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Abstract: A reconfigurable intelligent surface (RIS) is a development of conventional relay technology
that can send a signal by reflecting the signal received from a transmitter to a receiver without
additional power. RISs are a promising technology for future wireless communication due to
their improvement of the quality of the received signal, energy efficiency, and power allocation.
In addition, machine learning (ML) is widely used in many technologies because it can create
machines that mimic human mindsets with mathematical algorithms without requiring direct human
assistance. Meanwhile, it is necessary to implement a subfield of ML, reinforcement learning (RL), to
automatically allow a machine to make decisions based on real-time conditions. However, few studies
have provided comprehensive information related to RL algorithms—especially deep RL (DRL)—for
RIS technology. Therefore, in this study, we provide an overview of RISs and an explanation of the
operations and implementations of RL algorithms for optimizing the parameters of RIS technology.
Optimizing the parameters of RISs can offer several benefits for communication systems, such as the
maximization of the sum rate, user power allocation, and energy efficiency or the minimization of the
information age. Finally, we highlight several issues to consider in implementing RL algorithms for
RIS technology in wireless communications in the future and provide possible solutions.

Keywords: intelligent reflecting surface (IRS); optimization; passive reflections; reconfigurable
intelligent surface (RIS); reinforcement learning (RL); wireless communication

1. Introduction

Reconfigurable intelligent surfaces (RISs) are some of the most promising emerging
technologies for wireless communication networks in the future because they are able to
provide several advantages, such as ease of development, low cost, and increased spectral
and power efficiencies [1]. An RIS forwards a signal from a source node to a destination
node by reflecting electromagnetic waves (EMs). Therefore, the destination node receives
signals composed of elements from a direct line-of-sight (LoS) link and a reflective link,
as shown in Figure 1a. However, the destination can still receive signals from the virtual LoS
path, even when only a non-line-of-sight (NLoS) link is available, as illustrated in Figure 1b.
Thus, this helps to increase the received signal quality and reduce interference [2].

Using an artificial planar surface allows an RIS to control communications and is a
break from cooperative communication systems with conventional relay technology. In [3],
the proposed RIS could overcome the problem of power allocation among ground users in
non-orthogonal multiple-access (NOMA) networks. Similarly, other authors proposed an
RIS as a relay that improved the throughput performance of the backscatter link system
among ground users in [4]. A capacity maximization was carried out in [5], where an
intelligent reflecting surface (IRS) was used to optimize the IRS phase-shift coefficient
and the transmit covariance matrices by distributing signals among multiple transmitters
and receivers. However, in [6], the authors proposed an aerial RIS to enhance the power
allocation and network coverage in micro-wave channels. Similarly, in [7], beamforming
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and RIS phase-shift optimization were achieved by implementing an aerial RIS-assisted
NOMA network. In addition to hovering in the air while being carried by unmanned
aerial vehicles (UAVs), RISs can be attached to the walls of a room or building. In [8],
an RIS-assisted fingerprint base method was proposed, where an RIS was placed on a wall
for indoor multi-user localization. In [9–11], an RIS was attached to a building to pass on
communications among a mobile UAV, a fixed-position UAV, and ground users. In addition,
an RIS can also be applied underground or underwater. In a recent study, the authors
proposed the use of an RIS at the entrances of underground parking lots to increase the value
of the signal-to-noise ratio (SNR) for communication between a base station (BS) placed
outside the parking area and users inside the underground parking lot [12]. In [13,14], an
RIS was implemented to enhance the outage performance and increase the channel capacity
by assisting the mixed communication of radio frequency (RF) and underwater wireless
optical communication (UWOC) systems. Thus, RIS technology is a passive component
that can be used in a wide range of indoor or outdoor applications [15], as illustrated in
Figure 2. Therefore, a controllable phase shift toward the receiver is essential for getting
better performance. An optimal phase shift in an RIS is capable of maximizing the total
number of served devices, the SNR value, and the network sum rate [2], mitigating signal
propagation impairments [16], and increasing the covered area and the energy collection
capacity in a hybrid scenario [17].

Reconfigurable Intelligence
Surfacese (RIS)

Base
Station

LoS link

Virtual LoS link

Mobile
station

channel from the base station to
the mth reflective element

channel from the mth reflective
element to the mobile station

(a) RIS communication with an LoS link.
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(b) RIS communication with an NLoS link.

Figure 1. Illustration of RIS communication in wireless communication.

Technological progress has proceeded linearly with the rapid development of advances
in communication technology that we have recently seen in academia and industry. There-
fore, the demand for technology that is flexible and adaptive to environmental changes is
also increasing. Machine learning (ML), which is a branch of artificial intelligence (AI), is
a sophisticated technological breakthrough that continues to rapidly develop in various
technological sectors, including wireless communication networks. One of the ML types,
reinforcement learning (RL), is a way to overcome concerns about adaptive environmental
changes due to its efficacy in embedded optimization and algorithms for instant decision
making in wireless networks. Different RL algorithms have been adapted for RIS-based
wireless communication to improve the performance. The categories of RL implemented
in RISs are categorized as the deep Q-network (DQN), deep deterministic policy gradient
(DDPG), twin delayed DDPG (TD3), and proximal policy optimization (PPO). Previous
studies of RL implementation showed significant results when it was applied to RIS-assisted
wireless communication systems [18], RIS-assisted UAV networks [19], and RIS-assisted
NOMA [20]. RL provides an advantage for wireless communication because it allows the
system to learn and build knowledge about radio channels without knowing the channel
model and mobility pattern. The algorithm automatically observes the rewards from the
environment to find solutions to the required optimization problems. Due to this way of
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working, the implementation of RL in an RIS system can provide advantages, as described
in the studies mentioned earlier.

(a) On-the-ground application (b) Aerial application (c) On-the-wall application

(d) Underground application (e) Underwater application

Figure 2. Application fields of RISs.

1.1. Related Work

Due to the promising advantages of implementing RISs for wireless communica-
tion in the future, recently, there have been several surveys discussing the application of
RISs [21–27]. In [21], Kisseleff et al. focused on the implementation of RISs in underwater,
underground, industrial, and disaster environments. They carried out a performance
analysis of RIS deployment and system design in challenging environments. They high-
lighted that RISs could enhance the SINR performance by overcoming the problem of signal
scattering/reflection caused by multipath effects and partially compensating for signal
absorption through passive beamforming. Issues raised by the authors included uneven
surfaces, water flows, and the movement of maritime objects in underwater media, types
of soil conductivity with varying degrees of absorption in underground media, blocked
sensors and mobile infrastructure in industrial environments, and broken infrastructure in
a disaster environment. The authors of [22] focused on explaining the role of RIS hardware
and system design technology. In addition, the authors also presented an explanation re-
garding the several implementation structures of RISs and implementations using electrical
control technologies. Another study highlighted various applications of IRSs for assisting
UAV communication networks and emerging technologies that could empower the ad-
vantages of RISs by focusing on ground and airborne scenarios [23]. The authors briefly
stated that machine learning and deep learning are among the emerging technologies for
improving channel estimation, embedded optimization, spectral efficiency, and other trade-
offs. The authors of [24] discussed improvements in spectral efficiency, energy efficiency,
security, and other types of performance as the effects of IRS position and the roles of UAVs
for non-terrestrial networks by analyzing some performance criteria. This survey divided
its analysis into different RIS positions and UAV roles in five scenarios.

In addition, due to the development of ML implementations, most of the existing
literature has focused on implementations thereof for RISs [25–27]. An analysis regarding
the optimization of UAV position and trajectory, RIS phase shift, and precoding at the
base station was studied in [25]. The authors also mentioned several ML techniques that
were implemented to perform the optimizations. Another study explained the operating
principle of RISs and channel estimation in RIS technology. Their survey presented the
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model architectures of ML and its application in channel estimation, spectrum sensing,
RIS phase shift, security, and energy efficiency in wireless networks [26]. In [27], Li et al.
presented an analysis of optimization and AI methods while considering the solution
quality and computational complexity. The authors focused on reviewing the RIS phase-
shift optimization from the point of view of signal processing and AI. They divided their
explanation into three variations depending on the different amplitude values for the RISs’
reflecting elements (REs).

Even though there have been several studies discussing the application of ML in RISs,
they discussed general knowledge of RL and future opportunities for its implementation.
However, there are still limited surveys that have dug into the performance of several RL
algorithms in RIS technologies in depth. Table 1 summarizes the existing literature on the
implementation of RLs for RISs in wireless communications.

Table 1. List of works surveyed on the implementation of RL for RISs.

References Year Thoroughly Explained Scope of the Architecture Limitations and ContributionsGeneral Knowledge of RL DQN DDPG TD3 PPO

[21] 2021 X x x x x RIS deployment and system design

[22] 2021 X x x x x RIS hardware and system design

[23] 2022 X x x x x IRS-assisted UAV for massive networks
in ground and airborne scenarios

[24] 2022 X x x x x IRS-assisted UAV for non-terrestrial networks

[25] 2022 X x x x x Optimization and performance analysis
for UAV-assisted RIS communication

[26] 2022 X x x x x Channel estimation and
RIS based on ML applications

[27] 2022 X x x x x Signal processing and AI methods
for RIS phase-shift optimization

Our work 2023 X X X X X RL algorithms implementation for RISs

1.2. Scope and Contributions

An adaptive system that can adapt to the current environmental conditions due to the
rapid pace of environmental change and development can be obtained by implementing
RL in an RIS. Compared to recent surveys regarding the implementation of ML in RISs,
this study focuses on reviewing the role of RL algorithms that have been implemented
for RISs in various emerging technologies. Due to the limited number of surveys that
were specifically based on RL applications in RISs, this work fills the gap by providing
information regarding RL algorithms for the optimization of RIS technology to overcome
various wireless communication problems. The main contributions of our study are listed
as follows:

• In the beginning, we give brief insights into RIS technology and RL. We provide a
comprehensive introduction to RIS technology, including the types of RISs in terms of
reflector types and phase-shift coefficient values.

