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Abstract: Underwater object detection is a key technology in the development of intelligent un-
derwater vehicles. Object detection faces unique challenges in underwater applications: blurry
underwater images; small and dense targets; and limited computational capacity available on the
deployed platforms. To improve the performance of underwater object detection, we proposed a
new object detection approach that combines a new detection neural network called TC-YOLO, an
image enhancement technique using an adaptive histogram equalization algorithm, and the optimal
transport scheme for label assignment. The proposed TC-YOLO network was developed based on
YOLOv5s. Transformer self-attention and coordinate attention were adopted in the backbone and
neck of the new network, respectively, to enhance feature extraction for underwater objects. The
application of optimal transport label assignment enables a significant reduction in the number of
fuzzy boxes and improves the utilization of training data. Our tests using the RUIE2020 dataset
and ablation experiments demonstrate that the proposed approach performs better than the original
YOLOv5s and other similar networks for underwater object detection tasks; moreover, the size and
computational cost of the proposed model remain small for underwater mobile applications.
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1. Introduction

Ocean exploration and exploitation have become commanding heights of the economy
in many countries. Underwater object detection enables intelligent underwater vehicles to
locate, identify, and classify underwater targets for various tasks, which is a vital sensing
technology that has extensive applications in ocean exploration and salvage, offshore
engineering, military operations, fishery, etc. [1]. Compared with sonar detection [2],
cameras can obtain close-range information so that intelligent underwater vehicles can
better perceive the surrounding environment. Image-based underwater object detection
has been developed rapidly in recent years, along with the development and application
of deep learning in computer vision. However, compared with other typical computer
vision tasks, underwater object detection presents unique challenges, including poor image
quality, small and dense targets difficult to detect, and limited computation power available
within underwater vehicles.

Image enhancement is an effective method to improve underwater image quality
and thus improve the accuracy of underwater object detection [3]. Both traditional image
enhancement algorithms, such as multi-scale Retinex with color restoration [4] and defog [5],
and deep learning algorithms, such as generative adversarial network (GAN) [6], have been
applied to improve image quality. Particularly for underwater object detection, several
researchers applied image enhancement algorithms based on the Retinex theory and
obtained clearer underwater images, but the final prediction results were not significantly
improved because only enhancing underwater images does not guarantee better prediction
results [7,8]. GAN was used for color correction in underwater object detection tasks [9], but
the resulting detection network is rather large and requires costly computation. The image
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enhancement technique employed should be computationally efficient and combined with
other approaches to improve the overall performance of underwater object detection.

Targets of underwater object detection are often small and dense. Deep convolutional
neural networks (CNNs) enable multi-layer non-linear transformations that effectively
extract the underlying features into more abstract higher-level representations, allowing
effective detection when there is target occlusion or the target size is small. YOLO (You
Only Look Once) is a series of widely-used CNNs for object detection tasks [10–15]. Sung et
al. proposed a YOLO-based CNN to detect fish using real-time video images and achieved
a classification accuracy of 93% [16]. Pedersen et al. adopted YOLOv2 and YOLOv3 for
marine-animal detection [17]. Other researchers applied attention mechanisms to detection
networks for better identification of small and dense targets [18–20].

Applications of attention mechanisms have been proven effective for object detection;
nevertheless, most existing research improves detection performance at the considerable
expense of computational cost, as the demand for attention computation is high. Computa-
tional capacity and power supply available to underwater vehicles are usually very limited.
Increasing computational demand for object detection would result in the need for under-
water vehicles to be connected with cables for data transfer or power supply, dramatically
limiting the operating range and the level of autonomy of underwater vehicles. Therefore,
attention mechanisms should be carefully integrated with detection networks, such that the
increases in model size and computational cost are minimized for underwater applications.

