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Abstract: We propose a joint super resolution (SR) and frame interpolation framework that can
perform both spatial and temporal super resolution. We identify performance variation according to
permutation of inputs in video super-resolution and video frame interpolation. We postulate that
favorable features extracted from multiple frames should be consistent regardless of input order if
the features are optimally complementary for respective frames. With this motivation, we propose a
permutation invariant deep architecture that makes use of the multi-frame SR principles by virtue
of our order (permutation) invariant network. Specifically, given two adjacent frames, our model
employs a permutation invariant convolutional neural network module to extract “complementary”
feature representations facilitating both the SR and temporal interpolation tasks. We demonstrate the
effectiveness of our end-to-end joint method against various combinations of the competing SR and
frame interpolation methods on challenging video datasets, and thereby we verify our hypothesis.

Keywords: video enhancement; super-resolution; frame-rate up-conversion

1. Introduction

Recent super-resolution (SR) approaches [1–5] and frame interpolation methods [6–8]
have shown promising results demonstrating significant advancements in their respective
areas. Those methods can enhance the camera sensors’ physical limitations to go beyond
only with software-level algorithms. However, SR and frame interpolation have been mostly
regarded as separate research topics. To achieve both goals of SR and frame interpolation,
a naive solution would be to sequentially apply them to the given video frames. This is
sub-optimal since each task is done independently without any complementary interaction.

In this work, we propose a joint SR and frame interpolation method to perform
spatio-temporal SR, where it conducts temporal frame generation as well as higher spatial
resolution in a joint manner, applicable to tasks including spatio-temporal video com-
pression and enhancement. Our work is built upon the hypothesis that reconstruction
of higher resolution images and inter-frame recovery are both heavily influenced by the
input texture information but in slightly different aspects. The frame interpolation task
essentially makes use of neighboring frames to extract texture motion for middle-frame
synthesis. Similarly, this concept is the underlying key idea of the multiple image SR
task which takes advantage of the different aliasing from each frame. While both tasks
leverage information with significant overlap, the features learned in each task would
convey different characteristics. Thus, sharing the texture information while learning the
spatial and temporal aspects as multi-task learning would benefit both tasks by preventing
loss of a chance to learn complementary information.
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We coin the learned features as complementary features, since the given different frames
provide complementary information, which in turn provides complementary interaction
between the SR and frame interpolation tasks. Given candidates of texture features from
the frames, to extract a feature representation containing the complementary knowledge
across the two frames, we need an information aggregation mechanism. A typical way of
aggregating such temporal information would be convolutional neural networks (CNN)
with frames concatenated along the channel dimension or recurrent architectures, but these
may introduce asymmetric influence on the set of inputs [9–11]. To equally consider the
feature candidates i.e., agnostic to input order, we argue that an order (permutation) invari-
ant operation [10] is necessary for multi-frame based video processing. We extend recent
ideas on permutation invariant convolutional neural networks with residual connections
and the attention mechanism to construct effective representation, also capable of dealing
with occlusion and disocclusion between frames.

In summary, our work has the following contributions:

• We propose the permutation invariant residual block (PIRB) which can process the
input frames in a permutation invariant manner while effectively extracting the
complementary features. Thereby, we demonstrate the visually pleasing quality.
In turn, the learned features effectively shepherd both tasks.

• We propose the feature attention mechanism for the proposed task to effectively focus
on important regions and handle unwanted artifacts.

We evaluate our method on multiple datasets including the Vimeo90k [12], Vid4 [13],
and SPMCS [14] against various combinations of top performing state-of-the-art SR and
frame interpolation methods. Our approach demonstrates superior performance in terms
of quantitative comparisons and visual results.

2. Related Work
2.1. Super Resolution

The main goal of super resolution is to enhance the spatial resolution of an image or
video. Single image super resolution (SISR) is a sub-branch within the SR category which
deals with single image inputs. Since only one image is given, SISR is the most ill-posed
task among the SR categories, i.e., compared to multiple image super resolution (MISR).
Thus, most SISR approaches take a data-driven texture synthesis approach to explicitly
learn the mapping distribution from LR to HR images. For the SISR task, Ref. [15] first
proposed the deep CNN approach, pioneering the deep learning approaches to SR. Notable
deep architectures have followed this work incorporating sub-pixel CNN [16], residual
networks [3,17], recursive CNN [18], dense connections [5], channel attention [19]. Recently,
Haris et al. [1] proposed the deep back-projection network by projecting upsampled and
downsampled features in a densely connected way.