• We provide a mathematical explanation of the RL algorithms presented in the literature.
We categorize the different RL algorithms as DQN, DDPG, TD3, and PPO. We conduct
a comprehensive review of the peculiarities, including the implementation of each RL
algorithm in RIS technologies mentioned.

• We carry out an extensive analysis of the role of RL in empowering the use of this
RIS integration by optimizing several parameters to solve various types of problems
in several emerging technologies and application scenarios. The problems found in
RIS technologies that can be solved by implementing RL algorithms are described



Sensors 2023, 23, 2554 5 of 23

as the energy efficiency, spectral efficiency, network capacity, security, and age of
information.

• In the end, we discuss several existing and potential challenges while providing possi-
ble solutions as future research opportunities for overcoming the issues and honing the
research work dedicated to this promising integration of RISs and
RL algorithms.

1.3. Organization of the Paper

As presented in Figure 3, the rest of this paper is organized as follows. An overview of
RISs and RL is discussed in Section 2. Section 3 provides the RL algorithms implemented
for RIS technology in the literature. Furthermore, we offer the potential challenges and
future research opportunities in Section 4. Finally, Section 5 presents the conclusions of
the paper.

Reinforcement Learning for
Reconfigurable Intelligent Surfaces

Introduction Overview of RIS dan RL RL algorithm for RIS Potential challenges and
future research opportunities

Conclusion

DQN DDPG TD3 PPO

RIS Optimal Placement Channel Estimation Power Consumption Model Training Federated and Split
Learning for RIS

RIS for Underwater
Wireless Communication

RIS for Underground
Wireless Communication

Figure 3. Organization of the paper.

2. An Overview of RISs and RL
2.1. RIS Technology

RISs are a development of conventional relay technology, and they forward radio-
frequency signals from a transmitter to a receiver by reflecting them. An RIS is a two-
dimensional array of meta-surface scatterers connected to a controller so that the variables
can be changed and adjusted. The advantage of an RIS over its predecessor is that, because
it consists of many REs that can simultaneously transmit different signals, an RIS can
increase the spectrum efficiency [28]. In addition, the energy efficiency is also increased
due to the active or passive reflection of signals [29].

2.1.1. Active and Passive RISs

Functionally, both types of RISs have the same function of reflecting EMs. However,
in the active reflector, each RE has an active load impedance to reflect the signal and
amplify its electromagnetic power level [30]. The active load can be obtained by utilizing
the negative resistance to convert the direct current (DC) signal into an RF signal. Amplifiers
can be placed on each RE or several REs in a sub-array served by the same amplifier with
different phase-shift circuits [31]. Compared to active RISs, passive RISs are usually more
affordable and energy efficient because they do not require additional power to amplify
the reflected signal. However, it takes a massive number of REs to avoid path loss [32,33].
Another way to overcome this issue is by adding a control system to the passive RIS,
which makes phase shift essential when reflecting the received signal. Figure 4 shows a
comparison between active and passive RISs.

2.1.2. Continuous and Discrete RISs

Each RE in an RIS has a phase and amplitude setting that is made by a controller to
adjust its electromagnetic response, which is a phase shift. The desired phase shift can be
adjusted via the on or off status of the multiple pin diodes that are connected [34,35]. Phase-
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shift control can increase the spectrum and energy efficiency of an RIS due to the reflection
of the signal without adding a power amplifier [36]. The discrete phase-shift coefficient is
practically limited to discrete values between 0 and 2π with the same space. Meanwhile,
the continuous RIS phase shift can take any values within the same range [37,38].

RIS

Base
Station

Reflected signal
with amplification

Mobile
station

φ 
Amplifier

Phase Shifter

Active element

RIS controller

(a) Active RIS.

RIS

Base
Station

Mobile
station

Passive element

Reflected signal
without amplification

φ 
Phase Shifter

RIS controller

(b) Passive RIS.

Figure 4. Comparison of active and passive RISs.

In [39], active and passive RISs with a continuous phase shift were implemented
to analyze the achievable rate and power budget. The achievable rate for the active
RIS was 55% higher than that for the passive RIS given the same number of RIS REs,
with the cost of a higher hardware complexity. In addition, the passive RIS showed better
performance for small power budgets. However, in [40], both active and passive IRSs
were implemented with a continuous phase shift to measure the energy efficiency values
in multi-user communication. The average energy efficiency value was monotonically
increased with the number of IRS elements for both active and passive IRSs. However,
for the passive IRS, the energy efficiency was increased by up to 5.75% compared with
systems with an equal power-splitting active IRS. In [41], a hybrid passive–active RIS with
a continuous phase shift was applied to maximize the minimum rate of multi-users. As the
transmission power budget increased, the minimum rate of the passive RIS remained
consistent because it did not require additional power. The minimum rate obtained by the
active RIS at a low transmit power budget was worse than that of the passive RIS. Still, it
increased up to 75% as the maximum transmit power increased at the RIS, with the cost of
power consumption also increasing. However, by implementing a hybrid active–passive
RIS, the minimum rate obtained with a low transmit power budget was higher than that of
the active and passive RISs. As the transmit power budget increased, it grew up to 65%
with respect to that of the passive RIS.

In [42], a passive RIS was implemented with continuous and discrete phase shifts.
The performance of the RIS scheme increased with increasing RIS REs and transmit power
and with either a continuous or a discrete phase shift. However, the continuous-phase-
shift RIS produced an average sum rate that was 4.25% better than that of the discrete-
phase-shift RIS. However, in [43], joint active–passive beamforming for IRS-assisted secure
communication was implemented with both types of IRS phase shifts. The IRS with a
continuous phase shift produced a higher sum secrecy rate than that of the IRS with
a discrete phase shift. However, as the quantization order of the IRS phase shift rose,
the sum secrecy rate significantly increased and gradually approached the performance
of the algorithm of the IRS with a continuous phase shift. Both phase shifts were also
implemented in [44] to configure the energy and spectral efficiencies of an active RIS in
MIMO uplink transmission. Continuous phase shift—whether with partial or perfect
CSI—showed a higher spectral efficiency than that of the discrete phase shift with one- or
two-bit quantization. However, the substantially higher static-hardware-dissipated power
of the continuous phase shift negatively influenced the energy efficiency. By implementing
a discrete phase shift, the energy efficiency increased by up to 77.78% with respect to the
continuous one.
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Based on the description above, continuous and discrete phase-shift control benefits
RIS implementation with the respective tradeoffs for both active and passive RISs. There
are various ways of optimizing the RIS phase shift. Some studies have optimized the RIS
phase shift by applying conventional optimization algorithms [45–47], machine learning,
deep learning, and reinforcement learning [48–50].

2.2. RL Algorithm

Due to its ability to allow machines to automatically make decisions based on an
analysis of their dataset collection, machine learning has been a breakthrough in the world
of technology since its emergence. RL is a development of machine learning—deep learning,
to be precise. In the RL algorithm, a machine interacts with a dynamic environment [51,52].
Thus, the algorithm learns from its own experience, which is stored in a dataset, to obtain
the best decision results [53]. Mathematically based on the Markov decision process (MDP)
formula, the RL algorithm contains three stages—state, action, and reward—as illustrated
in Figure 5.

State (st)

Reward (rt)

Next state
(st+1)

3

1

3

Action (at)2

RIS controller

Base
Station

Virtual LoS link

NLoS link

Passive element

φ 
Phase Shifter

Environment

Figure 5. Reinforcement learning model.

• State: a collection of the environment’s characteristics (S) sent by the environment to
the agent. The input is the initial state s1, and st ∈ S denotes the environment at the
time step t.

• Action: a collection of actions that are the response of the agent (A) to the received
environmental characteristics. Every time the agent gives the action at ∈ A at time
instant t, the environment will send the agent the latest environment characteristics
or what is called the next state st+1.

• Reward: a collection of feedback from the environment to the action sent by the agent
(R). For every rt at time instant t, the environment will reward the agent when the
results obtained are better than the results that were previously achieved. On the other
hand, the environment will carry out a punishment when the results obtained are
worse than before.

• Q-value function: a state–action value function that measures the cumulative reward
value received by agent Q(s, a). Q-value indicates how good the action at taken for
the given state st was.

Based on the method of deciding which action to take, there are two types of RL:
policy-based and value-based RL methods [54]. A value-based method selects an action
by considering the optimal value of the Q-value function Q∗(s, a), while a policy-based
method considers the optimal policy value or transition probability π∗(s, a).
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Combining deep neural networks (DNNs) with RL provides the added advantage of
allowing the solution of extremely complex problems. In a value-based DRL method, the
DNN acts as a function approximator that estimates the Q-value Q(s, a), as in (1).

Q(s, a; θ) ≈ Q(s, a) (1)

where θ is the weight of the DNN as a function parameter. However, in a policy-based
RL method, the DNN functions as a gradient estimator Oθ J(θ) to estimate the probability
value of J(θ), as shown in (2).

Oθ J(θ) ≈ ∑
t≥0

r(τ)Oθ log πθ(at, st) (2)

where r(τ) is the reward for each trajectory (path), and log πθ(at, st) is the probability of
the action taken for each state.

