Humidity | Soft fault | Ludeña-Choez et al. (2014) [14] | |
PCA | - | Introducing NN as classifiers into PCA fault diagnosis models | Temperature, air volume | Soft fault | Zhu et al. (2020) [85] | |
Expert system | Distributed | Fuzzy rule fault node classification and management scheme to save energy | - | Hard fault | Yan et al. (2016) [90] | |
- | The three-input FIS sensor hardware fault diagnosis model improves the accuracy | - | Hard fault | Li et al. (2017) [91] | ||
SVM | - | Developed a multi-SVM model for sensor fault diagnosis | Dissolved oxygen | Hard fault | Liao et al. (2017) [95] | |
distributed | The OS-LSSVM sensor fault detection method addresses the lack of sparsity in SVM | Gyroscope | Bias fault | Li et al. (2017) [96] | ||
An LS-SVM model is proposed, which reduces the computational complexity | Temperature | Hard fault | Si et al. (2019) [97] | |||
ANNs | distributed | A BP model is built with recent local data, which can be used for online detection | Temperature | - | Yang et al. (2014) [103] | |
- | Introducing wavelet denoising into BPNN to improve the fault diagnosis rate | Temperature | Hard fault | Deng et al. (2016) [104] | ||
- | fault diagnosis of HVAC sensors based on AANN | Water temperature | Drift and bias fault | Han et al. (2020) [105] | ||
Deep Learning-based | AE | distributed | A three-layer network AE fault diagnosis system is designed, which can diagnose faults at the sensor | Temperature humidity | Spike and bias fault | Rumelhart et al. (2018) [110] |
- | A normalized sparse AE model is proposed to solve the variant feature problem of self-extracted features | - | - | Hu et al. (2018) [111] | ||
Centralized | A supervised SAE model is proposed to achieve higher accuracy at a lower number of iterations | Temperature | Soft fault | Shi et al. (2020) [112] | ||
DBN | distributed | A method based on DBN and generalized likelihood ratio test is proposed | Thermocouple | Soft fault | Lu et al. (2017) [118] | |
The extended DBN model uses the strategy of repeatedly stacking the original data in the training phase to extract useful information fully | - | - | Luo et al. (2020) [119] | |||
RNN | distributed | RNN models nodes, the dynamics of nodes, and the coupling with other nodes with a low false positive rate | Temperature | Drift fault | Loy-Benitez et al. (2008) [123] | |
- | LSTM and data fusion methods for multi-sensor fault diagnosis | Angle, speed | Stuck and biased fault | Hinton et al. (2019) [124] | ||
- | A fault diagnosis scheme based on RNN is proposed and combined with linear parameter changes to improve robustness | Angle | Soft fault | Roux et al. (2020) [125] | ||
CNN | distributed | The proposed CNN method enables fault diagnosis of multiple sensors with the same computational cost | - | Soft fault | Wang et al. (2020) [129] | |
- | A CNN-RF method is proposed to improve the diagnostic success rate and reduce information loss in noisy environments | Hydrogen | Soft fault | Yang et al. (2020) [130] | ||
distributed | Multi-layer pooling classifiers replace the fully connected layers of CNN, reducing the parameters and the risk of overfitting | Acceleration | - | Hochreiter et al. (2022) [131] |
5.3.4. Convolutional Neural Networks (CNN)
5.4. Edge Computing-Based Fault Diagnosis Method
6. Challenges and Future Development
6.1. Edge Computing
6.2. Satellite Communication
6.3. Hybrid Fault Diagnosis Model
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the internet of medical Things era: A systematic review of current and future trends. Comput. Commun. 2020, 150, 644–660. [Google Scholar] [CrossRef]
- Sinha, A.; Shrivastava, G.; Kumar, P. Architecting user-centric internet of things for smart agriculture. Sustain. Comput. Inform. Syst. 2019, 23, 88–102. [Google Scholar] [CrossRef]
- Dong, J.; Meng, W.; Liu, Y.; Ti, J. A framework of pavement management system based on IoT and big data. Adv. Eng. Inform. 2021, 47, 101226. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, X.; Bai, Y.; Du, Z.L. Smart home based on Internet of things. J. Nanjing Univ. Nat. Sci. Ed. 2012, 48, 26–32. [Google Scholar]
- Li, D.; Yao, Y.; Shao, Z. Big data in smart city. J. Wuhan Univ. Inf. Sci. Ed. 2014, 39, 631–640. [Google Scholar]