In this study, we propose a new underwater object detection approach that has three
major improvements over the original YOLOv5. A new detection network named TC-
YOLO was developed to integrate Transformer self-attention and coordinate attention
mechanisms for better small object identification. An image enhancement algorithm,
contrast-limited adaptive histogram equalization, was used to improve the underwater
image quality. Optimal transport label assignment was used to replace the original YOLOv5
label assignment scheme for network training. Experiments on the Real-world Underwater
Image Enhancement (RUIE2020) dataset and ablation experiments were carried out. The
results demonstrated the effectiveness and superior performance of the proposed approach.
Compared with YOLOv5s and other advanced detection networks, the proposed TC-YOLO
not only improves the detection performance of underwater objects but also remains
relatively small without a significant impact on computational cost.

The remainder of this paper is organized as follows: The previous works related to
the proposed approach are briefly introduced in Section 2. The development and details
of the proposed approach are presented in Section 3. The proposed method is tested and
compared with other detection networks in Section 4, including ablation experiments.
Conclusions are finally given in Section 5.

2. Related Work
2.1. YOLOv5

In order to achieve real-time underwater object detection, many researchers have
chosen the YOLO series as the basis for further development. Wang et al. [21] reduced
the network model size of YOLOv3 and replaced batch normalization with instance nor-
malization in some early layers, thus enabling underwater deployment while improving
detection accuracy. Al Muksit et al. [22] developed the YOLO-Fish network by modifying
the upsampling steps and adding a spatial pyramid pool in YOLOv3 to reduce the false
detection of small fishes and to increase detection ability in realistic environments. Zhao
et al. [23] and Hu et al. [24] improved the detection accuracy by optimizing the network
connection structure of YOLOv4 and updating the original backbone network.

YOLOv5, like other YOLO series, is a one-stage object detection algorithm. YOLOv5
includes four variants, namely YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, whose
network size and number of parameters increase successively. Figure 1 shows the overall
structure of the YOLOv5 network. An image is first processed by the backbone for fea-
ture extraction, followed by the neck for feature fusion, and finally is outputted as the
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head for the prediction of objects. The backbone is used to extract features from images,
containing a total of 53 convolutional layers for various sizes of image features. The CSP-
Darknet53 structure proposed in YOLOv4 is slightly modified and continuously employed
in YOLOv5 [25]. The spatial pyramid pooling module in YOLOv4 is replaced by the spatial
pyramid pooling-fast module to improve computational efficiency. The neck is used to
reprocess the extracted features for various spatial scales, which consists of top-down
and bottom-up paths to form a cross-stage partial path aggregation network [26]. The
feature pyramid network [27] is used to fuse the features from the top to the bottom, and
a bottom-up path augmentation is used to shorten the path of low-level features. The
fused features are integrated into the head structure, and three prediction paths are used.
Each path fuses the low-level features of different receptive fields and finally outputs the
bounding box, confidence, and category of the detected objects.

Figure 1. Original YOLOv5 network structure.

Mosaic, mix-up, copy–paste, and several other methods are employed in YOLOv5
for data augmentation [10]. YOLOv5 uses complete intersection over union (IoU) loss [28]
to compute the bounding box regression loss, in which the distance between the center
points of the bounding box and ground truth (GT) and the aspect ratio of the bounding
box are rigorously considered. Similar to YOLOv4, the basic anchor size is computed in
YOLOv5 using the k-mean algorithm, but YOLOv5 introduces a priori judgment called
auto-anchor to enhance the versatility of anchor boxes. If the preset anchor size matches
well with a dataset, the recalculation of anchor boxes can be avoided. YOLOv5 inherits
the non-maximum suppression method from its predecessors [29], in which two bounding
boxes are considered to belong to the same object if the IoU of two bounding boxes is higher
than a certain threshold.

The proposed TC-YOLO network was developed based on YOLOv5s. The overall
structure of YOLOv5 and the data augmentation methods were preserved, while self-
attention and coordinate attention mechanisms were integrated with the backbone and the
neck, respectively.