Video super resolution (VSR), also referred to as MISR, aims to reproduce the true
HR image by making use of neighboring frames. Early works include [20] which first
incorporated deep learning via warped frames. Following this work, VSR has been ap-
proached by a similar explicit alignment approach: alignment-based [21], sub-pixel motion
compensation [14], feature level motion alignment [22], and joint training of optical flow
for specific tasks [12]. As another category, ref. [23] proposed the first end-to-end VSR
method, and the subsequent works have proposed by pure-inference without matching
(e.g., temporal adaptive network [24], 3D CNN [25,26]) or implicit alignment (e.g., recurrent
back-projection network [2], spatio-temporal attention module [4], burst imaging [27]).
While these works focus on spatial SR based on motion estimation, our work deals with
both SR and temporal interpolation. Among this line of work, we are the first to tackle the
order invariance property.

2.2. Frame Interpolation

Video frame interpolation is a task of generating an intermediate frame given neigh-
boring frames. For one of the earlier works, Niklaus et al. [8,28] proposed to take two
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image patches and estimate convolution kernels to hallucinate frame interpolation for each
patch. Also, Niklaus et al. [29] and Jiang et al. [7] proposed to compute the bidirectional
flow to warp the two input frames halfway towards each other as well as its context features
to synthesize the middle frame. Similarly, Liu et al. [30] proposed a voxel flow layer given
two consecutive input frames that estimates the interpolated motion vector field and an
occlusion map to generate the output frame. Oh et al. [31] proposed Eulerian motion
representation and its frame interpolation application as well as extrapolation. A recent
work by Bao et al. [6] utilized monocular depth information (along with flow, context
features, and kernel methods) to improve performance. Our work is also based on the
bidirectional flow but able to extend to multi-frame input in a permutation invariant way.
None of the prior arts takes into account the invariance property.

2.3. Spatio-Temporal Super Resolution

Although the success of deep CNNs have greatly influenced the SR and frame interpo-
lation tasks, deep approaches for joint SR and frame interpolation have only started being
explored recently, including the recent work FISR [32]. Conventional approaches, e.g., [33–37],
remain sub-optimal due to its hand-crafted features and independent processing of spatial
and temporal SR. We propose a joint SR and frame interpolation method which effectively
generates the intermediate HR image.

2.4. Permutation Invariance

For neural networks, switching the order of the inputs generally leads to change in the
output. According to [9], CNN assigns some undesirable meaning to the ordering of inputs
and is difficult to unlearn. For order agnostic input data, this property is counterproductive.
Recent works have attempted to alleviate this issue on set-valued inputs on various tasks.
Ref. [11] proposed a permutation invariant networks by applying symmetric pooling layers,
Ref. [38] leverage it for deep multiple instance learning, and [10] proposed to use simple
commutative operations, e.g., average or max-pooling, for 3D point cloud processing.
Motivated by Qi et al. [10], Aittala and Durand [9] introduced a permutation invariant
method for image deblurring via burst images. Our method makes use of the principles of
permutation invariant networks to address joint SR and frame interpolation.

3. Proposed Method

Our architecture jointly learns the appropriate features for spatial SR as well as frame
interpolation at the same time. The key idea is to treat the multiple input frames equally
regardless of their order. We propose the permutation invariant residual network which
is able to learn complementary representations captured from the input frames that are
refined through multiple layers of the constituent permutation invariant residual blocks.
Then, the refined features are upscaled and fed through a final CNN decoder for high-
resolution inference. We describe the network architecture in detail in Section 3.1, and
explain the training scheme in Section 3.2.

3.1. Network Architecture

Our architecture consists of (1) the bidirectional optical flow computation and warping
module, (2) the permutation invariant residual network (PIRN), and (3) the final upsam-
pling CNN decoder. The entire network is trained end-to-end, optimizing all components to
the joint SR and frame interpolation task. An overview is shown in Figure 1. For simplicity,
we explain the two input frame case, but our method is not limited and can be extended to
multiple frames without modification.
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Figure 1. Illustration of the proposed architecture. For simplicity, we illustrate a case of two input
frames but not limited. Given low-resolution image inputs ILR

1 and ILR
2 , our architecture warps

the input frames to the intermediate positions represented by W1, W2. These are fed through our
permutation invariant module to extract complementary features. The features are upscaled and fed
through a series of CNNs generating the high-resolution interpolated frame OHR

1.5 .