- Wu, X.; Yang, Z. The Concept of Smart City and Future City Development. Urban Dev. Stud. 2010, 17, 56–60. [Google Scholar] [CrossRef]
- Wen, J. Let science and technology lead sustainable development in China. Bull. Chin. Acad. Sci. 2010, 25, 1–7. [Google Scholar] [CrossRef]
- Linker, R.; Gutman, P.O.; Seginer, I. Robust model-based failure detection and identification in greenhouses. Comput. Electron. Agric. 2000, 26, 255–270. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y. Sensor fault diagnosis of autonomous underwater vehicle. Robot 2006, 6, 25–29. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, P. Hard Fault Isolation of GPS Navigation System Base on Gray Prediction for Agricultural Robot. Trans. Chin. Soc. Agric. 2010, 41, 165–168+177. [Google Scholar] [CrossRef]
- Oates, M.J.; Ramadan, K.; Molina, J.M.; Ruiz-Canales, A. Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor. Agric. Water Manag. 2016, 183, 41–48. [Google Scholar] [CrossRef]
- Onal, A.C.; Sezer, O.B.; Ozbayoglu, M. Weather data analysis and sensor fault detection using an extended IoT framework with semantics, big data, and machine learning. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2037–2046. [Google Scholar]
- Li, M.; Li, G.; Zhong, M. Application of dynamic kernel principal component analysis in unmanned aerial vehicle fault diagnosis. J. Shandong Univ. Eng. Sci. 2017, 47, 215–222. [Google Scholar] [CrossRef]
- Ludeña-Choez, J.; Choquehuanca-Zevallos, J.J.; Mayhua-López, E. Sensor nodes fault detection for agricultural wireless sensor networks based on NMF. Comput. Electron. Agric. 2019, 161, 214–224. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Huang, K.; Li, K.; Zhang, Y. Characteristics Analysis and Challenges for Fault Diagnosis in Solar Insecticidal Lamps Internet of Things. Smart Agric. 2020, 2, 11–27. [Google Scholar] [CrossRef]
- Beard, R.V. Failure Accommodation in Linear Systems through Self-Reorganization; Massachusetts Institute of Technology: Cambridge, MA, USA, 1971. [Google Scholar]
- Walton, V.M. Feasibility Study of an Instrument Fault Detection Scheme for a Fourth Order Linear Control System; University of Washington: Seattle, WA, USA, 1975. [Google Scholar]
- Willsky, A.S. A survey of design methods for failure detection in dynamic systems. Automatica 1976, 12, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Koushanfar, F.; Potkonjak, M.; Sangiovanni-Vincentelli, A. On-Line Fault Detection of Sensor Measurements; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 974–979. [Google Scholar]
- Yu, M.; Mokhtar, H.; Merabti, M. Fault management in wireless sensor networks. IEEE Wirel. Commun. 2017, 14, 13–19. [Google Scholar] [CrossRef]
- Craessaerts, G.; Baerdemaeker, J.D.; Saeys, W. Fault diagnostic systems for agricultural machinery. Biosyst. Eng. 2010, 106, 26–36. [Google Scholar] [CrossRef]
- Xie, M.; Han, S.; Tian, B.; Parvin, S. Anomaly detection in wireless sensor networks: A survey. J. Netw. Comput. Appl. 2011, 34, 1302–1325. [Google Scholar] [CrossRef]
- Chouikhi, S.; Korbi, I.E.; Ghamri-Doudane, Y.; Saidane, L.A. A survey on fault tolerance in small and large scale wireless sensor networks. Comput. Commun. 2015, 69, 22–37. [Google Scholar] [CrossRef]
- Muhammed, T.; Shaikh, R.A. An analysis of fault detection strategies in wireless sensor networks. J. Netw. Comput. Appl. 2017, 78, 267–287. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Wang, J.; Wang, C.; Duan, Y. Recent advances in sensor fault diagnosis: A review. Sens. Actuators A Phys. 2020, 309, 111990. [Google Scholar] [CrossRef]
- Erhan, L.; Ndubuaku, M.; Maura, M.D.; Song, M.; Chen, W. Smart anomaly detection in sensor systems: A multi-perspective review. Inf. Fusion 2021, 67, 64–79. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, L.; Xu, S.; Dong, W. Knowledge-based online sensor fault diagnosis system. Electr. Meas. Instrum. 1993, 30, 39–41. [Google Scholar]
- Terry, D. Toward a new approach to IoT fault tolerance. Computer 2016, 49, 80–83. [Google Scholar] [CrossRef]
- Wen, C.; Feiya, L. Review on Deep Learning Based Fault Diagnosis. J. Electron. Inf. Technol. 2020, 42, 234–248. [Google Scholar] [CrossRef]