2.2. Attention Mechanism

Most of the targets for underwater detection are small and dense, so researchers have
introduced attention mechanisms to improve the detection performance. Sun et al. [30]
attempted to design a new network using Swin Transformer as the backbone for under-
water object detection and obtained similar performance as the Cascade R-CNN with the
ResNeXt101 backbone. Other researchers chose to combine attention mechanisms with
existing networks to improve the detection accuracy for underwater targets [31,32]. For



Sensors 2023, 23, 2567 4 of 15

example, Wei et al. [20] added squeeze-and-excitation modules after the deep convolution
layer in the YOLOv3 model to learn the relationship between channels and enhance the
semantic information of deep features.

The attention mechanisms used in computer vision are traditionally divided into three
types: spatial attention, channel attention, and hybrid attention. Applying the attention
mechanism in the spatial domain gives neural networks the ability to actively transform
spatial feature maps, for example, the spatial transformer networks [33]. Applying the
attention mechanism in the channel domain enables strengthening or suppressing the
importance of a channel by changing the weight of this channel, for example, the squeeze-
and-excitation networks [34]. Later works, such as the convolutional block attention
module (CBAM), employ a hybrid mechanism that combines spatial attention and channel
attention modules together and is widely used in convolutional network architectures [35].

Coordinate attention (CA) is another hybrid attention mechanism recently proposed
in 2021 [36]. Improved from channel attention, CA factorizes channel attention into
two 1-dimensional feature-encoding processes, each of which aggregates features along
one of the two spatial coordinates. It encodes both channel correlations and long-range
dependencies with precise positional information in two steps: coordinate information em-
bedding and coordinate attention generation. Compared with the CBAM, which computes
spatial attention using convolutions, the CA can preserve long-range dependencies that are
critical to vision tasks. Additionally, the CA avoids expansive convolution computations,
improving its efficiency compared with other hybrid attention mechanisms and enabling
its application to mobile networks.

In addition to the above attention mechanisms commonly used in computer vision,
Transformer was introduced in 2017 for natural language processing [37], and since then, it
has been successfully applied in different neural network architectures for various tasks.
Convolutional networks have the problem of limited perceptual fields. Multi-layer stacking
is required to obtain global information, but as the number of layers increases, the amount
of information is reduced, such that the attention of extracted features is concentrated in
certain regions. Transformer, on the other hand, employs the self-attention mechanism that
can effectively obtain global information. Furthermore, the multi-head structure used in
the Transformer allows better fusion and more expressive capability, in which feature maps
can be fused in multiple spatial scales. The Transformer mechanism has been applied to
computer vision, such as Vision Transformer [38] and Swin Transformer [39]. However,
Transformer modules require a large amount of computation, so they are mostly adopted
in large networks and hardly used in mobile networks.

Both Transformer and CA modules were employed in the proposed TC-YOLO network.
Transformer is computationally expensive, especially applied to computer vision tasks,
such that it is not suitable to completely replace CNN with Transformer for underwater
detection applications. Therefore, we embedded a Transformer encoder module into the
end of YOLOv5’s backbone to improve the global representation ability of the network. CA
can capture not only cross-channel correlation but also orientation- and location-sensitive
information, which helps the network to locate and identify targets accurately. In addition,
the CA module is flexible and lightweight. Thus, we integrated CA modules into the neck
to improve detection performance.

2.3. Label Assignment

Label assignment aims to determine positive and negative samples for object detection.
Unlike labeling for image classification, label assignment in object detection is not well
defined due to the variation in bounding boxes. Zheng et al. [40] proposed a loss-aware
label assignment for a one-stage detector for dense pedestrian detection. Xu et al. [41]
proposed a Gaussian receptive field-based label assignment strategy to replace IoU-based
or center-sampling methods for small object detection. Optimal transport assignment
(OTA) was proposed in 2021 for object detection [42]. OTA is an optimization-theory-based
assignment strategy, in which each GT is considered a label supplier, and its anchors are
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regarded as label demanders. The transportation cost between each supplier–demander
pair is defined by the weighted summation of its classification and regression losses, and
then the label assignment is formulated into an optimal transport problem, which aims to
transport labels from GT to anchors at minimal transportation cost.