3.1.1. Flow Estimation Module

Given two input frames ILR
1 and ILR

2 , the flow estimation CNN estimates the bidirec-
tional flow between them, yielding flow maps F1→2 and F2→1. Then, we backward-warp
each frame to the intermediate position by applying half the magnitude of the flow maps,
producing warped frames W1 and W2. The technique of using bidirectional flow pro-
vides both warped frames from each input frame to the intermediate position, which
helps the network learn how to handle pixels with occlusion and disocclusion [7,12].The
warped frames are then fed through a series of convolutional layers independently and
then through our permutation invariant module. For the intraframe SR without temporal
interpolation, i.e., recovering IHR

1 or 2, we can seamlessly feed the backward-warped image to
the target frame instead of the intermediate position.

3.1.2. Permutation Invariant Residual Network (PIRN)

To extract a unified feature from both W1 and W2, the usual approach would be to
simply concatenate and pass them through a CNN as done in [7,12,29], or use a recurrent
neural network (RNN) to sequentially feed them [2]. However, both approaches are prone
to permutation variance, meaning that by switching the order of the inputs will lead
to changes in the output. This phenomenon is generally unfavorable for tasks agnostic
to such order (e.g., SR and frame interpolation) since the learned feature most likely
assigns unwanted meaning to order. Although one could argue that during training, the
neural networks will learn to disregard order information, as argued by [9], this claim is
theoretically unsatisfying and empirically is not the case.

By considering both images as a set of inputs rather than ordered inputs, it is possible to
extract a complementary representation from both images as follows. Each input image is
processed by a shared network, followed by a symmetric pooling layer, namely max-pooling
or average-pooling across input members (i.e., two input image features as elements in
a set). This process repeats across several layers, leading to deeper representations. The
underlying idea is that through end-to-end training, the shared network will learn to
extract features for which the pooling is meaningful. Intuitively, the symmetric pooling
operation acts as combining features for every spatial position by considering each member
equally, eventually leading to refined features accordingly. The complementary features
are refined with every layer of our permutation invariant residual block (PIRB) due to the
concatenation with each per-member input feature, which creates a contrasting mechanism
for each member and the complementary feature. This helps prevent each per-member
features from losing its individual information from repeated symmetric pooling. An
illustration of the PIRB and PIRN are shown in Figure 1.
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We also incorporate an attention mechanism to effectively attend to important salient
regions and robustly handle occlusion and disocclusion present in the inputs. In addition,
attention can enable canceling feature aggregations that may potentially yield unwanted
artifacts. The attention mask is computed by two convolutional blocks where the last
activation is the sigmoid function. This mask is applied to the output features via element-
wise product, enforcing gating. Furthermore, unlike vanilla convolution operations which
are spatially equivariant (identical filters are applied to every pixel), the attention module
provides spatial and channel-variant attention maps to modulate local contrast. Finally, we
devise the neural network block with residual learning. A PIRB encompasses the symmetric
pooling and CNN as a single unit. Specifically, given a set of input features Fin = {f1, f2} at
a PIRB layer, we first apply symmetric-pooling sym(·) (max or average-pooling) across the
channel axis of both features to compute a representative set feature fset, i.e., fset=sym(Fin).
For the branch of the i-th input Ii (i = {1, 2}), PIRB can be expressed as:

PIRBi(Fin):= fi + ConvR([fset, fi])�ConvS([fset, fi]), (1)

where ConvR(·) and ConvS(·) are convolutional blocks with the last activation as ReLU and
sigmoid respectively, fi denotes an individual input feature member, [·] the concatenation
operation, and � the element-wise multiplication. We denote the output of PIRB as the
individual output feature fout,i=PIRBi(Fin). Note that fset represents the complementary
feature representation in both spatial and temporal aspects, after passing the set of inputs
through the symmetric operation. Our permutation invariant layer with fset is built on the
theoretical foundation of Zaheer et al. [11] and Qi et al. [10]; thus, our design is not only
empirically effective but also theoretically sound.