This study will specifically discuss two value-based RL methods (DQN and DDQN)
and three policy-based RL methods (DDPG, TD3, and PPO) applied to an RIS technology.
In general, value-based RL methods have a simpler architecture, so the time consumed is
lower than that of policy-based RL methods. However, they have the characteristics of a
discrete action space, which does not correspond much with most variables in an actual
situation. Along with its development, recently, there have been studies implementing
DRL in various branches of technology. Some existing studies have analyzed performance
comparisons between value-based and policy-based methods. In [55], DRL methods were
implemented for residential heating, ventilation, and air conditioning. Because the output
size of the value-based RL method was larger than that of the policy-based one, the average
return gained by the value-based RL method was 33.33% lower than that of the policy-
based RL method. However, in [56], both RL methods were implemented for energy
management in data-driven driving scenarios; the energy management strategy with the
value-based method had a 0.06444% degradation in battery capacity compared to the
0.07178% degradation obtained with the policy-based method over the whole test cycle.
Another study implemented a policy-based DRL method for controller development that
allowed robust flying UAVs in a dynamic environment and compared it with a value-based
method [57]. The policy-based method reached a converged state of 1000 episodes faster
than the value-based method did, with a 33.3% higher average reward; it successfully hit
the target 6.3% more often. Both of the DRL methods can also be implemented for energy
consumption prediction. In [58], both methods were used to predict power consumption,
and the policy-based method produced better system performance for a computation
time that was 45.8% longer. The mean absolute error, root mean square error, and mean
absolute percentage error values were 25.52%, 9.1%, and 21.13% smaller than those of the
value-based method.

The following section will provide a comparison of both RL methods, as well as
qualitative and quantitative analyses of the application of these RL methods in RIS-assisted
wireless communication.

3. RL Algorithm for RISs

The DRL algorithm can be implemented in RIS technology for several things, especially
optimization for phase shift, passive/active beamforming, resource allocation, power
allocation, etc.

3.1. Deep Q-Network (DQN)

DQN is a value-based RL algorithm that seeks its best action based on the highest
Q-value with the critical parameters considered in the Q-learning. It will iterate the Q-value
for each observation to find the maximum value, as shown in (3) and (4).

Q(s, a)← Q(s, a) + αQ∗(s, a) (3)
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Q(s, a)← Q(s, a) + α

{
r + γmax

a′
Q∗(s′, a′)−Q(s, a)

}
(4)

where the maximum value of Q-value Q(s, a) is considered as the best action. Several
studies have implemented the DQN algorithm for RIS technologies. Table 2 provides a
brief summary of the studies that are presented below.

Table 2. Summary of the DQN algorithms for RIS optimization.

References Problem Optimized
Parameters

Implemented
RL Algorithm RIS Installation

[59]
Maximizing the
energy efficiency

of the UAV

1. UAV trajectory
2. RIS phase shift

DQN and
DDPG

Attached to
a building

[60]
Maximizing
the data rate

1. UAV trajectory
2. RIS passive
phase shift
3. GT scheduling

DDQN and
DDPG

Aerial RIS

[61]

Mitigating
over-estimation
and maximizing
average sum rate

1. RIS passive
phase shift

DDQN On the ground

In [59], Wang et al. focused on the trajectory optimization of an IRS-assisted UAV
communication system. This research implemented two DRL algorithms: DQN and DDPG.
The results showed that DQN had a low computational complexity compared to that of the
other implemented DRL algorithms due to its simpler structure. This was proven in this
study, as the training time required by DQN was 1000–2000 seconds faster as the number
of REs increased. However, it should be noted that the system design when using the
DQN algorithm could only optimize the UAV trajectory in a limited discrete action space.
Therefore, the DDPG achieved a better UAV trajectory because it always tried continuous
actions, so the possibility of achieving a better quality of communication was higher. Even
so, the level of energy efficiency of the system with the DQN implementation was much
higher than that in the other two scenarios with random and fixed UAV movements.

Some other studies implemented advancements in DQN by using double DQN
(DDQN). DDQN means that two NNs are used; the first DQN trains the original network,
and the other handles the target network. The authors of [60] implemented DDQN to opti-
mize the 3D-trajectory and phase-shift design for RIS-assisted UAV systems. DDQN was
used here to model the UAV trajectory, flight time, and ground terminal (GT) scheduling
as the discrete action. Partially solving the problems mentioned here by using traditional
methods would cause enormous computation costs to be incurred. Thus, Mei et al. pro-
posed a DRL-based solution in order to address those problems. The achieved results
illustrated that the propulsion energy needed was 18.12% more efficient, thus increasing
energy efficiency by up to 12.28% with respect to the system implementation without an
RIS or optimal passive RIS phase shift. However, when the UAV trajectory and flight time
were considered continuous variables, the discrete actions became enormous at the cost
of a loss of accuracy due to the formulation of those continuous variables as discrete ones.
Therefore, the authors leveraged the DDPG algorithm to find the optimal continuous value,
which will be discussed in the following subsection.

In the other case, another study implemented DDQN in a model-free IRS configuration
in a complex smart radio environment [61]. In this work, the current reflection pattern’s
incremental phase shift was considered as an action. The DDQN algorithm in this study
increased the total capacity by up to 42.86% for various Rician factor values compared to
the other benchmarks. However, the action space was restrained for a fast convergence
rate in DRL, which limited the phase freedom of the IRS. Thus, to obtain this signal quality,
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the authors added another model-free real-time optimization method to design the fine
phase control of the RIS at the cost of increased time computation, as the dither-based
method needed to sample the channels. Thus, the time resources dedicated to this method
should be deliberately selected according to the channel block dynamics to balance the
allocation of time between channel estimation and data transmission.

However, a characteristic of DQN, its discrete action space, can be a limitation when
compared to reality, where everything is sustainable. If we want to implement continuous
action by using DQN, getting an infinite number of actions will take forever, considering
that DQN requires one output neuron per action. In addition, based on (3), it is difficult to
determine the best action based on the maximum Q-value because DQN trains the given
state simultaneously with all available actions. Thus, it is difficult to calculate the maximum
value of the Q-value in the next state Q∗ with the DQN update rule. One way that can be
used as a solution for overcoming these limitations is training a side estimator to get the
best action before training it with the given state.

3.2. Deep Deterministic Policy Gradient (DDPG)

DDPG is a policy-based RL method and an actor–critic algorithm. There are two
parameters in the DDPG algorithm: policy parameters—as actors—are denoted by πθ(a, s),
and critical parameters—as critics—are denoted by Qπθ

φ (s, a). DDPG trains actors to esti-
mate the best action. After that, they train the action with the given state to know how good
the action is for the state. All updates in DDPG are based on scholastic gradient descent
(SGD) by using an adaptive gradient descent technique, such as resilient propagation
(RProp), root mean square propagation (RMSprop), an adaptive gradient (Adagrad), Adam,
etc. DDPG uses the Q-learning algorithm to find the optimal policy value π∗, as shown
in (5).

Q∗(s′, a′) = γQπθ
φ (s′, π′)−Qπθ

φ (s, a) (5)

The equation above shows that DDPG does not consider the action, but rather the
policy, which is the action provided by the actor. The DDPG algorithm trains the actor by
using a deterministic policy gradient over the action, which is the input of the network, as
shown in (6), and the target value for each sample i is shown in (7).

Jθ

∂x
=

1
N) ∑

i

Qπθ
φ (s, a)

da
π(s|θ)

dθ
(6)

yi = ri + γmax
a′

Q′πθ
φ (s′, a|φ′) (7)

In the previous subsection, we discussed the characteristics of DQN technology for
RISs. In the following studies, we will provide a brief summary of the papers discussed in
this subsection, which are summarized in Table 3.

As mentioned in the previous subsection, the authors of [59] added the DDPG algo-
rithm to support the DQN algorithm with a continuous trajectory to achieve better energy
efficiency and a better UAV trajectory in the system. Therefore, their DDPG-based solutions
gained higher rewards than their DQN-based solutions did, as DQN only tried a limited
set of actions, while DDPG continuously optimized the variables. However, the system
design with the implementation of DDPG had a higher computational complexity due to
its more complicated architecture, which implemented two DNNs as an actor network and
a critical network. It also resulted in the training time required by DDPG being longer than
that required by other implemented algorithms.

The authors of [60] leveraged the DDPG algorithm to overcome the loss of accuracy
gained by formulating continuous variables into discrete variables in the DDQN algorithm.
The computational complexity of systems with DDPG was similar to those with DDQN
because both used double DNNs. However, the characteristic of DDPG being able to
handle continuous actions resulted in a decrease in propulsion energy of up to 10.52% and
an increase in energy efficiency of up to 31.55% compared to DDQN. The results of the
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3D trajectory and its projection in the 2D plane showed that the communication quality
received by users in DRL-algorithm-based systems was better due to the UAV’s tendency
to approach the RIS to find suitable paths for serving users.

In [62], Huang et al. implemented the DDPG algorithm to maximize the sum rate
capacity of RIS-assisted multiuser multiple-input–multiple-output (MIMO) systems. In that
study, a DNN was used to map the channel state information (CSI) as the primary parameter
value sent by the environment. The matrix values of phase shift and beamforming were
optimized by considering the given CSI. Based on (5), the state value was the input for the
actor and critic network. However, the correlation between states as inputs could reduce
the value of the NN efficiency as an approximation function. Therefore, the state entered a
whitening process to remove its correlation before inputting both networks. In addition,
batch normalization was utilized in the hidden layers to overcome the variations in the
distribution of each layer’s input resulting from the changes in the parameters of the
previous layers. Using these solutions, the DDPG algorithm in this study was able to
provide optimal beamforming and RIS phase shift and to produce comparable sum rate
performance with that of the state-of-the-art benchmarks with the cost of the system’s
complexity. However, the primary purpose of implementing the DDPG algorithm in this
study was to obtain the optimal beamforming and RIS phase shift, rather than to train an
NN for online processing.