In YOLOv5, the ratios in height and width between a GT and an anchor box are
computed as rh and rw, and then max(rh, rw, 1/rh, 1/rw) is compared with a threshold value
of 4. If the maximum is smaller than 4, a positive sample is built for this GT; otherwise, the
sample is assigned as negative. This label assignment mainly considers the difference in
the aspect ratio between the GT and its anchor boxes, which is a static assignment strategy.
Improved from the earlier versions of YOLO, a GT can be assigned to multiple anchors
in different detection layers in YOLOv5. However, YOLOv5’s label assignment is still
not sufficient for underwater object detection because the same anchor may be assigned
multiple times, resulting in missed detection. To deal with dense object detection, we
employed the OTA scheme to obtain the label assignment that is globally optimal.

2.4. Underwater Images Enhancement

The quality of underwater images is often poor due to harsh underwater conditions,
such as light scattering and absorption, water impurities, artificial illumination, etc. En-
hancement and restoration techniques are applied to underwater images to improve the
performance of underwater object detection. Li et al. [43] proposed an underwater image
enhancement framework consisting of an adaptive color restoration module and a haze-
line-based dehazing module, which can restore color and remove haze simultaneously.
Li et al. [44] developed a systematic underwater image enhancement method, including an
underwater image dehazing algorithm based on the principle of minimum information
loss and a contrast enhancement algorithm based on the histogram distribution prior. Han
et al. [45] combined the max-RGB method and the shades-of-gray method to achieve un-
derwater image enhancement and then proposed a CNN network to deal with low-light
conditions. There are other methods used for underwater image enhancement, including
spatial domain methods, transform domain methods, and deep learning methods, among
which spatial domain methods are considered the most effective and computationally
efficient [46].

Several spatial domain image enhancement methods are introduced below. The his-
togram equalization (HE) algorithm computes the grayscale distribution of an image, stretches
its histogram evenly across the image, and therefore improves the image contrast for bet-
ter separation between foreground and background [47]. However, the HE algorithm
increases the sparsity of grayscale distribution and may cause a loss of detailed image-
related information. Adaptive histogram equalization (AHE) improves the local contrast
and enhances edge details by redistributing the local grayscale multiple times, but it has
the disadvantage of amplifying image noise [48]. On the basis of AHE, contrast-limited
adaptive histogram equalization (CLAHE) imposes constraints on the local contrast of the
image to avoid excessively amplifying image noise in the process of enhancing contrast [49].
Computations of field histograms and the corresponding transformation functions for each
pixel are very expensive. Therefore, CLAHE employs an interpolation scheme to improve
efficiency at the expense of a slight loss of enhancement quality. Histogram equalization
methods only solve the problem of image brightness without adjusting image colors. The
Retinex theory can be applied for image enhancement to achieve a balance in three aspects:
dynamic range compression, edge enhancement, and color constancy. There are several
image enhancement methods developed based on the Retinex theory [50], such as single-
scale Retinex, multi-scale Retinex, multi-scale Retinex with color restoration (MSRCR), etc.
Retinex-based methods can perform adaptive enhancement for various types of images,
including underwater images, but the computational cost is much higher than histogram
equalization methods.
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To select the most effective image enhancement method for the proposed approach, we
tested the processing speed and compared the enhancement results of HE, AHE, CLAHE,
and MSRCR, the results of which are presented in Section 3.4.

3. Proposed Approach

The following three methods were proposed to improve the performance of a modified
YOLOv5 network for underwater object detection:

• Attention mechanisms were integrated into YOLOv5 by adding Transformer and CA
modules to develop a new network named TC-YOLO;

• OTA was used to improve label assignment in training for object detection;
• A CLAHE algorithm was employed for underwater image enhancement.