- Xu, X.; Chen, T.; Mamoru, M. Intelligent fault prediction system based on internet of things. Comput. Math. Appl. 2012, 64, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, J.; Chen, Y. Wireless Sensor Network; Tsinghua University Press: Beijing, China, 2005. [Google Scholar]
- Katila, R.; Gia, T.N.; Westerlund, T. Analysis of mobility support approaches for edge-based IoT systems using high data rate Bluetooth Low Energy 5. Comput. Netw. 2022, 209, 108925. [Google Scholar] [CrossRef]
- Tyagi, S.K.S.; Pokhrel, S.R.; Nemati, M.; Li, G. Redesigning compound TCP with cognitive edge intelligence for WiFi-based IoT. Future Gener. Comput. Syst. 2021, 125, 859–868. [Google Scholar] [CrossRef]
- Sadikin, F.; van Deursen, T. A ZigBee Intrusion Detection System for IoT using Secure and Efficient Data Collection. Internet Things 2020, 12, 100–123. [Google Scholar] [CrossRef]
- Leonardi, L.; Bello, L.L. MRT-LoRa: A multi-hop real-time communication protocol for industrial IoT applications over LoRa networks. Comput. Commun. 2022, 12, 72–86. [Google Scholar] [CrossRef]
- Jha, R.K. Layer based security in Narrow Band Internet of Things (NB-IoT). Comput. Netw. 2021, 185, 105–126. [Google Scholar] [CrossRef]
- Alexander, K.; Giulia, C.; Fatjon, C.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT based dynamic Bayesian prediction of crop evapotranspiration in soilless cultivations. Comput. Electron. Agric. 2023, 205, 107608. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; Farzaneh-Gord, M.; Ghezelbash, R.; Koury, R. Energy consumption pattern modification in greenhouses by a hybrid solar–geothermal heating system. J. Braz. Soc. Mech. Sci. Eng. 2016, 19, 156–172. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Verdouw, C.; Sundmaeker, H.; Tekinerdogan, B.; Conzon, D.; Montanaro, T. Architecture framework of IoT-based food and farm systems: A multiple case study. Comput. Electron. Agric. 2019, 165, 256–271. [Google Scholar] [CrossRef]
- Smith Alexander, F.; Liu, X.; Woodard, T.L.; Fu, T. Bioelectronic protein nanowire sensors for ammonia detection. Nano Res. 2020, 13, 1479–1484. [Google Scholar] [CrossRef]
- Chen, X.P.; Wong, C.K.; Yuan, C.A.; Zhang, G. Impact of the functional group on the working range of polyaniline as carbon dioxide sensors. Sens. Actuators B Chem. 2012, 175, 15–21. [Google Scholar] [CrossRef]
- Levintal, E.; Ganot, Y.; Taylor, G.; Freer-Smith, P.; Suvocarev, K.; Dahlke, H.E. An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture. Soil 2022, 8, 85–97. [Google Scholar] [CrossRef]
- Fisher, D.K.; Kebede, H. A low-cost microcontroller-based system to monitor crop temperature and water status. Comput. Electron. Agric. 2010, 74, 168–173. [Google Scholar] [CrossRef]
- Yang, M.T.; Cheng, C.; Kuo, Y.L. Implementation of intelligent air conditioner for fine agriculture. Energy Build. 2013, 60, 364–371. [Google Scholar] [CrossRef]
- Zhang, R.B.; Guo, J.J.; Zhang, L.; Zhang, Y.C.; Wang, L.H.; Wang, Q. A calibration method of detecting soil water content based on the information-sharing in wireless sensor network. Comput. Electron. Agric. 2011, 76, 161–168. [Google Scholar] [CrossRef]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio) sensors for smart agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.; Alahi, M. Design and development of an IoT-enabled portable phosphate detection system in water for smart agriculture. Sens. Actuators A Phys. 2021, 330, 112861. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, G.; Xu, X. Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data. Ecol. Model. 2013, 266, 86–96. [Google Scholar] [CrossRef]
- Dimitrova-Petrova, K.; Geris, J.; Wilkinson, M.E.; Rosolem, R.; Verrot, L.; Lilly, A.; Soulsby, C. Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling. J. Hydrol. 2020, 586, 124878. [Google Scholar] [CrossRef]
- Sohn, J.H.; Hudson, N.; Gallagher, E.; Dunlop, M.; Zeller, L.; Atzeni, M. Implementation of an electronic nose for continuous odour monitoring in a poultry shed. Sens. Actuators B Chem. 2008, 133, 60–69. [Google Scholar] [CrossRef]
