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Abstract: Online hashing is a valid storage and online retrieval scheme, which is meeting the rapid
increase in data in the optical-sensor network and the real-time processing needs of users in the era
of big data. Existing online-hashing algorithms rely on data tags excessively to construct the hash
function, and ignore the mining of the structural features of the data itself, resulting in a serious
loss of the image-streaming features and the reduction in retrieval accuracy. In this paper, an online
hashing model that fuses global and local dual semantics is proposed. First, to preserve the local
features of the streaming data, an anchor hash model, which is based on the idea of manifold learning,
is constructed. Second, a global similarity matrix, which is used to constrain hash codes is built
by the balanced similarity between the newly arrived data and previous data, which makes hash
codes retain global data features as much as possible. Then, under a unified framework, an online
hash model that integrates global and local dual semantics is learned, and an effective discrete
binary-optimization solution is proposed. A large number of experiments on three datasets, including
CIFAR10, MNIST and Places205, show that our proposed algorithm improves the efficiency of image
retrieval effectively, compared with several existing advanced online-hashing algorithms.

Keywords: optical-sensor network; manifold learning; balanced similarity; discrete binary optimiza-
tion; image retrieval

1. Introduction

With the popularization of optical-sensor networks and the wide use of intelligent
interconnected devices, data in various fields are increasing at an unbelievable speed.
People realize that intelligent processing and analysis of data is necessary [1–3] and it is of
great significance to store high-dimensional data effectively and retrieve data rapidly. The
traditional indexing methods involving text-based image retrieval (TBIR) and content-based
image retrieval (CBIR) [4,5] encounter the curse of dimensionality in high-dimensional
situations, and their query performance is even worse than linear query. An approximate
nearest-neighbor query based on the hash method is an efficient method to solve the
above issue [6,7]. Specifically, in image retrieval systems, image hashing means mapping
a high-dimensional real-valued image to a compact binary code, which can preserve the
relationship between different high-dimensional data and the Hamming space [8–11].

According to the dependency between the hash model and the sample data, hashing
algorithms include data-independent algorithms and data-dependent algorithms. The rep-
resentative data-independent algorithms include locality-sensitive hashing (LSH) [12,13],
and its variants such as `p—stable hashing [14], min-hash [15], and kernel LSH (KLSH) [16].
Data-dependent hashing algorithms include unsupervised hashing algorithms [17–19]
and supervised hashing algorithms [20–23]. Since methods using data distribution or
class labels perform better in the quick search field, more effort is being put into data-
dependent methods.
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In fact, data samples always arrive sequentially, as time goes on, and thus the pre-
viously existing data is often out of date [24,25]. When the discrepancy between newly
arrived data and previously existing data is large, the hashing function often loses efficiency
on newly arrived data. Therefore, it is very important to present an online hashing model
that is suitable for streaming data. Unlike the offline hashing methods, which correct the
training error on the fixed dataset through multiple training rounds, online algorithms use
multiple batches of streaming data to update hash functions, which are more realistic and
have a strong application background [26–31].

Several classic online hashing methods have emerged in recent years, and they are all
data-dependent. Representative works include Online Hashing (OKH) [24], Adaptive Hash-
ing (AdaptHash) [32], Online Supervised Hashing (OSH) [33], Online Hashing with Mutual
Information (MIHash) [34], Balanced Similarity for Online Discrete Hashing (BSODH) [35],
Supervised Online Hashing via Hadamard Codebook Learning (HCOH) [36], Hadamard
Matrix Guided Online Hashing (HMOH) [37], etc.

Most of the mentioned online-hashing algorithms consider the adaptability, pairwise
similarity, or independence of hash codes to build a constrained hashing model, but the
optimization needs relaxation learning, which brings quantization errors to a certain extent
and reduces the retrieval accuracy. In addition, there exist unsupervised online hashing
methods, which are mostly based on the idea of “matrix sketch”, and its representative
works mainly consist of Online Sketching Hashing (SketchHash) [38], Faster Online Sketch-
ing Hashing (FROSH) [39], and so on. From the setting of online hashing, the global data
grow dynamically with the current arriving data, which just represent the local data at a
certain stage. Unsupervised methods that only rely on the distribution of newly arrived
data lack a global description of the hashing model.

In image-retrieval application systems, the labeling is carried out manually and the
workload is also huge. In addition, manual labeling is prone to errors, and wrong labels
will directly lead to retrieval failure. Therefore, the online hashing method that relies too
much on data labels while ignoring the structural characteristics of the data itself is subject
to many limitations in practical applications, which seriously affects the performance of
retrieval accuracy [40,41].

The high-dimensional image data remains on the low-dimensional manifold struc-
ture [42], and the query data is often strongly correlated. Therefore, this paper proposes
an online hashing model that fuses global and local dual semantics. First, an anchor hash
model is built based on manifold learning to retain local features of the original data. Then,
a global similarity matrix which is used to constrain the hash codes is constructed, employ-
ing the balanced similarity between newly arrived data and previous data [35]. Under a
unified framework, an online hash model integrating global and local dual semantics is
learned, as well as an effective discrete-binary-optimization scheme being proposed. Com-
pared with several classical and well-established online hashing algorithms, our proposed
LSOH method has advantages in many performance indicators.