3.1. Dataset

We chose to train and test the proposed approach using the RUIE2020 dataset from
the Underwater Robot Picking Contest [51]. The images of this dataset present various
underwater conditions and offer a comprehensive picture of the underwater environment.
The RUIE2020 dataset has four object categories: holothurian, echinus, scallop, and starfish.
There are 5543 images in total, and we randomly split the dataset into a training set of
4434 images and a testing set of 1109 images. The RUIE2020 dataset provides box-level
annotations with more than 30,000 labels. Sea urchins have the largest number of labels
in the dataset, accounting for more than half the labels. In addition, most of the targets
in the dataset are small; 90% of the target boxes have an area that is less than 5% of the
image area.

3.2. TC-YOLO

The modified object detection network is called TC-YOLO, as it includes one Trans-
former module in the backbone and three CA modules in the neck. Transformer and CA
modules were combined with a cross-stage partial (CSP) structure to establish the attention
blocks named CSP-TR and CSP-CA, respectively. Similar to most detection algorithms, the
detection head was placed after the neck. The network generated feature maps at three
scales as the input to the detection head. The feature map at each scale corresponded
to three anchors, so in total, nine anchors were obtained by clustering the dataset. The
placements of these attention blocks and the overall structure of TC-YOLO are shown in
Figure 2.

3.2.1. Transformer Module

In this study, we adopted a modified Transformer encoder module and combined
it with the backbone network by placing the module after the minimum feature map to
reduce its computational cost (see CSP-TR in Figure 2). Different from other studies in
which the Transformer module is used directly, we nested the encoder module inside the
CSP structure, which reduced the number of channels of the input feature by half without
any loss of local information. The detailed structure of the proposed CSP-TR block is shown
in Figure 3. The input of the CSP-TR block is a C × W × H feature tensor, where C is
the number of channels; W is the feature width, and H is the feature height. The CSP-TR
block ess embedded at the end of the backbone, so the input feature had less width and
height and therefore fewer dimensions after flattening. The flattened feature was defined
as the patch, and position encoding was carried out by passing patches through a fully
connected layer. Position-encoding data and the original patch were then added as the
input of the Transformer encoder. We deleted the original linear normalization layer of the
encoder and used only one Transformer layer without stacking to minimize the model size.
The output of the Transformer encoder remained the same size as the input, so the output
patch could be reshaped back to a feature tensor. The resulting feature was concatenated
with the feature from the other branch in the CSP structure to recover the original number
of channels.
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Figure 2. Overall structure of the proposed TC-YOLO network.

Figure 3. Detailed structure of the CSP-TR Block.

3.2.2. Coordinate Attention

The CA modules were embedded in the neck before the prediction head in this
study (see CSP-CA in Figure 2). The arrangement of the proposed method is different
from other studies in which convolution-based attention mechanisms are placed in the
backbone, and there are two reasons for the proposed arrangement of the CA modules:
we already applied the self-attention mechanism in the backbone for feature extraction
by replacing a standard CSP block with a CSP-TR block; placing the CA modules before
prediction can effectively summarize the global information for different size features after
extraction and fusion. Similar to the CSP-TR block, we nested a modified CA module
inside the CSP structure to reduce computational costs and preserve local information.
The detailed structure of the proposed CSP-CA block is shown in Figure 4. The input
of CSP-CA was a C ×W × H feature tensor from the end of the network. Coordinate
attention was generated by first pooling the X and Y coordinates of the features equally,
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followed by encoding the pooled features through convolution and normalization, and
finally multiplying the encoded features with the original features using the “Reweight”
operation. To smooth the activation curve and avoid the gradient problem, we modified
the CA module by replacing the original Hard–Swish activation function with the SiLU
function, which formed a standard CBS structure in the middle of the CA module. The
output of the CA module shared the same size as its input, which was subsequently
concatenated with the feature from the other branch of the CSP structure to restore the
original number of channels.

Figure 4. Structure of CSP-CA Block.