- Patle, S.; Dehingia, B.; Kalita, H.; Palaparthy, V.S. Highly sensitive graphene oxide leaf wetness sensor for disease supervision on medicinal plants. Comput. Electron. Agric. 2022, 200, 107225. [Google Scholar] [CrossRef]
- Ge, W.; Zhao, C. State-of-the-art and Developing Strategies of Agricultural Internet of Things. Trans. Chin. Soc. Agric. Mach. 2014, 45, 222–230. [Google Scholar] [CrossRef]
- Valdés, R.; Ochoa, J.; Franco, J.; Sanchez-Blanco, M.J.; Banon, S. Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors. Agric. Water Manag. 2015, 149, 123–130. [Google Scholar] [CrossRef]
- Serrano-Finetti, O.P.A.R. Cost-effective autonomous sensor for the long-term monitoring of water electrical conductivity of crop fields. Comput. Electron. Agric. 2019, 165, 104940. [Google Scholar] [CrossRef]
- Singh, N.; Singh, A.N. Odysseys of agriculture sensors: Current challenges and forthcoming prospects. Comput. Electron. Agric. 2020, 171, 105328. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Soto-Valles, F.; Jimenez-Buendia, M.; Navarro-Hellin, H.; Torres-Sanchez, R. Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Comput. Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Zachs, I.; Hagag, N.; Shemesh, L.; Netzer, Y. Grapevine stem water potential estimation based on sensor fusion. Comput. Electron. Agric. 2022, 198, 107016. [Google Scholar] [CrossRef]
- Iwasaki, W.; Ishida, S.; Kondo, D.; Ito, Y.; Tateno, J.; Tomioka, M. Monitoring of the core body temperature of cows using implantable wireless thermometers. Comput. Electron. Agric. 2019, 163, 104849. [Google Scholar] [CrossRef]
- Lawson, A.R.; Giri, K.; Thomson, A.L.; Karunaratne, S.B.; Smith, K.F.; Jacobs, J.L.; Morse-McNabb, E.M. Multi-site calibration and validation of a wide-angle ultrasonic sensor and precise GPS to estimate pasture mass at the paddock scale. Comput. Electron. Agric. 2022, 195, 103786. [Google Scholar] [CrossRef]
- Buerkert, A.; Schlecht, E. Performance of three GPS collars to monitor goats’ grazing itineraries on mountain pastures. Comput. Electron. Agric. 2009, 65, 85–92. [Google Scholar] [CrossRef]
- He, C.; Qiao, Y.; Mao, R.; Li, M.; Wang, M. Enhanced LiteHRNet based sheep weight estimation using RGB-D images. Comput. Electron. Agric. 2023, 206, 107667. [Google Scholar] [CrossRef]
- Ayadi, A.; Ghorbel, O.; Obeid, A.M.; Abid, M. Outlier detection approaches for wireless sensor networks: A survey. Comput. Netw. 2017, 129, 319–333. [Google Scholar] [CrossRef]
- Chen, Y.; Zhen, Z.; Yu, H.; Xu, J. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture. Sensors 2017, 17, 153. [Google Scholar] [CrossRef] [Green Version]
- Lau, B.C.P.; Ma, E.W.M.; Chow, T.W.S. Probabilistic fault detector for Wireless Sensor Network. Expert Syst. Appl. 2014, 41, 3703–3711. [Google Scholar] [CrossRef]
- Davis, T.W.; Liang, X.; Navarro, M.; Bhatnagar, D.; Liang, Y. An Experimental Study of WSN Power Efficiency: MICAz Networks with XMesh. Int. J. Distrib. Sens. Netw. 2012, 8, 358238. [Google Scholar] [CrossRef] [Green Version]
- Dutta, R.; Gupta, S.; Das, M.K. Power Consumption and Maximizing Network Lifetime During Communication of Sensor Node in WSN. Procedia Technol. 2012, 4, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Qin, F.; Gao, Z.; Pan, K.W.; Busawon, K. Model-based on-line sensor fault detection in Wireless Sensor Actuator Networks. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 556–561. [Google Scholar]
- Samara, P.A.; Fouskitakis, G.N.; Sakellariou, J.S.; Fassois, S. A Statistical Method for the Detection of Sensor Abrupt Faults in Air-craft Control Systems. IEEE Trans. Control Syst. Technol. 2008, 16, 789–798. [Google Scholar] [CrossRef]
- Ding, H.; Liu, J.; Shen, Z. Application of On-Line Wavelet Decomposition Technology in Drift Detection of Gas Sensor. J. Xi’an Jiaotong Univ. 2002, 36, 1219–1221+1244. [Google Scholar] [CrossRef]
- Holmberg, M.; Davide, F.A.M.; Di Natale, C.; DAmico, A.; Winquist, F.; Lundstrom, I. Drift counteraction in odour recognition applications: Lifelong calibration method. Sens. Actuators B Chem. 1997, 42, 185–194. [Google Scholar] [CrossRef]
- Kullaa, J. Detection, identification, and quantification of sensor fault in a sensor network. Mech. Syst. Signal Process. 2013, 40, 208–221. [Google Scholar] [CrossRef]