Extracting the complementary information from both inputs is also a key component
for spatial SR. Given the warped frames W1 and W2, our network will learn to extract
features complementing each other via different sub-pixel offset information. According
to [39], MISR requires that the input contains multiple aliased images, sampled at different
subpixel offsets. The different phases of low frequency is leveraged for SR. Our problem
can be thought of as MISR or VSR where adjacent frames are used as information, but the
key difference from our problem is on missing a reference frame (i.e., the center frame).
Since there is no reference to work with, our problem is regarded as more challenging.

3.1.3. Upsampling CNN Decoder

To prevent excessive memory usage, we incorporate the upscaling module only once
at the final layers of the entire network. Also, our network does not incorporate any dense
connections which require significant memory usage as well as the number of weight
parameters. Although recent state-of-the-art makes use of the popular dense connections
among multiple up/down-scaled features [1,2,5], our method shows superior results
without such process. Thus, in this work, we can focus on the effects of the learned features
via our proposed PIRN, but our network can be potentially improved by deploying a more
advanced upsampling decoder.

3.1.4. Network Architecture Details

We provide details on our full deep network in Table 1: PIRN. The layers and those
parameters are shared for each input member for symmetry. Note that the PIRB modules
(2nd row section of Table 1) consisting of PConvs are repeated 6 times.
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Table 1. Permutation invariant residual network (PIRN) details.

Layer Name Filter Size Channels Stride Upscale Activation

Conv0 3× 3 3 1 - ReLU
Conv1 3× 3 64 1 - ReLU

Sym. pooling 1× 1 64 1 - Max/Avg

Concat(w/Conv1) - 64 + 64 - - -
PConv_R0 3× 3 64 1 - ReLU
PConv_R1 3× 3 64 1 - ReLU
PConv_S0 3× 3 64 1 - ReLU
PConv_S1 3× 3 64 1 - Sigmoid

Sym. pooling 1× 1 64 1 - Max/Avg

Conv3 3× 3 64 1 - ReLU

UpScale - 64 - ×4 -
Conv4 3× 3 64 1 - ReLU
Conv5 3× 3 3 1 - ReLU

3.2. Training Details

To train our network, we utilize subsequent frame triplets provided in high-resolution
IHR
1 , IHR

2 , and IHR
3 , and down-sample (bicubic) them to low-resolution images. Thus, given

the low-resolution images ILR
1 and ILR

3 as input, our model produces the interpolated high-
resolution frame OHR

2 . We use the pixel-wise `1-loss defined as L1 =
∥∥IHR

2 −OHR
2

∥∥
1. We

also apply the perceptual loss utilizing the response from the relu4_3 layer of VGG-19 [40]:
Lp =

∥∥φ(IHR
2 )− φ(OHR

2 )
∥∥2

2, where φ(·) denotes the feature vector of the relu4_3 layer. We
take the sum of L1 and Lp as the final loss, Ltotal = λL1 + µLp, where we set λ and µ to 2.0
and 0.01 respectively.

We train our entire framework using the Vimeo90k dataset [12] of size 448× 256 using
the Adam optimizer with β1 = 0.9 and β2 = 0.999, a learning rate of 0.001, and mini-batch
size of 16 samples. We utilize 51,313 training examples, and train the architecture for
100 epochs, with a linear decay in the learning rate (until reaching learning rate of 10−5)
applied starting from epoch 10. To eliminate potential dataset bias, we also augment the
training data on the fly by randomly reversing the frame order and applying horizontal
and/or vertical flips. Our framework is implemented via PyTorch. We train our model for
2 days using two NVIDIA Titan X (Maxwell) GPUs.

Our end-to-end trainable network enables learning the appropriate features oriented
to solving the joint SR and interpolation task. In the process, the flow estimation module
uses the PWC-Net [41] as the backbone architecture for flow estimation. It is important
to leverage the pretrained knowledge of the optical flow module. Without the initial
knowledge, other network modules may suffer from learning meaningful task information,
due to their random initialization. To warm-start the training process, we fix the weights of
the flow estimation module for the first epoch to prevent any erroneous gradients from
back-propagating to the flow module. After the first epoch, the entire network is trained
end-to-end enabling the flow module to learn task-specific flow characteristics [12].