The DDPG algorithm can also be implemented to optimize the RIS phase shift by
considering the CSI in a high-speed railway network [63]. To avoid the performance loss
caused by phase-shift design with an outdated CSI, some authors calculated the delay value
between the outdated CSI and real-time CSI. The result illustrated that the performance loss
grew by up to 15.1% with the decrease in the outdated CSI coefficient. That was because
the lower value of the outdated CSI coefficient made the CSI more inaccurate, which added
to the difficulty of optimizing the RIS phase shift. In addition, in this study, an RIS was
deployed near a mobile relay to suppress the interference signal. As the number of RIS REs
increased, the result showed that the proposed system produced a capacity that was up to
212% higher than that of a system with a random phase shift and was significantly higher
than that of a system without an RIS. Thus, it was explained that increasing the capacity
without optimizing the REs was inefficient.

Ma et al. in [64] implemented DDPG for RIS-aided multiuser MISO systems with
hardware impairments to maximize the user data rate by optimizing the beamforming and
phase shift of an RIS. This study observed the minimum average user data rate, where
the value increased by up to 22.22% as the RIS REs increased. However, the result also
illustrated that the increase in REs did not affect the convergence speed of the proposed
DDPG algorithm. The proposed system was also robust in a uniform distribution of channel
communication. By comparing the performance achieved with that of the non-optimized
algorithm, the proposed system significantly outperformed the existing non-optimized
algorithm by up to 125%. However, to reduce the proposed system’s computational com-
plexity and feedback overhead, they considered the design of the transmission scheme
based on statistical CSI because the beamforming and RIS phase shift needed to be calcu-
lated in channel coherence intervals for instantaneous CSI-based schemes, which increased
the computational complexity.

Other than that, the implementation of DDPG to optimize an RIS-based UAV-NOMA
downlink network was considered in [65]. The authors initiated the previous user’s data
rate, the angle of RIS phase shift, and the UAV’s horizontal position to obtain the new
RIS phase shift for maximizing the downlink users’ sum rate. DDPG was implemented
to ensure the successful implementation of successive interference cancellation instead of
conventional optimization methods, such as convex optimization, which requires much
mathematical processing. The achieved result showed that the proposed system signif-
icantly outperformed the system with a random phase shift as the transmit power and
number of REs increased. Even though the proposed system was always convergent and
stable with various numbers of REs, it was essential to consider the tradeoff among the
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number of users, the number of REs, and the data rate. The increase in the number of RIS
elements was directly proportional to the number of neurons and the duration of training
required, where a longer training duration and a greater number of neurons led to a higher
calculation complexity and made the output latency non-negligible.

The authors of [66] considered the transmitter channel, previous phase, and previous
estimated SINR provided by the environment for the agent to obtain new RIS phases in
order to maximize the sum rate of an IRS-assisted NOMA system. The authors implemented
another algorithm, the exhaustive search algorithm, to compare the performance of the
proposed system. The result revealed that the NOMA sum rate generated by the DDPG
algorithm approached the upper bound and was close to optimal. The proposed system
achieved a sum rate that was 6.56% higher than that of the exhaustive search algorithm.
In addition, the proposed system also increased the sum rate by up to 12.5% as the number
of users increased. In addition, the proposed system’s computational complexity was much
lower than that of the exhaustive search algorithm due to the considered parameters.

Table 3. Summary of the DDPG algorithms for RIS optimization.

References Problem Optimized
Parameters

Implemented
RL Algorithm RIS Installation

[59]
Maximizing the
energy efficiency

of a UAV

1. UAV trajectory
2. RIS phase shift

DQN and
DDPG

Attached to
a building

[60]

Maximizing the
data rate and
reducing the

loss of accuracy

1. Continuous UAV
trajectory
2. Continuous
GT scheduling

DDQN and
DDPG

Aerial RIS

[62]
Maximizing

sum rate capacity
1. Transmit
beamforming
2. RIS phase shift

DDPG Attached to
a building

[63]
Maximizing

the capacity with
interference

1. RIS phase shift DDPG Attached to
a moving vehicle

[64]
Maximizing

the user’s data
rate

1. Transmit
beamforming
2. RIS phase shift

DDPG On the ground

[65]
Maximizing

the downlink
user’s data rate

1. BS power allocation
2. RIS phase shift
3. UAV horizontal
position

DDPG Aerial RIS

[66]
Maximizing

the long-term
average of users

1. RIS phase shift DDPG On the ground

[67]
Maximizing the
sum secrecy rate

1. UAV active
and passive
beamforming
2. RIS reflecting
beamforming

TDDRL Attached to
a building

Apart from the previous studies, in [67], Guo et al. aimed to maximize the sum secrecy
rate by implementing twin-DDPG deep reinforcement learning (TDDRL) for RIS-aided
millimeter-wave UAV communications. The first DDPG was responsible for learning the
optimal policy of the UAV beamforming matrix and RIS-reflecting beamforming matrix.
Another DDPG network was responsible for obtaining the optimal movement of UAV
beamforming and RIS-reflecting beamforming. Similarly to [63], the authors considered
the delay between the outdated CSI and real-time CSI to avoid performance degradation.
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The computational complexity of the TDDRL algorithm depended on the number of DNN
layers exploited in each DDPG network, which could be reduced by cutting training
procedures after the network performance converged. The result illustrated a gap between
the average sum secrecy rate achieved by the proposed system and that of the single DDPG
because the proposed system had more potential to separate complicated variables, such as
the CSI and UAV positions.

For a DDPG-based system, the complexity of a trained network depends mainly on
the actors and the network architecture. Although there have been plenty of studies that
have worked with DDPG to overcome the drawbacks of DQN in terms of the continuous
action space, DDPG has a laxity considering that all of the descendants of Q-learning suffer
from overestimation bias.

3.3. Twin Delayed DDPG (TD3)

Similar to the DDPG algorithm, TD3 is a policy-based RL method and an actor–
critic algorithm. However, TD3 could reduce the overestimation bias obtained from the
descendant Q-learning by implementing two critics: Qπθ

φ1
and Qπθ

φ2
. TD3 computed the

target as the minimum value between two critics, as shown in (8), where DDPG calculated
the target value based on the maximum Q-value.

y = r + γmin
i=1,2

Qφ′i
(s′, ã) (8)

where ã is the action obtained with the addition of a small random noise.
TD3 can be implemented with variance-lowering optimization, which includes de-

layed policy updates and target policy smoothing. Delayed policy updates are where one
actor and target are updated for every two critics in order to obtain a higher quality of the
target value. Target policy smoothing is adding random noise to the target action chosen by
the deterministic policy at each training step in order to keep the target action close to the
actual action. The TD3 algorithm trains the actor by using a deterministic policy gradient
over the action to update the actor’s weight, and one of the two critics φ1 is trained with
the action. The deterministic policy gradient for TD3 is shown in (9).

Jθ

∂x
=

1
N) ∑

i

Qπθ
φ1
(s, a)

da
π(s|θ)

dθ
(9)

Several existing studies discussed in this subsection regarding the implementation of
the TD3 algorithm for RIS technology are briefly summarized in Table 4.

In [68], Hashemi et al. implemented the TD3 algorithm to maximize the total achiev-
able finite block length rate in all actuators for short packet communication in RIS-assisted
networks. The TD3 algorithm optimized the RIS phase-shift matrix by considering the
channel’s response to the local information. The authors used DDPG for a comparison
of the system’s performance. The result illustrated that the proposed system had fewer
fluctuations in the average finite block length rate than the DDPG did. Due to the more
stable fluctuations, the learning speed in phase control became faster. The system also
captured the Shannon rate and finite block length rate to analyze the system’s performance
in ideal or non-ideal reflective phase-shift design. The result showed that the Shannon rate
increased by up to 7.7% and the finite block length rate increased by up to 28.57% when
implementing an ideal RIS. In addition, the proposed system was proven to be practical
in ideal or non-ideal RISs because the graphs’ slopes were quite similar as the number of
REs increased.

In [69], the authors implemented TD3 for RIS-assisted multi-antenna ambient backscat-
ter communication (AmBC) signal detection. The RIS controller, as the agent, received
the CSI from the AmBC system to optimize the RIS phase shift and obtained the maxi-
mum energy ratio of the systems. The authors used another DRL algorithm (DDPG) and
conventional algorithms (successive convex appropriation and semi-define relaxation)
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for performance comparisons of the proposed systems. The simulations proved that the
proposed system had an increase in performance quality of up to 23.8% with a cost of the
time consumed being 0.03 s longer and the application of two more DNNs than in DDPG.
Meanwhile, the conventional algorithm had the lowest-quality performance and consumed
1.3 times more time than the proposed system did, proving that the proposed system
had a significantly lower complexity than that of the conventional algorithm. In addition,
the achieved result also showed the effect of the hidden layer on system performance;
with an increase in implemented hidden layer, the system performance gradually de-
creased due to the DNN becoming more extensive, which resulted in increased learning
and training complexity.