- Zhang, X. Sensor Bias Fault Detection and Isolation in a Class of Nonlinear Uncertain Systems Using Adaptive Estimation. IEEE Trans. Autom. Control 2011, 56, 1220–1226. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, Y. A wavelet-based approach to abrupt fault detection and diagnosis of sensors. IEEE Trans. Instrum. Meas. 2001, 50, 1389–1396. [Google Scholar] [CrossRef]
- Saeed, U.; Jan, S.U.; Lee, Y.D.; Koo, I. Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliab. Eng. Syst. Safe 2021, 205, 107284. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, C.; Peng, T.; Dan, H.B.; Li, C.G.; Gui, W.H. A Cumulative Canonical Correlation Analysis-Based Sensor Precision Degradation Detection Method. IEEE Trans. Ind. Electron. 2019, 66, 6321–6330. [Google Scholar] [CrossRef]
- Jan, S.U.; Lee, Y.D.; Shin, J.; Koo, I. Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features. IEEE Access 2017, 5, 8682–8690. [Google Scholar] [CrossRef]
- Lo, C.; Lynch, J.P.; Liu, M. Reference-free detection of spike faults in wireless sensor networks. In Proceedings of the 2011 4th International Symposium on Resilient Control Systems, Boise, ID, USA, 9–11 August 2011; pp. 148–153. [Google Scholar]
- Zidi, S.; Moulahi, T.; Alaya, B. Fault Detection in Wireless Sensor Networks Through SVM Classifier. IEEE Sens. J. 2018, 18, 340–347. [Google Scholar] [CrossRef]
- Jan, S.U.; Lee, Y.D.; Koo, I.S. A distributed sensor-fault detection and diagnosis framework using machine learning. Inf. Sci. 2020, 547, 777–796. [Google Scholar] [CrossRef]
- Banerjee, I.; Chanak, P.; Rahaman, H.; Samanta, T. Effective fault detection and routing scheme for wireless sensor networks. Comput. Electr. Eng. 2014, 40, 291–306. [Google Scholar] [CrossRef]
- Bosman HH, W.J.; Iacca, G.; Tejada, A.; Wortche, H.J.; Liotta, A. Ensembles of incremental learners to detect anomalies in ad hoc sensor networks. Ad Hoc Netw. 2015, 35, 14–36. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Bosman, H.; Liotta, A.; Iacca, G.; Wörtche, H. Anomaly Detection in Sensor Systems Using Lightweight Machine Learning. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 7–13. [Google Scholar]
- Zhu, P.; Huang, W.; Jiang, X.; Wang, R. Research on Model-based Sensor Fault Diagnosis Technology. Chin. J. Sens. Actuators 1999, 12, 22–28. [Google Scholar]
- Honarmand-Shazilehei, F.; Pariz, N.; Sistani, M.B.N. Sensor fault detection in a class of nonlinear systems using modal Kal-man filter. ISA Trans. 2020, 107, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Reppa, V.; Papadopoulos, P.; Polycarpou, M.M.; Panayiotou, C.G. A distributed architecture for HVAC sensor fault detection and isolation. IEEE Trans. Control Syst. Technol. 2015, 23, 1323–1337. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, H.; Li, G.; Shen, L.; Li, S.; Hu, W. Sensor fault detection and diagnosis for variable refrigerant flow air conditioning system based on principal component analysis. J. Refrig. 2017, 38, 76–81. [Google Scholar] [CrossRef]
- Yu, Q.; Wan, C.; Li, J.; Chen, Z. A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles. Energies 2021, 14, 829. [Google Scholar] [CrossRef]
- Yan, J.; He, Z.; He, S. A deep learning framework for sensor-equipped machine health indicator construction and remaining useful life prediction. Comput. Ind. Eng. 2022, 172, 108559. [Google Scholar] [CrossRef]
- Li, M.; Na, W.; Liu, T.; Gao, Y. Fault diagnosis method based on data driven for closed-loop system’s sensor. Instrum. Tech. Sens. 2020, 3, 89–94. [Google Scholar] [CrossRef]
- Hao, X.; Ji, C. The Design of Fault Detection Module for Agricultural Robot Navigation System. J. Anhui Agric. Sci. 2015, 43, 334–336. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Zhang, H.; Guo, Y. Sensor Fault Detection and Diagnosis of Air-conditioning System Based on Improved Principal Component Analysis Method. J. Refrig. 2020, 1, 147–153. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Zhou, J.; Zhao, L.; Wang, J.; Li, P. Sensor Fault Identification in Greenhouse Environment Based on Comparison of Spa-tial-temporal Information. Trans. Chin. Soc. Agric. Mach. 2018, 49, 319–326. [Google Scholar] [CrossRef]