4. Experimental Results

Our method is applicable and tested on the sensors that are standard video cam-
eras. Thus, we evaluate the effectiveness of our method on the following three datasets,
Vimeo90k [12], Vid4 [13], and SPMCS [14]. The Vid4 dataset contains challenging videos
with dynamic movement, however has a relatively small number of videos of only four.
The SPMCS dataset, on the other hand, contains a large diversity of videos but relatively
limited movement. The Vimeo90k dataset contains a vast variety of videos with various
dynamic scenes. We compare against various combinations of state-of-the-art SR and
frame interpolation methods as well as the recent competing methods. Throughout the
experiments, we focus on ×4 SR factor and ×2 frame upsampling factor. The typical video
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data format we use as test samples typically have frame rates of 29 FPS and a video length
of 1 s, and video resolutions are 960× 540 (SPMCS), 448× 256 (Vimeo90k), and 720× 480
or 720× 576 (Vid4), respectively. Note that our model is trained only on Vimeo90k, but
tested on the other datasets without fine-tuning.

4.1. Quantitative Results

We measure PSNR (We use the scikit-image library to compute PSNR.) and SSIM
which are the mainly used metrics for both SR and frame interpolation tasks. Note that our
model is only trained on the Vimeo90k dataset, but is evaluated on the three datasets, i.e.,
assessing the challenge of generalization. Nonetheless, our method performs favorably for
each dataset.

The comparison baselines were constructed by sequentially applying the state-of-the-
art SR and frame interpolation methods. For the selected methods in frame interpolation,
we include SepConv [8], SuperSlomo [7], and DAIN [6], while for SR (or VSR) methods,
we include RBPN [2], and DBPN [1] as well as the bicubic method as reference. The
quantitative results from combining these methods are shown in Table 2. We combined
both methods by applying frame interpolation followed by the SR method, as well as in the
reverse order, and report the better performing combination. Nevertheless, we found that
applying frame interpolation first, then SR performed slightly better for most cases, which
agrees with the findings from [32] as well (please refer to the Supplementary Material for
comparisons to Kim et al. [32] ). We observe that our PSNR performance is comparable or
slightly lower than the best performance while showing consistent boost in performance
in terms of SSIM. Given the fact that SSIM was designed to improve traditional quality
metrics such as PSNR, the SSIM results suggest that our method conveys favorable visual
quality. This is rather prominent in our visual comparisons discussed in the next.

Table 2. Spatio-temporal SR performance on the Vimeo90k, Vid4, and SPMCS datasets against
combinations of the state-of-the-art interpolation and SR methods. The best performing and runner-
up methods are marked in red and blue, respectively.

Dataset #param. Vimeo90k Vid4 SPMCS
Metric (Million) PSNR SSIM PSNR SSIM PSNR SSIM
SepConv-L f [8]→ Bicubic 21.6 33.1487 0.9589 30.0614 0.8760 31.0992 0.9174
SepConv-L1 [8]→ RBPN [2] 34.4 32.4599 0.9283 29.5295 0.8224 31.2464 0.9034
SepConv-L1 [8]→ DBPN [1] 32.0 32.6833 0.9349 29.7292 0.8337 31.2743 0.9043
SuperSlomo [7]→ Bicubic 19.8 32.6034 0.9556 29.7232 0.8627 30.9245 0.9115
SuperSlomo [7]→ RBPN [2] 32.6 32.9948 0.9612 29.8192 0.8711 31.0364 0.9152
SuperSlomo [7]→ DBPN [1] 30.2 32.9835 0.9612 29.8260 0.8710 31.0405 0.9152
DAIN [6]→ Bicubic 24.0 33.0474 0.9628 30.0717 0.8931 31.0960 0.9167
DAIN [6]→ RBPN [2] 36.8 33.8300 0.9730 30.4270 0.9201 31.2514 0.9024
DAIN [6]→ DBPN [1] 34.4 33.7916 0.9737 30.4284 0.9196 31.2758 0.9029
Ours (Max-pooling) 12.0 34.3556 0.9730 30.6366 0.9117 31.2392 0.9192
Ours (Avg.-pooling) 12.0 34.4841 0.9739 30.7144 0.9169 31.2145 0.9172