TD3 could also be implemented for joint optimization of the RIS phase shift and pre-
coding matrix [70]. Some authors aimed to obtain the maximum value of the sum rate by
running a policy evaluation at the end of each learning episode by considering the channel
responses from the users to the RIS and from the RIS to the BS. The proposed system was
compared to a model-drive minimum mean square error based on an alternating projected
gradient algorithm. It showed a better sum rate that outperformed the baseline in low
inter-user configurations. In addition, the performance quality of the proposed system
increased by up to 72.73% with respect to another algorithm when simulated in conditions
with a high SNR.

The aforementioned studies showed that the TD3 algorithm can be a solution for
improving system performance compared to that of other Q-learning and conventional
algorithms. However, even though the TD3 algorithm has levels of computational com-
plexity and time consumption that are worth with its communication performance, it is
essential to consider the tradeoff among the number of users, the number of REs, and the
number of hidden DNN layers. However, there are still very few studies that have applied
the TD3 algorithm to RIS-assisted systems.

Table 4. Summary of the TD3 algorithm for RIS optimization.

References Problem Optimized
Parameters

Implemented
RL Algorithm RIS Installation

[68]

Maximizing the
total achievable

finite block
length rate

1. RIS phase shift TD3 On the ground

[69]
Maximizing

the energy ratio
1. RIS phase shift TD3 On the ground

[70]
Maximizing
the sum rate

1. RIS phase shift
2. Precoding at
transmitter

TD3 On top of building

3.4. Proximal Policy Optimization (PPO)

Unlike the previous algorithms based on Q-learning, the PPO algorithm is based on
a ratio between the current policy πθ(st|at) that will be learned and the baseline policy
πθk (st|at) that was obtained from previous experiences. The ratio between these policies is
notated as Rt(θ) and is shown in (10).

Rt(θ) =
πθ(st|at)

πθk (st|at)
(10)

However, if the probability ratio between the new and old policies is outside the range
of (1− ε) to (1 + ε), the advantage function will be clipped by using a clipped objective
function, as shown in (11).



Sensors 2023, 23, 2554 15 of 23

LCLIP
θk

(θ) = E
τ∼πk

[
T

∑
t=0

min(rt(θ)Âπk
t , g(ε, Âπk

t ))

]
(11)

where

g(ε, A) =

{
(1 + ε)A A ≥ 0
(1− ε)A A < 0

(12)

where the advantage function Aπ(s, a) and value function Vπ(s) are, respectively, the
parameter for knowing how much an actor is better than expected and the parameter for
measuring how good the current state is, as shown in (13) and (14).

Aπ(s, a) = Qπ(s, a)−Vπ(s) (13)

Vπ(s) = E

{
∑
t≥0

γtrt|S0 = s, π

}
(14)

In [71], Nguyen et al. aimed to maximize the energy efficiency for all users in RIS-
assisted multi-UAV networks. Two agents were implemented. The UAV agents optimized
the UAV power allocation, and the RIS agents optimized the phase-shift matrix with the
given channel gain to maximize the system’s energy efficiency. The authors proposed two
system schemes that used the PPO algorithm: a centralized scheme and a parallel learning
scheme. The difference between the two was the training starting time for the policy to
maximize the EE performance. The policy was used and trained in the centralized scheme
when the system had an N+1 policy for UAV N and policy N for the parallel learning
scheme. The converged parallel learning PPO scheme was faster than the other schemes. In
addition, the energy required for the proposed parallel system was 92.47% more efficient,
and the centralized PPO system was 26.67% more efficient compared to systems with
random phase shift schemes as the number of users increased. Meanwhile, along with the
increase in RIS REs, PPO parallel learning was 3.4% more efficient than the centralized
PPO algorithm.

Another study aimed to minimize the information age by optimizing the UAV altitude,
the communication schedule, and the RIS phase shift [72]. The proposed PPO algorithm
did not rely on prior knowledge of the activation patterns. It found the control policy
controlling the UAV altitude and the scheduling decision within an unknown activation
pattern by considering the SNR and RIS phase shift of the previous action. The authors
used the UAV altitude and scheduling policy as the main control objectives to reduce
the DRL learning complexity and as a tradeoff due to the discretization of the altitude of
the UAV and phases of the RIS elements into discrete actions. In addition, the proposed
PPO architecture was also constructed with the same number of neural units in all hidden
layers to reduce the computational complexity. The results showed that as the number
of users increased, the expected sum of the age of information of the proposed system
decreased by up to 57.7% with respect to the other two basic policies. The result also
showed that increasing users’ transmit power and the number of RIS REs could enhance
the SNR achieved at the BS. However, an increasing number of transmit power may not be
allowable in certain IoT applications due to the decrease in energy efficiency. Therefore,
increasing the number of RIS REs is another solution for enhancing communication quality
and simultaneously increasing the SNR and expected sum of the age of information.

The authors of [73] implemented PPO to empower passive beamforming and routing
design for multi-RIS-assisted multihop networks. The PPO algorithm considered the route
node, available power allocation, and channel capacity to optimize the route node and
power allocation for the next transmission with the aim of maximizing the minimum
end-to-end data rate among routers. The simulation results showed that the proposed
system with the PPO algorithm produced a data rate that was 33.7% higher than that with
a random RIS coefficient and 34.3% higher than the system without an RIS. However, it
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was unavoidable that as the number of RIS REs increased, the percentage increase in the
data rate decreased. In addition, the power allocation also impacted the data rate produced
by the system. The data rates in systems that allocate power to weak links increased by up
to 30.46% with respect to the data rates in systems without power allocation. The studies
mentioned in this subsection show that the PPO algorithm can improve the performance of
RIS-assisted systems. However, even though the PPO algorithm is able to improve system
performance—whether single- or multiple-RIS conditions—consideration of the number of
users, the number of REs, and the allocation of power is essential for optimizing the energy
efficiency obtained by the system.

An in-depth study explained the importance of the number of REs, since this is the
main parameter in an RIS. Maximizing the communication quality and energy efficiency
with the minimal number of REs can be a future approach in this field, as it can enhance
the system’s performance. Table 5 provides a brief summary of papers discussed in
this subsection.

Table 5. Summary of the PPO algorithm for RIS optimization.

References Problem Optimized
Parameters

Implemented
RL Algorithm RIS Installation

[71]
Maximizing the
energy efficiency

1. UAV power
allocation
2. RIS phase shift

PPO Attached to
a building

[72]
Minimizing the
information age

1. UAV altitude
2. Communication
schedule
3. RIS phase shift

PPO Aerial RIS

[73]

Maximizing
the minimum

end-to-end
data rate

1. RIS phase shift
2. User’s power
allocation
3. Next transmission
route node

PPO On the ground

4. Potential Challenges and Future Research Opportunities

Based on the explanation in the previous section, some studies have implemented RL
for RIS technologies. However, future research must consider several issues, which will be
discussed in this section, to improve systems’ performance even further.

4.1. Optimal RIS Placement

RIS placement is an important factor that needs to be considered because RISs are
widely applied to overcome signal transmission problems in areas with blockages and
to transmit signals by minimizing distortion and interference. Therefore, the placement
of an RIS can determine the efficiency of the reflected signal and the optimal level of the
distributed signal with a high optimal achievable rate [74–76]. In addition, the size of an
RIS and the number of REs can also affect a system’s performance. The size of an RIS and
the number of REs can increase the percentage rate of signal reflection in the right direction
at the cost of high overhead [77,78].

4.2. Channel Estimation

Channel response is considered the main parameter for optimizing the RIS parameters
because a channel includes all kinds of parameters that can affect a system’s performance,
such as fading, scattering, and shadowing. Accurate CSI is essential in RIS-aided wireless
communications [79]. However, in actual implementations, it is a challenge for RIS-assisted
wireless networks to continuously achieve accurate CSI values due to the flexibility of the
clients served and the signal’s character of being prone to obstacles. As a result, the problem
of identifying the CSI and optimizing the network performance with a poor CSI must
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be appropriately addressed to enable real-time and effective RIS-assisted transmission.
The RL approach can be one of the solutions for overcoming these problems. However,
implementations with RL require a longer time due to the need for the system to carry
out data training with constantly changing channel conditions. Thus, further research is
needed to investigate accurate channel estimation without increasing training overhead,
which will also impact the power consumption.

4.3. Power Consumption

RISs are developing technologies for overcoming the main weaknesses of conventional
relays, and they can forward signals as passive or active relays [80]. However, adding
power to an RIS, which makes it work as an active relay, will increase the amplitude of the
signal, which may lead to an increase in the communication capacity and a decrease in the
bit error rate [81]. However, the efficiency and battery capacity level must be considered
when implementing an active RIS [82]. Another scenario is when an RIS is carried by a
mobile technology with a limited power supply, such as a UAV. In these circumstances,
power consumption is a crucial concern that needs to be addressed. Both ML and RL can
be applied to perform resource management and power allocation in the system; these
are solutions that can allow problems related to power consumption and improve energy
efficiency to be overcome. However, paying attention to the model training time that ML
and RL must use is necessary. Therefore, further research on achieving energy efficiency
without high overhead is needed.

4.4. Model Training

In DRL, iteration for training and testing is the primary concern because it requires
a long time. The longer it takes to perform the iterations, the more likely it is to obtain
the optimal parameter value [83]. An optimization function can be a possible solution for
minimizing the training duration in DRL. There are several of them that can be adapted to
such systems, such as the mini-batch gradient descent, RPop, RMSProp [84], Adagrad [85],
Adam [86,87], etc.