- Liao, S. Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Syst. Appl. 2005, 28, 93–103. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Gu, S.; Chen, T. Process fault diagnosis with model- and knowledge-based approaches: Advances and opportunities. Control Eng. Pract. 2020, 105, 104637. [Google Scholar] [CrossRef]
- Si, J.; Ma, J.; Niu, J.; Wang, E. An intelligent fault diagnosis expert system based on fuzzy neural network. J. Vib. Shock 2017, 36, 164–171. [Google Scholar] [CrossRef]
- Chanak, P.; Banerjee, I. Fuzzy rule-based faulty node classification and management scheme for large scale wireless sensor networks. Expert Syst. Appl. 2016, 45, 307–321. [Google Scholar] [CrossRef]
- Jadav, P.; Babu, V.K. Fuzzy logic based faulty node detection in Wireless Sensor Network. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 390–394. [Google Scholar]
- Bansal, S.; Sahoo, S.; Tiwari, R.; Bordoloi, D.J. Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data. Measurement 2013, 46, 3469–3481. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Liu, H.; Zhang, H.Q. Fault recovery method of hydrogen sensor based on relevance vector machine. Instrum. Technol. Sens. 2015, 11–13. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, X.; Han, H.; Lu, H.L. Feasibility and improvement of fault detection and diagnosis based on factory-installed sensors for chillers. Appl. Therm. Eng. 2020, 164, 114506. [Google Scholar] [CrossRef]
- Yang, H.; Hassan, S.G.; Wang, L.; Li, D. Fault diagnosis method for water quality monitoring and control equipment in aqua-culture based on multiple SVM combined with D-S evidence theory. Comput. Electron. Agric. 2017, 141, 96–108. [Google Scholar] [CrossRef]
- Deng, F.; Guo, S.; Zhou, R.; Chen, J. Sensor Multifault Diagnosis with Improved Support Vector Machines. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1053–1063. [Google Scholar] [CrossRef]
- Han, H.; Cui, X.; Fan, Y. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Appl. Therm. Eng. 2019, 154, 540–547. [Google Scholar] [CrossRef]
- Liu, J.; Enrico, Z.A. Scalable fuzzy support vector machine for fault detection in transportation systems. Expert Syst. Appl. 2018, 102, 36–43. [Google Scholar] [CrossRef]
- Mishra, M.; Srivastava, M. A view of Artificial Neural Network. In Proceedings of the 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), Unnao, India, 1–2 August 2014; pp. 1–3. [Google Scholar]
- Kazemi, P.; Bengoa, C.; Steyer, J.P.; Giralt, J. Data-driven techniques for fault detection in anaerobic digestion process. Process Saf. Environ. Prot. 2021, 146, 905–915. [Google Scholar] [CrossRef]
- Wen, X.; Zhou, L. Reality for NN fault diagnosis technology. Missiles Space Veh. 2000, 17–22. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hu, S.; Li, G.; Lu, W.; Feng, H.L. Outlier detection method based on neural network in wireless sensor. Comput. Sci. 2014, 41, 208–211. [Google Scholar]
- Shi, S.; Chen, H.; Li, S.; Hu, W.; Li, H. Fault diagnosis of chillers based on neural network and wavelet denoising. J. Refrig. 2016, 37, 12–17. [Google Scholar] [CrossRef]
- Guo, C.Z.S. Mechanical fault time series prediction by using EFMSAE-LSTM neural network. Measurement 2021, 173, 108566. [Google Scholar] [CrossRef]
- Elnour, M.; Meskin, N.; Al-Naemi, M. Sensor data validation and fault diagnosis using Auto-Associative Neural Network for HVAC systems. J. Build. Eng. 2020, 27, 100935. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review. IEEE Access 2019, 8, 29857–29881. [Google Scholar] [CrossRef]
- Jiao, C.; Yang, S.; Liu, F.; Wang, S.G.; Feng, Z.X. Service Years Beyond Neural Networks: Retrospect and Prospect. Chin. J. Comput. 2016, 39, 1697–1716. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar] [CrossRef]
- Lu, X.; Tsao, Y.; Matsuda, S.; Hori, C. Speech enhancement based on deep denoising autoencoder. In Proceedings of the International Speech Communication Association ISCA, Lyon, France, 25–29 August 2013; pp. 436–440. [Google Scholar]
- Luo, T.; Nagarajan, S.G. Distributed Anomaly Detection Using Autoencoder Neural Networks in WSN for IoT. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 201; pp. 1–6.