3.3. Optimal Transport Assignment

The optimal transport label assignment was employed in the proposed approach. The
output tensor of the detection network for each feature scale included the distribution of
bounding boxes for different target classes within every grid. All the output tensors and the
GTs were passed into the OTA module for the computation of classification and regression
losses to establish a transportation cost matrix. The optimal transport of labels was obtained
by minimizing the cost matrix via the Sinkhorn–Knopp iteration. Based on the optimal
transport of labels, the top ten anchors that received the most labels from a GT were selected
as the positive samples of this GT. If multiple GTs shared any anchor, further filtering would
be required using the cost matrix: The anchor would only assign to the GT that had the
smallest cost value with the anchor. We implemented OTA by replacing the original label
assignment codes in YOLOv5 with the OTA source codes available from GitHub.

3.4. Underwater Image Enhancement

In order to select the most suitable image enhancement algorithm for the proposed ap-
proach, we compared the image enhancement results and processing speed of four different
algorithms: HE, AHE, CLAHE, and MSRCR. These algorithms can be implemented directly
using the OpenCV library. In the implementation of CLAHE, ’clipLimit’ is an important
parameter that sets the threshold for contrast limiting to prevent over-saturation in homo-
geneous areas. These areas are characterized by a high peak in the histogram because most
pixels fall in a narrow range of grayscale. The value of ’clipLimit’ is 40 by default but was
changed to 2 in this study to avoid color bias. Figure 5 shows five underwater images and
their processed images for comparison. It can be seen that the CLAHE algorithm provides
a significant improvement over the HE and AHE algorithms, preserving dark and bright
details and having less noise interference. The MSRCR algorithm not only improves the
details but also restores the original colors, yielding the best overall enhancement results.
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(a)

(b)

(c)

(d)

(e)

Figure 5. Comparison of underwater image enhancement results for different algorithms: (a) original
images; (b) HE; (c) AHE; (d) CLAHE; (e) MSRCR.

We further tested the four different image enhancement algorithms using the orig-
inal YOLOv5s network with the RUIE2020 dataset. Notably, 80% of the images were
randomly sampled as the training set, and the remaining 20% were used as the testing
set for validation. The images in the training and testing sets were enhanced using the
four algorithms and used to train and test the four YOLOv5s networks. The original
images without enhancement were also employed to set a benchmark. All the images in
the dataset were scaled to 640 × 640 before being processed, and all tests were performed
using the same workstation. The test results of each detection network, including precision,
recall, and image processing time, are compared in Table 1. The processing time presented
here refers to the time of processing a single image, excluding the inference time of the
detection network. YOLOv5s achieved 79.7% precision and 71.1% recall on the original
images. Applications of HE and AHE reduced the performance of object detection due to
overexposure and stitching issues. The application of CLAHE could effectively reduce the
case of missed detection, but its enhancement of dark details may lead to some incorrect
detection, causing a slight drop in precision. The MSRCR algorithm led to the best image
enhancement result; however, its image processing time was dramatically greater than the
other three algorithms. Therefore, we found CLAHE to be the most suitable for real-time
underwater object detection tasks.

Table 1. Comparison of detection performance using YOLOv5s for different image enhancement al-
gorithms.

Algorithms Precision Recall Processing Time

1 Original Image 79.7% 71.1% –
2 HE 77.1% 70.8% 3.2 ms
3 AHE 75.5% 68.4% 3.5 ms
4 CLAHE 78.4% 73.5% 3.3 ms
5 MSRCR 80.2% 74.3% 1646 ms
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4. Experiments and Results

Experiments were carried out to analyze and verify the proposed underwater detection
approach. The proposed TC-YOLO network was developed using the Torch library. All the
experiments were performed using a workstation that has 32 GB of RAM and an NVIDIA
GTX 1660 GPU with CUDA 10.1 GPU acceleration library. Online data argumentation, such
as mosaic and scaling, was activated to prevent over-fitting and ensure the generalizability
of the model [13]. All the images were scaled to 416 × 416 for training since the size of
input for a mobile network is usually small. For stable batch normalization and further
prevention of over-fitting, we set the batch size to 32 and applied an early stop method by
training the networks with stochastic gradient descent for 50 epochs [52]. The learning rate
and the momentum were set to 0.001 and 0.9, respectively. The warm-up period was set to
3000 iterations, the weight decay was set to 0.0005, and the confidence threshold was set to
0.25 for comparison [53].