4.5. Federated and Split Learning for RISs

Federated learning (FL) is part of decentralized ML, where the central node (server)
broadcasts the entire model to each user (client). This learning method is suitable for net-
works consisting of central nodes and several clients, such as RIS-based networks. The way
in which federated learning works, which allows clients to use individual training models,
means that users do not have to share their data with the server. Thus, the implementation
of FL will allow an increase in the secrecy rate of the system to be overcome. In [88], FL was
applied to optimize power allocation and resource scheduling in UAV-assisted networks.
Thus, FL can also be implemented in RIS communication in the same context. Another
learning method that can be a solution to problems related to secrecy performance, power
allocation, and spectral efficiency is split learning (SL). SL has a way of working that is
similar to that of FL. However, in SL, each client is only responsible for each layer, so there
is no need to train the entire model. Therefore, the implementation of SL can allow the high
overhead issue due to the number of iterations required to be overcome. Further in-depth
research is needed to prove the capabilities of both of these learning methods.

4.6. RISs for Underwater Wireless Communication

The implementation of the RIS-assisted Internet of Underwater Things (IoUwT) has
yet to be reached by many researchers. In underwater communication, signals are sent
in optical or EM waves. However, the characteristics of both of these types of waves
only allow short-distance communication to occur [89]. Another problem in underwater
wireless communication is the high level of multipath fading caused by water flow [90],
the movement of underwater living things, and uneven surfaces, which can reduce the data
rate. RIS technologies can be a solution to these problems by minimizing the multipath
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effect and enhancing the data rate. The implementation of RIS technology in an underwater
medium can be achieved by placing it on the seabed, allowing it to float below the sea
surface, or carrying it with an autonomous underwater vehicle or an autonomous surface
vehicle. An in-depth research effort regarding the implementation of RISs for IoUwT needs
to be carried out in the future.

4.7. RISs for Underground Wireless Communication

In order to achieve excellent wireless communication anywhere, underground media
should be further investigated by researchers. Wireless communication in an underground
medium with high reliability and high data rates is increasingly needed along with the
development of the Internet of Underground Things (IoUgT) in mines and tunnels for
applications in various sectors, such as agriculture, earthquake mapping, underground
boundary protection, rescue, learning needs in geology and geography, etc. However,
obstacles in underground media, such as rockfalls and mining equipment, can cause ray-
path blocking and are a concern that needs to be addressed [91]. RISs are able to overcome
these obstacles by reflecting a signal in the desired direction, so enhancing the signal quality
even increases its data rate. Multipath fading effects, such as scattering and reflection due
to tunnel walls, as well as the natural movement of the soil with different absorption levels,
are unavoidable problems, and they result in uncontrolled signal reflection directions. RL’s
ability to make the best decisions in adaptive situations can be a solution for overcoming
these intractable problems. With an applied fixed-position sensor, an underground map
can be used as a benchmark for estimating the ideal RIS placement.

5. Conclusions

RIS technology can be implemented in several types of dynamic and static commu-
nication systems. The option of placing an RIS, which can be on the ground, attached
to a wall, on top of a building, or suspended in the air, will benefit systems because it
can transmit signals precisely to a user’s position by avoiding distortion and interference
between the transmitter and receiver. The precise direction of the signal will provide other
benefits, such as enhancing the data transmission, maximizing the sum rate and energy
efficiency, and minimizing the information age. In addition, the DRL algorithm, which
allows a machine to automatically make decisions based on experience, will make it easier
for systems to optimize signals sent by RISs. This survey described an overview of RIS
technologies and the application of RL—especially DRL—for RIS technologies, which are
promising for future wireless communications. RISs can overcome the significant drawback
of conventional relays related to previous technologies, as RISs can transmit signals actively
or passively and almost without needing any additional power. In this article, we focused
on the implementation of DRL to optimize RIS parameters, such as optimization for passive
beamforming, phase shift, RIS placement, etc. However, even though the application of RL
in IRSs showed good potential in previous studies, several things still need to be considered
for further research. In order to obtain signals with a high sum rate, minimal information
age, and high energy efficiency, it is essential to think carefully about the location of IRS
implementation and the implemented algorithm. Various insights into and possible solu-
tions for several open challenges that can be discussed in the future are provided at the end
of this study, such as the importance of optimization for channel estimation, RIS location,
energy and cost efficiency, data and model training for DRLs, and other areas of wireless
communication that can be assisted by RIS technologies with the DRL algorithm.
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Adagrad Adaptive Gradient
AI Artificial Intelligence
AmBC Ambient Backscatter Communication
BS Base Station
CSI Channel State Information
DC Direct Current
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Networks
DDQN Double Deep Q-Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EM Electromagnetic
FL Federated Learning
GT Ground Terminal
IoUgT Internet of Underground Things
IoUwT Internet of Underwater Things
IRS Intelligent Reflecting Surface
LoS Line of Sight
MDP Markov Decision Process
MIMO Multiple Input Multiple Output
ML Machine Learning
NLoS Non-Line of Sight
NOMA Non-Orthogonal Multiple Access
PPO Proximal Policy Optimization
RE Reflecting Elements
RF Radio Frequency
RIS Reconfigurable Intelligent Surface
RL Reinforcement Learning
RMSprop Root Mean Square Propagation
RProp Resilient Propagation
SGD Scholastic Gradient Descent
SL Split Learning
SNR Signal-to-Noise Ratio
TD3 Twin Delayed DDPG
TDDRL Twin-DDPG Deep Reinforcement Learning
UAV Unmanned Aerial Vehicle
UWOC Underwater Wireless Optical Communication

References
1. Elhattab, M.; Arfaoui, M.A.; Assi, C.; Ghrayeb, A. Reconfigurable Intelligent Surface Assisted Coordinated Multipoint in

Downlink NOMA Networks. IEEE Commun. Lett. 2021, 25, 632–636. [CrossRef]
2. Nguyen, K.K.; Masaracchia, A.; Sharma, V.; Poor, H.V.; Duong, T.Q. RIS-Assisted UAV Communications for IoT With Wireless

Power Transfer Using Deep Reinforcement Learning. IEEE J. Sel. Top. Signal Process. 2022, 16, 1086–1096. [CrossRef]

http://doi.org/10.1109/LCOMM.2020.3029717
http://dx.doi.org/10.1109/JSTSP.2022.3172587


Sensors 2023, 23, 2554 20 of 23

3. Le, A.T.; Ha, N.D.X.; Do, D.T.; Silva, A.; Yadav, S. Enabling User Grouping and Fixed Power Allocation Scheme for Reconfigurable
Intelligent Surfaces-Aided Wireless Systems. IEEE Access 2021, 9, 92263–92275. [CrossRef]

4. Le, C.B.; Do, D.T.; Li, X.; Huang, Y.F.; Chen, H.C.; Voznak, M. Enabling NOMA in Backscatter Reconfigurable Intelligent
Surfaces-Aided Systems. IEEE Access 2021, 9, 33782–33795. [CrossRef]

5. Zhang, S.; Zhang, R. Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication. IEEE J. Sel. Areas
Commun. 2020, 38, 1823–1838. [CrossRef]

6. Khalili, A.; Monfared, E.M.; Zargari, S.; Javan, M.R.; Yamchi, N.M.; Jorswieck, E.A. Resource Management for Transmit Power
Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity. IEEE Trans. Wirel. Commun. 2022, 21, 1806–1822.
[CrossRef]

7. Jiao, S.; Fang, F.; Zhou, X.; Zhang, H. Joint Beamforming and Phase Shift Design in Downlink UAV Networks with IRS-Assisted
NOMA. J. Commun. Inf. Netw. 2020, 5, 138–149. [CrossRef]

8. Afzali, N.; Omidi, M.J.; Navaie, K.; Moayedian, N.S. Low Complexity Multi-User Indoor Localization Using Reconfigurable
Intelligent Surface. In Proceedings of the 2022 30th International Conference on Electrical Engineering (ICEE), Tehran, Iran, 17–19
May 2022; pp. 731–736. [CrossRef]

9. Ranjha, A.; Kaddoum, G. URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength,
and UAV Positioning. IEEE Internet Things J. 2021, 8, 4618–4627. [CrossRef]

10. Yang, L.; Meng, F.; Zhang, J.; Hasna, M.O.; Renzo, M.D. On the Performance of RIS-Assisted Dual-Hop UAV Communication
Systems. IEEE Trans. Veh. Technol. 2020, 69, 10385–10390. [CrossRef]

11. Michailidis, E.T.; Miridakis, N.I.; Michalas, A.; Skondras, E.; Vergados, D.J. Energy Optimization in Dual-RIS UAV-Aided
MEC-Enabled Internet of Vehicles. Sensors 2021, 21, 4392. [CrossRef]

12. Ren, S.; Shen, K.; Zhang, Y.; Li, X.; Chen, X.; Luo, Z.Q. Configuring Intelligent Reflecting Surface with Performance Guarantees:
Blind Beamforming. IEEE Trans. Wirel. Commun. 2022. [CrossRef]

13. Elsayed, M.; Samir, A.; El-Banna, A.A.; Khan, W.U.; Chatzinotas, S.; ElHalawany, B.M. Mixed RIS-Relay NOMA-Based RF-UOWC
Systems. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22
June 2022; pp. 1–6. [CrossRef]

14. Li, S.; Yang, L.; Costa, D.B.d.; Renzo, M.D.; Alouini, M.S. On the Performance of RIS-Assisted Dual-Hop Mixed RF-UWOC
Systems. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 340–353. [CrossRef]