- Jia, F.; Lei, Y.; Guo, L.; Lin, J.; Xing, S.B. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 2018, 272, 619–628. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Yuan, X.; Shardt, Y.; Yang, C.H.; Gui, W.H. Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder. J. Process Control 2020, 92, 79–89. [Google Scholar] [CrossRef]
- Mallak, A.; Fathi, M. Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers. Sensors 2021, 21, 433. [Google Scholar] [CrossRef] [PubMed]
- Loy-Benitez, J.; Li, Q.; Nam, K.J.; Yoo, C.K. Sustainable subway indoor air quality monitoring and fault-tolerant ventilation control using a sparse autoencoder-driven sensor self-validation. Sustain. Cities Soc. 2020, 52, 101847. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Le Roux, N.; Bengio, Y. Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 2008, 20, 1631–1649. [Google Scholar] [CrossRef]
- AlThobiani, F.; Ball, A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 2014, 41, 4113–4122. [Google Scholar] [CrossRef]
- Zhang, Q.; Laurence, T.Y.; Chen, Z. Deep computation model for unsupervised feature learning on big data. IEEE Trans Serv. Comput. 2016, 9, 161–171. [Google Scholar] [CrossRef]
- Mandal, S.; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test. IEEE Trans. Nucl. Sci. 2017, 64, 1526–1534. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z.; Yuan, X.; Yang, C.; Gui, W. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network. ISA Trans. 2020, 96, 457–467. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Wang, J.; Liu, Y. Research on recurrent neural network. J. Comput. Appl. 2018, 38, 1–6. [Google Scholar]
- Hochreiter, S.; Schmidhube, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Moustapha, A.I.; Selmic, R.R. Wireless Sensor Network Modeling Using Modified Recurrent Neural Networks: Application to Fault Detection. IEEE Trans. Instrum. Meas. 2008, 57, 981–988. [Google Scholar] [CrossRef]
- Lei, J.; Liu, C.; Jiang, D. Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Energy 2019, 133, 422–432. [Google Scholar] [CrossRef]
- Long, D.; Wen, X.; Zhang, W.; Wang, J.H. Recurrent Neural Network Based Robust Actuator and Sensor Fault Estimation for Satellite Attitude Control System. IEEE Access 2020, 8, 183165–183174. [Google Scholar] [CrossRef]
- Xia, M.; Zheng, X.; Muhammad, I.; Shoaib, M. Data-driven prognosis method using hybrid deep recurrent neural network. Appl. Soft Comput. J. 2020, 93, 106351. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, L.; Dong, J. Review of Convolutional Neural Network. Chin. J. Comput. 2017, 40, 1229–1251. [Google Scholar] [CrossRef]
- Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.L.; Wang, R.H.; Guan, C.; Wang, Q. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Sensors 2019, 19, 1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, D.; Patil, J.; Herkal, S.; Nagarajaiah, S.; Duenas-Osorio, L. CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction. Mech. Syst. Signal Process. 2020, 169, 108723. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Zhao, T.; Zou, Z.; Yang, L. A New Convolutional Neural Network with Random Forest Method for Hydrogen Sensor Fault Diagnosis. IEEE Access 2020, 8, 85421–85430. [Google Scholar] [CrossRef]
- Muneer, A.; Taib, S.M.; Naseer, S.; Ali, R.F.; Aziz, I.A. Data-Driven Deep Learning-Based Attention Mechanism for Remaining Useful Life Prediction: Case Study Application to Turbofan Engine Analysis. Electronics 2021, 10, 2453. [Google Scholar] [CrossRef]
- Muneer, A.; Taib, S.M.; Fati, S.M.; Alhussian, H. Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine. Symmetry 2021, 13, 1861. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Guo, C. MLPC-CNN: A multi-sensor vibration signal fault diagnosis method under less computing resources. Measurement 2022, 188, 110407. [Google Scholar] [CrossRef]
- Hu, W.; Gao, Y.; Ha, K.; Wang, J.; Amos, B.; Chen, Z.; Pillai, P.; Satyanarayanan, M. Quantifying the impact of edge computing on mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, Hong Kong, China, 4–5 August 2016. [Google Scholar]
- Sharofidinov, F.; Mohammed, S.; Abdukodir, K.; Ammar, M.; Konstantin, S. Agriculture management based on lora edge computing system. In Proceedings of the Distributed Computer and Communication Networks: 23rd International Conference, Moscow, Russia, 14–18 September 2020; Volume 16, pp. 14–18. [Google Scholar]
- Li, X.; Zhu, L.X.; Chu, X.; Fu, H. Edge computing-enabled wireless sensor networks for multiple data collection tasks in smart agriculture. J. Sens. 2020, 13, 4398061. [Google Scholar] [CrossRef]
- Sun, H.; Liang, X.; Shi, W. Vu: Video usefulness and its application in large-scale video surveillance systems: An early experience. Proc. Workshop Smart Internet Things 2017, 14, 102–114. [Google Scholar]