It is worth noting that our method is able to produce more visually pleasing results
compared to the baselines despite having significantly fewer number of parameters. As
shown in Table 2, our model contains 12.0 million parameters while the sequential meth-
ods have at least 19.8 and at most 36.8 million parameters. The baseline with the most
number of parameters (DAIN-RBPN) shows the best performance among baselines, while
SuperSlomo-Bicubic having the the smallest number of parameters is among the lowest
performing methods. Our method outperforms this baseline with only one-third of its
parameter count, in terms of visual quality. This signifies that our method can learn the
complementary features learned for the joint SR and frame interpolation tasks, because
without complementary feature learning, no better performance than single task models
can be obtained.
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Similar to the investigation by [9], we compare our method by switching the symmetric
pooling layer between max pooling and average-pooling. The performances of using
either operations do not show significant difference, which agrees with the investigation
in [9]. However, using the average-pooling does convey slight improvement in metric
performance. This may be due to the combining process induced by the average-pooling
rather than the selection process induced by max-pooling which may be prone to dropping
complementary information.

Furthermore, we compare with a recent work on spatio-temporal deep learning
STAR [42], and the baselines included in the paper shown in Table 3.

Table 3. Comparison with STAR [42].

Dataset Vimeo90k

Metric SSIM

TOFlow [12]→ DBPN [1] 0.897
DBPN [1]→ DAIN [6] 0.918

STAR-L f [42] 0.926
STAR-ST-L f [42] 0.927
STAR-ST-Lr [42] 0.927

Ours 0.974

4.2. Qualitative Comparisons

To demonstrate the visual advantage of our approach, we provide visual comparisons
between our method and the baseline which has the best PSNR performance (among base-
lines) on each dataset. Note that the baseline with the best PSNR performance also tends to
be the best SSIM performance among baselines suggesting a challenging comparison to
our method.

For the Vid4 dataset, we provide the comparison in visual detail between our method
and DAIN-DBPN. Since PSNR is based on measuring the signal-to-noise ratio, it is rather
tolerant to image blur; thus, PSNR fails to accurately assess image quality w.r.t.the human
visual system [43]. Although DAIN-DBPN conveys image blur, the PSNR metric is generous
towards it while the SSIM score is significantly lower than that of our method. From the
comparison, we can observe that the details of our results are relatively more preserved
than the DAIN-DBPN baseline shown in Figure 2a. In particular, our approach manages to
preserve the detailed patterns on the car wheels and texture on the bushes and trees. The
similar is true for the SPMCS dataset where DAIN-DBPN shows higher PSNR but lower
SSIM due to blurry results as shown in Figure 2b. In particular, our results on a video
frame of a cactus shows the sharp characteristics whereas the baseline conveys heavily
blurred results.

In Figure 3, we present the x-t slice (horizontal pixel row slices of consecutive frames,
stacked beneath each slice) comparisons to convey how our results perform temporally.
Our method shows sharper details closer to the ground truth.
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(a) Walking scene sequence (b) Building scene sequence

Figure 2. Comparison on the (a) Vid4 dataset and the (b) SPMCS dataset. Our method shows
favorable preservation of (a) the pattern and textures on clothes, and (b) the pattern and textures on a
building. The magnified regions are denoted as yellow boxes.

Figure 3. The x-t slice of the Walk scene in the Vid4 dataset, where x is the 220-th pixel row.

In Figure 4, we compare DAIN-RBPN and our method on the Vimeo90k dataset.
Although the PSNR is comparable, the performance gap on SSIM is relatively large. The
texture and facial details are blurry for DAIN-RBPN while our method shows relatively
improved results. In particular, the texture of the hair, faces and the eyes is well preserved
by our method. Preservation of facial attributes is an important application for SR as well
as frame interpolation.

In Figure 5, other competing baselines are compared on the SPMCS dataset. The spatial
video super-resolution methods and frame interpolation methods used in the combined
competing methods are strong baselines in each respective field, but this result shows that
combining each of the best method results in sub-optimal performance.
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Figure 4. Comparison on the Vimeo90k dataset. Our method shows favorable human face recon-
struction compared to DAIN-RBPN. The magnified regions are denoted as yellow boxes.