15. Agrawal, N.; Bansal, A.; Singh, K.; Li, C.P.; Mumtaz, S. Finite Block Length Analysis of RIS-Assisted UAV-Based Multiuser IoT
Communication System With Non-Linear EH. IEEE Trans. Commun. 2022, 70, 3542–3557. [CrossRef]

16. Fan, X.; Liu, M.; Chen, Y.; Sun, S.; Li, Z. RIS-Assisted UAV for Fresh Data Collection in 3D Urban Environments: A Deep
Reinforcement Learning Approach. IEEE Trans. Vehicular Technol. 2022, 1–15. [CrossRef]

17. Fernández, S.; Gregorio, F.; Chalise, B.K.; Cousseau, J. Wireless Information and power transfer assisted by reconfigurable
intelligent surfaces: Invited Paper. In Proceedings of the 2021 Argentine Conference on Electronics (CAE), Bahia Blanca,
Argentina, 11–12 March 2021; pp. 73–77. [CrossRef]

18. Lin, J.; Zou, Y.; Dong, X.; Gong, S.; Hoang, D.T.; Niyato, D.T. Deep Reinforcement Learning for Robust Beamforming in
IRS-assisted Wireless Communications. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference,
Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

19. Mohamed, Z.; Aïssa, S. Resource Allocation for Energy-Efficient Cellular Communications via Aerial IRS. In Proceedings of the
2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6.
[CrossRef]

20. Wang, T.; Fang, F.; Ding, Z. An SCA and Relaxation Based Energy Efficiency Optimization for Multi-User RIS-Assisted NOMA
Networks. IEEE Trans. Veh. Technol. 2022, 71, 6843–6847. [CrossRef]

21. Kisseleff, S.; Chatzinotas, S.; Ottersten, B. Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater,
Underground, Industrial and Disaster. IEEE Access 2021, 9, 150214–150233. [CrossRef]

22. Sharma, T.; Chehri, A.; Fortier, P. Reconfigurable Intelligent Surfaces for 5G and beyond Wireless Communications: A Compre-
hensive Survey. Energies 2021, 14, 8219. [CrossRef]

23. Mohsan, S.A.H.; Khan, M.A.; Alsharif, M.H.; Uthansakul, P.; Solyman, A.A.A. Intelligent Reflecting Surfaces Assisted UAV
Communications for Massive Networks: Current Trends, Challenges, and Research Directions. Sensors 2022, 22, 5278. [CrossRef]

24. Park, K.W.; Kim, H.M.; Shin, O.S. A Survey on Intelligent-Reflecting-Surface-Assisted UAV Communications. Energies 2022,
15, 5143. [CrossRef]

25. Pogaku, A.C.; Do, D.T.; Lee, B.M.; Nguyen, N.D. UAV-Assisted RIS for Future Wireless Communications: A Survey on
Optimization and Performance Analysis. IEEE Access 2022, 10, 16320–16336. [CrossRef]

26. Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based
Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [CrossRef] [PubMed]

27. Li, Z.; Wang, S.; Lin, Q.; Li, Y.; Wen, M.; Wu, Y.C.; Poor, H.V. Phase Shift Design in RIS Empowered Wireless Networks: From
Optimization to AI-Based Methods. Network 2022, 2, 398–418. [CrossRef]

28. Cao, X.; Yang, B.; Huang, C.; Alexandropoulos, G.C.; Yuen, C.; Han, Z.; Poor, H.V.; Hanzo, L. Massive Access of Static and Mobile
Users via Reconfigurable Intelligent Surfaces: Protocol Design and Performance Analysis. IEEE J. Sel. Areas Commun. 2022,
40, 1253–1269. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3092335
http://dx.doi.org/10.1109/ACCESS.2021.3061429
http://dx.doi.org/10.1109/JSAC.2020.3000814
http://dx.doi.org/10.1109/TWC.2021.3107306
http://dx.doi.org/10.23919/JCIN.2020.9130430
http://dx.doi.org/10.1109/ICEE55646.2022.9827014
http://dx.doi.org/10.1109/JIOT.2020.3027149
http://dx.doi.org/10.1109/TVT.2020.3004598
http://dx.doi.org/10.3390/s21134392
http://dx.doi.org/10.1109/TWC.2022.3217679
http://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860527
http://dx.doi.org/10.1109/TCCN.2021.3058670
http://dx.doi.org/10.1109/TCOMM.2022.3162249
http://dx.doi.org/10.1109/TVT.2022.3232607
http://dx.doi.org/10.1109/CAE51562.2021.9397565
http://dx.doi.org/10.1109/WCNC49053.2021.9417539
http://dx.doi.org/10.1109/TVT.2022.3162197
http://dx.doi.org/10.1109/ACCESS.2021.3125461
http://dx.doi.org/10.3390/en14248219
http://dx.doi.org/10.3390/s22145278
http://dx.doi.org/10.3390/en15145143
http://dx.doi.org/10.1109/ACCESS.2022.3149054
http://dx.doi.org/10.3390/s22145405
http://www.ncbi.nlm.nih.gov/pubmed/35891085
http://dx.doi.org/10.3390/network2030025
http://dx.doi.org/10.1109/JSAC.2022.3145908


Sensors 2023, 23, 2554 21 of 23

29. Zhi, K.; Pan, C.; Ren, H.; Wang, K. Power Scaling Law Analysis and Phase Shift Optimization of RIS-Aided Massive MIMO
Systems With Statistical CSI. IEEE Trans. Commun. 2022, 70, 3558–3574. [CrossRef]

30. Zeng, P.; Qiao, D.; Wu, Q.; Wu, Y. Throughput Maximization for Active Intelligent Reflecting Surface-Aided Wireless Powered
Communications. IEEE Wirel. Commun. 2022, 11, 992–996. [CrossRef]

31. Liu, K.; Zhang, Z.; Dai, L.; Xu, S.; Yang, F. Active Reconfigurable Intelligent Surface: Fully-Connected or Sub-Connected? IEEE
Commun. Lett. 2022, 26, 167–171. [CrossRef]

32. Pang, X.; Sheng, M.; Zhao, N.; Tang, J.; Niyato, D.; Wong, K.K. When UAV Meets IRS: Expanding Air-Ground Networks via
Passive Reflection. IEEE Wirel. Commun. 2021, 28, 164–170. [CrossRef]

33. Huang, A.; Guo, L.; Mu, X.; Dong, C. Integrated Passive Reconfigurable Intelligent Surface and Active Relay Assisted NOMA
Systems. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20
May 2022; pp. 3918–3923. [CrossRef]

34. Khaleel, A.; Basar, E. Phase Shift-Free Passive Beamforming for Reconfigurable Intelligent Surfaces. IEEE Trans. Commun. 2022,
70, 6966–6976. [CrossRef]

35. Di, B.; Zhang, H.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid Beamforming for Reconfigurable Intelligent Surface based Multi-User
Communications: Achievable Rates With Limited Discrete Phase Shifts. IEEE J. Sel. Areas Commun. 2020, 38, 1809–1822.
[CrossRef]

36. Obeed, M.; Chaaban, A. Joint Beamforming Design for Multiuser MISO Downlink Aided by a Reconfigurable Intelligent Surface
and a Relay. IEEE Trans. Wirel. Commun. 2022, 21, 8216–8229. [CrossRef]

37. Lv, Y.; He, Z.; Rong, Y. Multiuser Uplink MIMO Communications Assisted by Multiple Reconfigurable Intelligent Surfaces. IEEE
Commun. Lett. 2021, 25, 3975–3979. [CrossRef]

38. Wu, Q.; Zhang, R. Beamforming Optimization for Intelligent Reflecting Surface with Discrete Phase Shifts. In Proceedings of the
ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 7830–7833. [CrossRef]

39. Zhi, K.; Pan, C.; Ren, H.; Chai, K.K.; Elkashlan, M. Active RIS Versus Passive RIS: Which is Superior With the Same Power
Budget? IEEE Commun. Lett. 2022, 26, 1150–1154. [CrossRef]

40. Xu, D.; Yu, X.; Kwan Ng, D.W.; Schober, R. Resource Allocation for Active IRS-Assisted Multiuser Communication Systems. In
Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3
November 2021; pp. 113–119. [CrossRef]

41. Nguyen, N.T.; Nguyen, V.D.; Wu, Q.; Tölli, A.; Chatzinotas, S.; Juntti, M. Hybrid Active-Passive Reconfigurable Intelligent
Surface-Assisted Multi-User MISO Systems. In Proceedings of the 2022 IEEE 23rd International Workshop on Signal Processing
Advances in Wireless Communication (SPAWC), Oulu, Finland, 4–6 July 2022; pp. 1–5. [CrossRef]

42. Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted Sum-Rate Maximization for Intelligent Reflecting Surface Enhanced
Wireless Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
9–13 December 2019; pp. 1–6. [CrossRef]

43. Jiang, W.; Chen, B.; Zhao, J.; Xiong, Z.; Ding, Z. Joint Active and Passive Beamforming Design for the IRS-Assisted MIMOME-
OFDM Secure Communications. IEEE Trans. Veh. Technol. 2021, 70, 10369–10381. [CrossRef]

44. You, L.; Xiong, J.; Ng, D.W.K.; Yuen, C.; Wang, W.; Gao, X. Energy Efficiency and Spectral Efficiency Tradeoff in RIS-Aided
Multiuser MIMO Uplink Transmission. IEEE Trans. Signal Process. 2021, 69, 1407–1421. [CrossRef]