4.1. Evaluation Metrics

The performance of the detection network was evaluated using the following met-
rics [54], where TP is true positive; FP is false positive, and FN is false negative:

• Precision, defined as TP/(TP + FP), reflects the false-detection rate of a network;
• Recall, defined as TP/(TP + FN), reflects the missed-detection rate of a network;
• mAPIoU=0.5, defined as the mean average precision (mAP) evaluated for all object

classes of the entire dataset, in which IoU = 0.5 was used as the threshold for evaluation;
• mAPIoU=0.5:0.95 was defined as the mean value of multiple mAPs that were evaluated

based on different IoU thresholds ranging from 0.5 to 0.95 at intervals of 0.05.

The computational cost was evaluated by the number of floating-point operations
required to process a single image. The model size of a network was evaluated by the
number of parameters of the network.

4.2. Comparisons

In this section, we compare the proposed TC-YOLO network with some advanced
mobile networks for underwater object detection, namely YOLOv3, YOLOX-tiny, RetinaNet,
Faster-RCNN, and the original YOLOv5. For YOLOv3, the MobileNet was employed as the
backbone. For YOLOX, the tiny version was selected because of its small channel numbers
for mobile applications. For RetinaNet, the EfficientNet was used as the backbone. For
Faster-RCNN, ResNet18 instead of ResNet50 was employed as the backbone for mobile
applications. For YOLOv5, YOLOv5s was selected with CSPDarknet53 as the backbone.
CLAHE image enhancement and the optimal transport label assignment were applied to
the TC-YOLO model to implement the proposed approach. We evaluated the performance
metrics of these networks on the RUIE2020 dataset, in which all the networks were trained
with the same settings. Table 2 shows the comparisons of performance, computational cost,
and model size.

Table 2. Comparisons of mobile detection networks for underwater object detection.

Model Backbone Precision Recall mAPIoU=0.5 mAPIoU=0.5:0.95 Floating-point
Operations

Number of
Parameters

1 YOLOv3 [11] MobileNet [55] 70.6% 57.2% 70.2% 32.5% 6.58 × 109 4.5 × 106

2 YOLOX-tiny [56] Darknet53 68.5% 59.8% 67.8% 34.6% 7.64 × 109 5.7 × 106

3 RetinaNet [57] EfficientNet [58] 76.9% 63.6% 76.5% 40.7% 47.18 × 109 37.5 × 106

4 Faster-RCNN [59] ResNet18 75.6% 65.1% 74.6% 41.9% 72.54 × 109 47.6 × 106

5 YOLOv5s (w/ OTA) CSPDarknet53 79.7% 71.1% 76.5% 38.5% 16.00 × 109 7.0 × 106

6 TC-YOLO (w/ OTA
& CLAHE) CSPDarknet53 82.9% 76.8% 83.1% 45.6% 18.60 × 109 7.7 × 106

Comparing the existing mobile detection networks, it was revealed that YOLOv5s
provides state-of-the-art performance. YOLOv5s with CSPDarknet53 is larger and more
advanced than YOLOv3 and YOLOX-tiny and has higher precision and less computational



Sensors 2023, 23, 2567 11 of 15

complexity than RetinaNet and Faster-RCNN. Developed from YOLOv5s, the proposed
TC-YOLO is only 10% larger than YOLOv5s in size and remarkably surpasses the state-
of-the-art in underwater detection tasks. The overall precision and recall increased by
3.2% and 5.7%, respectively. Specifically, the proposed approach can detect dense and
small targets rather well: The mAPIoU=0.5:0.95 improved by 7.1%. These improvements were
achieved without significantly sacrificing computational efficiency; the computational cost
was only increased by 16%. The proposed approach achieves an excellent balance between
prediction accuracy and computational complexity.

4.3. Ablation Experiments

Ablation experiments were carried out to analyze the contribution of each of the follow-
ing improvements: image enhancement using CLAHE, Transformer block in the backbone,
and CA block in the neck. Table 3 shows the results of ablation experiments, in which the
given time is the average processing time per frame, including image enhancement and
inference time.