We present another comparison on the 4K60fps dataset [32]. To provide visual refer-
ence to the performance on the 4K dataset provided by FISR [32], we visually compare our
method with FISR and its baselines in Figure 6. Our experimental settings are different
causing an unfair advantage for FISR over our method. Works on super resolution normally
assess there performance on well known datasets like Vimeo90k [12] with ×4 upscaling.
This is an unspoken convention for empirical evaluation so that comparison can be done on
similar settings. However, FISR uses a custom dataset with ×2 upscaling whereas standard
experimental procedures are mostly ×4 on major datasets such as the Vimeo90k, which our
experiments are mostly based on. Another significant advantage that FISR possesses over
our method and other baselines is that it is trained via the 4K60fps training set, whereas
our method is trained on the Vimeo90k dataset. Nevertheless, we run our method on
the FISR custom dataset without fine-tuning which is a serious handicap (×4 upscaling
while baselines are ×2), but our method manages to produce sufficient results. Notice that
our method is at least comparable to the performance of FISR on the 4K60fps dataset, but
also conveys better details (e.g., no ghosting artifacts on basketball image on the 2nd and
3rd columns).
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(a) Land9 sequence

(b) Land5 sequence

(c) Building9 sequence

(d) Pillar4 sequence

Figure 5. Comparison on the SPMCS dataset. We provide comparison to DAIN-Bicubic and
SuperSlomo-RBPN for reference. The magnified regions are denoted as yellow boxes.
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Figure 6. Visual comparison to FISR [32] (×2) and our method (×4) along with additional baselines.
Despite the disadvantage of our method performing ×4 spatial upsampling compared to ×2 for the
other methods, our approach shows even favorable visual quality if not comparable. We compare
with the visual results displayed in the FISR [32] paper. The other methods show bleeding (2nd
column) or ghosting artifacts (3rd column) while our method does not. Reprinted/adapted with
permission from Ref. [32]. Copyright 2019, Soo Ye Kim.

4.3. Ablation Study

To investigate whether the key components of our method contributes to the perfor-
mance, we conduct an ablation study in Table 4. We compare the effects of the permutation
invariance, switching the input order, and attention module. We denote these baselines
as Order dependent, and w/o Attention module respectively which are compared with our
Order independent. Furthermore, we also compare the performance of the two and four
frames input cases to verify the effects of permutation invariance. Note that our Order
independent is the full model which is the symmetric pooling layer added to the Order
dependent baseline.



Sensors 2023, 23, 2529 13 of 18

Table 4. Ablation study of our method including the full versions, without the permutation invariance
module (in-order and reverse-order inputs), and attention module. The best performing method
is indicated in bold. Please note that the number of parameters between the Order independent full
method and Order dependent baselines do not differ. Further, with four frames input, the performance
increases (denoted in red) as opposed to degradation, showing the effects of permutation invariance.

Dataset Vimeo90k Vid4 SPMCS
Metric PSNR SSIM PSNR SSIM PSNR SSIM
Order independent (Avg) 34.4841 0.9739 30.7144 0.9169 31.2145 0.9172
Order dependent (I1,I2) 34.2758 0.9721 30.5972 0.9100 31.2385 0.9192
Order dependent (I2,I1) 34.2761 0.9721 30.5945 0.9099 31.2386 0.9192
w/o Attention module 34.3954 0.9732 30.6194 0.9125 31.1806 0.9165
Order independent (Max) 34.3556 0.9730 30.6366 0.9117 31.2392 0.9192
Order independent (4-frame) 34.7363 0.9746 30.5990 0.9154 31.2914 0.9198

The results show that our full method comprising of the permutation invariance
and attention modules perform the best, suggesting that all modules contribute to the
performance of our approach. It is worth noting that the permutation invariance gives
the largest boost in performance while the attention module shows slight improvements.
Moreover, the Order dependent baseline with (I1, I2) and (I2, I1) input orders show subtle
differences in performance and lower performance which indicates that the network has
assigned some meaning to input order, i.e., the arrow of time [44]. This slight difference is
significant to suggest that the order dependent models are potentially less stable, while
the full model benefits from permutation invariance, resulting in approximately 0.2 dB
boost in PSNR performance. Thus, adding the permutation invariant characteristic, namely
the symmetric pooling allow symmetric handling of inputs that can potentially be more
stable. The 0.2 dB gap is not negligible given that it is collapsed information, where there
could be some samples that have noticeable performance variations due to the input order.
Also, PSNR may not perfectly represent visual quality [43], and that the results shown in
Figures 2–6 show noticeable visual improvement.