45. Xiu, Y.; Zhao, J.; Sun, W.; Renzo, M.D.; Gui, G.; Zhang, Z.; Wei, N. Reconfigurable Intelligent Surfaces Aided mmWave NOMA:
Joint Power Allocation, Phase Shifts, and Hybrid Beamforming Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 8393–8409.
[CrossRef]

46. Li, Q.; El-Hajjar, M.; Hemadeh, I.; Shojaeifard, A.; Mourad, A.A.M.; Clerckx, B.; Hanzo, L. Reconfigurable Intelligent Surfaces
Relying on Non-Diagonal Phase Shift Matrices. IEEE Trans. Veh. Technol. 2022, 71, 6367–6383. [CrossRef]

47. Wang, J.; Liang, Y.C.; Joung, J.; Yuan, X.; Wang, X. Joint Beamforming and Reconfigurable Intelligent Surface Design for Two-Way
Relay Networks. IEEE Trans. Commun. 2021, 69, 5620–5633. [CrossRef]

48. Zhang, H.; Zhang, H.; Di, B.; Bian, K.; Han, Z.; Song, L. MetaLocalization: Reconfigurable Intelligent Surface Aided Multi-User
Wireless Indoor Localization. IEEE Trans. Wirel. Commun. 2021, 20, 7743–7757. [CrossRef]

49. Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency
in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [CrossRef]

50. Do, T.N.; Kaddoum, G.; Nguyen, T.L.; da Costa, D.B.; Haas, Z.J. Aerial Reconfigurable Intelligent Surface-Aided Wireless
Communication Systems. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 525–530. [CrossRef]

51. Ernst, D.; Glavic, M.; Wehenkel, L. Power systems stability control: Reinforcement learning framework. IEEE Trans. Power Syst.
2004, 19, 427–435. [CrossRef]

52. Liu, Y.; Zhang, D.; Gooi, H.B. Optimization strategy based on deep reinforcement learning for home energy management. CSEE
J. Power Energy Syst. 2020, 6, 572–582. [CrossRef]

53. DiGiovanna, J.; Mahmoudi, B.; Fortes, J.; Principe, J.C.; Sanchez, J.C. Coadaptive Brain–Machine Interface via Reinforcement
Learning. IEEE Trans. Biomed. Eng. 2009, 56, 54–64. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TCOMM.2022.3162580
http://dx.doi.org/10.1109/LWC.2022.3152563
http://dx.doi.org/10.1109/LCOMM.2021.3119696
http://dx.doi.org/10.1109/MWC.010.2000528
http://dx.doi.org/10.1109/ICC45855.2022.9839073
http://dx.doi.org/10.1109/TCOMM.2022.3200670
http://dx.doi.org/10.1109/JSAC.2020.3000813
http://dx.doi.org/10.1109/TWC.2022.3164903
http://dx.doi.org/10.1109/LCOMM.2021.3117568
http://dx.doi.org/10.1109/ICASSP.2019.8683145
http://dx.doi.org/10.1109/LCOMM.2022.3159525
http://dx.doi.org/10.1109/IEEECONF53345.2021.9723093
http://dx.doi.org/10.1109/SPAWC51304.2022.9833956
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013288
http://dx.doi.org/10.1109/TVT.2021.3106351
http://dx.doi.org/10.1109/TSP.2020.3047474
http://dx.doi.org/10.1109/TWC.2021.3092597
http://dx.doi.org/10.1109/TVT.2022.3160364
http://dx.doi.org/10.1109/TCOMM.2021.3078524
http://dx.doi.org/10.1109/TWC.2021.3087354
http://dx.doi.org/10.1109/TWC.2019.2922609
http://dx.doi.org/10.1109/PIMRC50174.2021.9569450
http://dx.doi.org/10.1109/TPWRS.2003.821457
http://dx.doi.org/10.17775/CSEEJPES.2019.02890
http://dx.doi.org/10.1109/TBME.2008.926699
http://www.ncbi.nlm.nih.gov/pubmed/19224719


Sensors 2023, 23, 2554 22 of 23

54. Saleem, R.; Ni, W.; Ikram, M.; Jamalipour, A. Deep Reinforcement Learning-Driven Secrecy Design for Intelligent Reflecting
Surface-Based 6G-IoT Networks. IEEE Internet Things J. 2022. [CrossRef]

55. Du, Y.; Zandi, H.; Kotevska, O.; Kurte, K.; Munk, J.; Amasyali, K.; Mckee, E.; Li, F. Intelligent multi-zone residential HVAC
control strategy based on deep reinforcement learning. Appl. Energy 2021, 281, 116117. [CrossRef]

56. Tang, X.; Zhang, J.; Pi, D.; Lin, X.; Grzesiak, L.M.; Hu, X. Battery Health-Aware and Deep Reinforcement Learning-Based Energy
Management for Naturalistic Data-Driven Driving Scenarios. IEEE Trans. Transp. Electrif. 2022, 8, 948–964. [CrossRef]

57. Wan, K.; Gao, X.; Hu, Z.; Wu, G. Robust Motion Control for UAV in Dynamic Uncertain Environments Using Deep Reinforcement
Learning. Remote Sens. 2020, 12, 640. [CrossRef]

58. Fu, Q.; Li, K.; Chen, J.; Wang, J.; Lu, Y.; Wang, Y. Building Energy Consumption Prediction Using a Deep-Forest-Based DQN
Method. Buildings 2022, 12, 131. [CrossRef]

59. Wang, L.; Wang, K.; Pan, C.; Aslam, N. Joint Trajectory and Passive Beamforming Design for Intelligent Reflecting Surface-Aided
UAV Communications: A Deep Reinforcement Learning Approach. IEEE Trans. Mobile Comput. 2022. [CrossRef]

60. Mei, H.; Yang, K.; Liu, Q.; Wang, K. 3D-Trajectory and Phase-Shift Design for RIS-Assisted UAV Systems Using Deep Reinforce-
ment Learning. IEEE Trans. Veh. Technol. 2022, 71, 3020–3029. [CrossRef]

61. Wang, W.; Zhang, W. Intelligent Reflecting Surface Configurations for Smart Radio Using Deep Reinforcement Learning. IEEE J.
Sel. Areas Commun. 2022, 40, 2335–2346. [CrossRef]

62. Huang, C.; Mo, R.; Yuen, C. Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement
Learning. IEEE J. Sel. Areas Commun. 2020, 38, 1839–1850. [CrossRef]

63. Xu, J.; Ai, B.; Quek, T.Q.S.; Liuc, Y. Deep Reinforcement Learning for Interference Suppression in RIS-Aided High-Speed Railway
Networks. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul,
Republic of Korea, 16–20 May 2022; pp. 337–342. [CrossRef]

64. Ma, W.; Zhuo, L.; Li, L.; Liu, Y.; Ren, H. Deep Reinforcement Learning for RIS-Aided Multiuser MISO System with Hardware
Impairments. Appl. Sci. 2022, 12, 7236. [CrossRef]

65. Jiao, S.; Xie, X.; Ding, Z. Deep Reinforcement Learning-Based Optimization for RIS-Based UAV-NOMA Downlink Networks
(Invited Paper). Front. Signal Process. 2022, 2. [CrossRef]

66. Shehab, M.; Ciftler, B.S.; Khattab, T.; Abdallah, M.M.; Trinchero, D. Deep Reinforcement Learning Powered IRS-Assisted
Downlink NOMA. IEEE Open J. Commun. Soc. 2022, 3, 729–739. [CrossRef]

67. Guo, X.; Chen, Y.; Wang, Y. Learning-Based Robust and Secure Transmission for Reconfigurable Intelligent Surface Aided
Millimeter Wave UAV Communications. IEEE Wirel. Commun. Lett. 2021, 10, 1795–1799. [CrossRef]

68. Hashemi, R.; Ali, S.; Taghavi, E.M.; Mahmood, N.H.; Latva-Aho, M. Deep Reinforcement Learning for Practical Phase Shift
Optimization in RIS-assisted Networks over Short Packet Communications. In Proceedings of the 2022 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), Grenoble, France, 7–10 June 2022; pp. 518–523. [CrossRef]

69. Jing, F.; Zhang, H.; Gao, M.; Xue, B.; Cao, K. RIS-Assisted Multi-Antenna AmBC Signal Detection Using Deep Reinforcement
Learning. Sensors 2022, 22, 6137. [CrossRef]

70. Pereira-Ruisánchez, D.; Fresnedo, Ó.; Pérez-Adán, D.; Castedo, L. Joint Optimization of IRS-assisted MU-MIMO Communication
Systems through a DRL-based Twin Delayed DDPG Approach. In Proceedings of the 2022 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain, 15–17 June 2022; pp. 1–6. [CrossRef]

71. Nguyen, K.K.; Khosravirad, S.R.; da Costa, D.B.; Nguyen, L.D.; Duong, T.Q. Reconfigurable Intelligent Surface-Assisted
Multi-UAV Networks: Efficient Resource Allocation With Deep Reinforcement Learning. IEEE J. Sel. Top. Signal Process. 2022,
16, 358–368. [CrossRef]

72. Samir, M.; Elhattab, M.; Assi, C.; Sharafeddine, S.; Ghrayeb, A. Optimizing Age of Information Through Aerial Reconfigurable
Intelligent Surfaces: A Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2021, 70, 3978–3983. [CrossRef]

73. Huang, C.; Chen, G.; Tang, J.; Xiao, P.; Han, Z. Machine-Learning-Empowered Passive Beamforming and Routing Design for
Multi-RIS-Assisted Multihop Networks. IEEE Internet Things J. 2022, 9, 25673–25684. [CrossRef]
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