Table 3. Results of ablation experiments.

Case CLAHE Transformer CA Block Precision Recall mAPIOU=0.5 mAPIOU=0.5:0.95 Time

1 x x x 79.7% 71.1% 76.5% 38.5% 16.2 ms
2

√
x x 78.1% 73.5% 75.4% 37.7% 18.7 ms

3 x
√

x 80.5% 71.8% 78.2% 40.3% 17.3 ms
4 x x

√
81.2% 72.9% 78.6% 41.2% 16.5 ms

5
√ √

x 80.4% 74.2% 77.6% 39.5% 19.4 ms
6

√
x

√
80.9% 74.8% 79.6% 42.3% 18.8 ms

7 x
√ √

81.6% 75.1% 80.5% 43.5% 17.5 ms
8

√ √ √
82.9% 76.8% 83.1% 45.6% 19.7 ms

Applying image enhancement using CLAHE caused a trivial drop in precisions but
a significant boost in recall, because improved sharpness and dark details effectively
reduced the number of false negatives. Applications of self-attention and coordinate
attention mechanisms both offer significant overall improvement in underwater detection
performance. Applying the Transformer block to the minimum feature map in the backbone
provided roughly a 1–2% increase in precisions and a 2% rise in recall. Applying the CA
blocks before the head provided significant improvement in precisions and recall of about
2–4%. Regarding computational cost, CLAHE image enhancement required the most
computation, increasing processing time per frame by about 2.3 ms. Self-attention is known
for being computationally expensive, and in our case, the Transformer block slowed the
processing time by about 1 ms. The CA blocks applied in this study proved to be highly
efficient, only increasing the processing time by about 0.2 ms. When all the proposed
techniques were applied, the processing time per frame was still small, increasing from
16.2 ms to 19.7 ms, which is acceptable for real-time detection tasks. In our tests and studies,
we noticed that the application of CLAHE image enhancement did not produce significant
improvement when the lighting condition and water purity were great. Therefore, we
recommend users deactivate CLAHE image enhancement for efficiency if underwater
image quality is good.

Figure 6 shows an example of the detection of sea urchins. The proposed approach
proved effective. The CLAHE algorithm sufficiently enriched the details of the origi-
nally dark targets. Small and obscured sea urchins were successfully detected from the
complicated background.
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Figure 6. Demonstration of the proposed approach: GT of sea urchins (a); YOLOv5s prediction (b);
TC-YOLO prediction (c).

5. Conclusions

In this paper, we proposed a new underwater object detection approach suitable for
mobile deployments. Underwater object detection is difficult due to poor image quality,
limited computational capacity, and underwater targets that are often small, dense, over-
lapped, and obscured. A new detection network, TC-YOLO, was developed by embedding
the Transformer encoder and a coordinate attention module into YOLOv5. The CLAHE
algorithm was used for underwater image enhancement, and the optimal transport assign-
ment method was applied for label assignment in training. Combining these techniques,
our proposed approach achieved state-of-the-art performance on the RUIE2020 dataset
while remaining computationally efficient for real-time underwater detection tasks. In the
ablation experiments, it was revealed that the application of the coordinate attention mod-
ule to the end of the neck is a highly effective and efficient way to improve the performance
of detection networks.
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Abbreviations
The following abbreviations are used in this paper:

YOLO You Only Look Once
MSRCR Multi-Scale Retinex with Color Restoration
GAN Generative Adversarial Network
CNN Convolutional Neural Network
CLAHE Contrast-Limited Adaptive Histogram Equalization
RUIE Real-World Underwater Image Enhancement
CSP Cross-Stage Partial
IoU Intersection over Union
GT Ground Truth
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CBAM Convolutional Block Attention Module
CA Coordinate Attention
HE Histogram Equalization
AHE Adaptive Histogram Equalization
OTA Optimal Transport Assignment
mAP Mean Average Precision
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