- Akhtar, M.; Shaikh, A.J.; Khan, A.; Awais, H.; Abu Bakar, E.; Othman, A.R. Smart sensing with edge computing in precision agriculture for soil assessment and heavy metal monitoring: A review. Agriculture 2021, 11, 11475. [Google Scholar] [CrossRef]
- Dhifaoui, S.; Chiraz, H.; Saidane, L.A. Cloud-Fog-Edge Computing in Smart Agriculture in the Era of Drones: A systematic survey. In Proceedings of the 2022 IEEE 11th IFIP International Conference on Performance Evaluation and Modeling in Wireless and Wired Networks (PEMWN), Rome, Italy, 8–10 November 2022. [Google Scholar]
- Zhang, X.; Cao, Z.; Dong, W. Overview of edge computing in the agricultural internet of things: Key technologies, applications, challenges. IEEE Access 2020, 8, 141748–141761. [Google Scholar] [CrossRef]
Transmission Distance | Power Consumption | Delay Time | Advantage | Disadvantage | |
---|---|---|---|---|---|
Bluetooth [32] | <10 m | Low | <1 s | Low cost | Incompatible protocols between different devices |
Wi-Fi [33] | <50 m | High | <1 s | Easy fault location | The transmission process is unstable |
ZigBee [34] | 10–100 m | Low | <1 s | High security | High cost |
LoRa [35] | <10 km | Low | 1 s | The networking mode is flexible and can connect multiple nodes | Users need to form their own network |
NB-IoT [36] | <25 km | Low | 6–10 s | Wide coverage | Low data transfer |
Classification | Metrical Information | Principle of Measurement | Typical Product | Related References |
---|---|---|---|---|
Environmental information | Ammonia gas | Electrochemistry | Winsen, ME3-NH3 | Smith et al. (2020) [41] |
Carbon dioxide | Electrochemistry, optics | Hanwei, MH-Z19 | Chen et al. (2012) [42] | |
Oxygen | Electrochemistry | Renke, RS-O2 | Levintal et al. (2022) [43] | |
Air temperature | Pyroelectricity | METER, ECT | Fisher et al. (2010) [44] | |
Air humidity | Electrochemistry, electromagnetism | Renke, RS-WS-N01-2 | Yang et al. (2013) [45] | |
Soil temperature | Pyroelectricity | METER, RT-1 | Zhang et al. (2011) [46] | |
Soil humidity | Electronics and electromagnetics | METER, ECH2O EC-5 | Antonacci et al. (2018) [47] | |
PH value in the water body | Electrochemistry | Renke, RS-PH-N01-A-201 | Akhter et al. (2021) [48] | |
Intensity of illumination | Optics | METER, PYR | Hu et al. (2013) [49] | |
Rainfall | Electronics and electromagnetics | METER, ECRN-100 | Katya et al. (2020) [50] | |
Poultry dust | Laser light scattering | Renke, RS-PM | Jae et al. (2008) [51] | |
Crop life information | Leaf humidity | Electromagnetism | METER, PHYTOS 31 | Kamlesh et al. (2022) [52] |
Leaf temperature | Thermoelectricity | Bio Instruments, LT-1P | Ge et al. (2014) [53] | |
Stomatal conductivity | Electronics, mechanics, optics | METER, SC-1 | R. Valdés et al. (2015) [54] | |
Electric conductivity | Electrochemistry | METER, HYDROS 21 | Serrano et al. (2019) [55] | |
Stem flow | Energy balance | Ecotek, SGDC | Singh N et al. (2020) [56] | |
Canopy reflectance index | Optics | Ecotek, SRS-PRI | Giménez et al. (2021) [57] | |
Stem growth | Mechanics | AWL, SD-5z | Ohana et al. (2022) [58] | |
Animal information | Body temperature | Optics/thermoelectrics | Wuhe, W630 | Wi et al. (2019) [59] |
Amount of exercise | Electromagnetism | Quantified Ag | Lawson et al. (2022) [60] | |
Locator | GPS/BD/GLONASS | Naviecare, GA5201 | Buerkert et al. (2009) [61] | |
Body weight | Electronics and electromagnetics | OMEGA, TQ101 | He et al. (2023) [62] |
Advantages | Disadvantages | ||
---|---|---|---|
Model-based |
|
| |
AI-based | Statistical analysis [68] |
|
|
Expert system [75] |
|
| |
SVM [81] |
|
| |
NN [83] |
|
| |
DL-based | AE [95] |
|
|
DBN [103] |
|
| |
RNN [107] |
|
| |
CNN [115] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Liu, W.; Huo, Z.; Wang, S.; Chen, Z.; Xin, C.; Bai, Y.; Liang, Z.; Gong, Y.; Qian, Y.; et al. Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things. Sensors 2023, 23, 2528. https://doi.org/10.3390/s23052528
Zou X, Liu W, Huo Z, Wang S, Chen Z, Xin C, Bai Y, Liang Z, Gong Y, Qian Y, et al. Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things. Sensors. 2023; 23(5):2528. https://doi.org/10.3390/s23052528
Chicago/Turabian StyleZou, Xiuguo, Wenchao Liu, Zhiqiang Huo, Sunyuan Wang, Zhilong Chen, Chengrui Xin, Yungang Bai, Zhenyu Liang, Yan Gong, Yan Qian, and et al. 2023. "Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things" Sensors 23, no. 5: 2528. https://doi.org/10.3390/s23052528
APA StyleZou, X., Liu, W., Huo, Z., Wang, S., Chen, Z., Xin, C., Bai, Y., Liang, Z., Gong, Y., Qian, Y., & Shu, L. (2023). Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things. Sensors, 23(5), 2528. https://doi.org/10.3390/s23052528