4.4. Application: Video Compression Effect

Today we are experiencing an abundance of video data constantly being uploaded to
the web. The trends in video data show that the number of videos is increasing as well as
their duration. It has been prospected that videos will take up 82% of the entire Internet traf-
fic by 2022 [45]. Moreover, video capture technology has advanced significantly, allowing
higher resolution and higher frame rate videos. Due to these trends, memory consumption
(especially for mobile devices), as well as transfer bandwidth (for streaming applications),
have become major issues. Thus, in this paradigm, image/video enhancement techniques
can be potentially exploited as complementary to conventional compression methods.

While this is a preliminary experiment, we demonstrate the benefit of our approach
that produces an overarching trade-off between video size and quality against standard
video codecs (H.264). For this test, we use the compressed H.264 videos spatially down-
sampled by ×0.25 and temporally sub-sampled by half as input, and compare with the
video directly compressed by H.264 with full resolution. We set the compressed video size
to be similar (although our method is slightly smaller) by rate control, and assess the visual
quality. All the used original videos are of size 960× 540 with 29 FPS of frame rates and 1 s
of video length.

Compared to the standard video compression, our method shows favorable visual
quality as shown in Figure 7. Although our approach involved spatial SR and temporal up-
sampling steps, our method can reconstruct spatial and temporal information, whereas the
compressed frame conveys compression artifacts. In particular, the pure H.264 compression
introduces compression artifacts on the wires of a bridge, and details on a rock.
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(a) H.264 (≈27.2 Kb) (b) H.264+Ours (≈20.6 Kb)

Raw H.264 (CRF 40) H.264 (CRF 21) +Ours

Video size (Kb) 46591 27.2 20.6

Compression ratio 1.0 5.91×10−4 4.48×10−4

Original resolution: 960× 540, frame rates: 29 FPS, video length: 1 s

Figure 7. Comparison to video compression. Visual contrast between the (a) H.264 compressed frame
and (b) our generated frame from H.264 compressed frame. We adjust the compressed video size
to be similar by tuning the constant rate factor (CRF) to investigate the quality difference at limited
bandwidth scenarios. For comparison, the H.264 reference uses CRF = 40, while CRF = 21 is used
when applying our method. The magnified regions are denoted as yellow boxes.

We provide another comparison of our approach for additional information in terms
of video size and quality against standard video codecs (H.264). For this additional
experiment, we compare the video size using a lossless compression (CRF 0). Since our
method involves spatial and temporal reduction in addition to compression, our results
show significantly smaller size while comparable in visual quality as shown in Figure 8.
Please note this is for demonstrating the potential effectiveness of the proposed method
without any claim.
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(a) H.264 (b) H.264+Ours

Raw H.264 (CRF 0) H.264 (CRF 0) + Ours

Video size (Kb) 46591 4888 179

Compression ratio 1.0 0.1049 0.0038
Original resolution: 960× 540, frame rates: 29 FPS, video length: 1 s

Figure 8. Comparison to video compression. Visual contrast between the (a) H.264 compressed
frame and (b) our generated frame from H.264 compressed frame. In this experiment, different from
Figure 7, we used the same CRF = 0 for comparing compression ratios. The magnified regions are
denoted as yellow boxes.

5. Discussion

Our method largely relies on the quality of the optical flow module. When the
optical flow fails, the performance would be degraded. Fortunately, failures of a sparse
number of optical flow pairs would not directly degrade our method. It is because our
permutation invariant layer can robustly deal with such sparse outliers by virtue of selection
or smoothing property of the max or average operation, respectively, In this sense, a more
number of input frames would improve the robustness against the failure of optical flow.

However, increasing the number of input frames is not always available. Longer
distant frames from the target frame would increase the chance to fail optical flow esti-
mation. It means that increasing the number of distant input frames is likely to increase
the chance to introduce erroneous features. If more than a majority of the features are
contaminated by the failure of optical flow, then it would yield a quality drop. Nonetheless,
our method can be easily improved if we replace the optical flow module with a more
advanced state-of-the-art optical flow method, e.g., [46,47].

6. Conclusions

We propose a joint SR and frame interpolation method of videos. We devise a permu-
tation invariant block that enables to learn complementary features beneficial for both tasks.
We demonstrate that our method shows favorable performance against the competing
methods and baselines consisting of the state-of-the-art methods despite a smaller number
of parameters. Since our method is able to enhance both spatial and temporal information
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from a compressed form, our work can be used to deal with limited storage memory or
bandwidth, which have practical values such as video streaming.
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