In summary, the main contributions of our work are as follows:

• Extract the manifold structure of high-dimensional data using Laplacian Eigenmaps,
thus constructing an anchor hash model.

• Construct an asymmetric-graph regularization term to constrain the learning process
of hash codes using the balanced similarity between current arriving data and previous
data sets.

• Integrate the anchor hash model and the asymmetric graph regularization with a
seamless formulation to learn global and local dual-semantic information, then use
the alternating-iteration algorithm to solve the optimization issue and obtain high
retrieval accuracy by performing a large number of experiments.

The remaining contents are arranged as follows. In Section 2, related work in this field
is reviewed. In Section 3, we present our proposed online-hashing algorithm, including the
optimization method. Section 4 presents the experimental results and analyses in detail.
Finally, we give a conclusion of our work in Section 5.
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2. Related Work

In this section, online hashing algorithms, such as OKH [24], AdaptHash [32], OSH [33],
MIHash [34], BSODH [35], HCOH [36], HMOH [37], SketchHash [38] and FROSH [39]
are introduced. Among them, all are supervised hashing methods except SketchHash
and FROSH. Supervised hashing is more efficient owing to the semantic data, but online
retrieval datasets are often prone to missing labels and labeling errors, while hashing
methods without labels are more suitable for massive online-retrieval applications.

Huang et al. [24] presented an online hashing algorithm using a kernel function,
termed OKH. First, OKH employes the kernel-based hash function to process linearly
inseparable data. Then, OKH formulates an objective function based on the inner product
of binary codes. They consider the equivalence between optimizing the inner product
of binary codes and Hamming distance, and use the greedy algorithm to solve the hash
function effectively. It solves the non-convex optimization problem of Hamming distance.
Experiments show that it can be widely applied to image-retrieval scenarios.

Similar to OKH’s framework, AdaptHash [32] proposes a fast similarity-search algo-
rithm for hash functions, based on the stochastic gradient descent method. Specifically, it
defines a hinge-loss function to determine the number of hash functions that need to be
updated in Adaptive Hash and optimizes the model by SGD.

Cakir et al. [33] proposed an adaptive online-hashing method based on Error Cor-
recting Output Codes (ECOC), named OSH. No prior assumptions about label space are
made and it is the first supervised hashing algorithm suitable for the growth of label space.
OSH presents a two-step hashing framework, first generating ECOC as codebooks, and
then assigning codewords to each class label. Finally, the exponential loss is optimized and
solved by SGD, to ensure that the learned hash function is suitable for binary ECOC.

Based on the knowledge of information theory, MIHash [34] takes mutual information
as the learning objective and proposes a measure to eliminate the updates of the unnecessary
hash tables. Thus, they optimize the mutual information objective by stochastic gradient
descent. The computational complexity is effectively reduced, and the learning efficiency
of the hash function is improved.

BSODH [35] believes that there are two unsolved problems: update imbalance and
optimization inefficiency, which lead to the unsatisfactory performance of OH in practical
applications. In this paper, two balance parameters are introduced to improve the reg-
ularization term of asymmetric graphs. Theoretical analysis and extensive experiments
verify the role of parameters in alleviating the unbalanced update. It is also the first
time discrete optimization has been applied to online hashing, which improves the online
hashing performance.

Lin et al. [36] believe that because of the flaw of unknown category numbers in
supervised learning, it does not improve the efficiency of online hash retrieval, despite
the addition of semantic information. Therefore, they propose a robust supervised online-
hashing scheme, termed HCOH. First, a high-dimensional orthogonal binary matrix, i.e.
the Hadamard matrix, is generated. Every column or row of this matrix can be taken
as a codebook that corresponds with a class label. Then, LSH is used to convert the
codebook into a binary code adapted to the number of hash bits. In an improved version of
HMOH [37], hash linear regression is processed as a binary-classification issue, and the
case of multi-label is considered as well.

Aimed at the problem of the data embedding into the system in a streaming way
and the difficulty of loading into memory for training because of the huge dataset, Sketch-
Hash [38] decreases the size of the dataset based on the idea of data sketches, and retains the
main features of the dataset to learn an effective hash function. This approach reduces com-
putational complexity and space complexity. Compared with SketchHash, the FROSH [39]
method leverages fast transformation to sketch data more compactly. FROSH applies a
specific transform on different small data blocks, speeding up the procedure of sketching
with the same space cost.
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There is also semi-supervised online hashing [43,44], which is relatively complicated
because labels may come from existing data or streaming data. In addition, deep-hashing
methods [40,45,46] occupy a very important position in the existing offline-hashing meth-
ods. However, there are large amounts of parameters to be trained in deep learning, and few
examples are applied in online hashing at present. Among them, Online Self-Organizing
Hashing [47] obtains hash codes by the Self-Organizing Map (SOM) algorithm, but SOMs
with multi-layers structures have not been applied to image retrieval.

3. The Proposed Method

In this section, the variable symbols in this algorithm are first defined, and the mod-
eling process that combines the local structural features and the similarity features of
the global datasets is given. Finally, we obtain the objective function and solve it by the
alternating-iteration method. The algorithm frame is shown in Figure 1.
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Figure 1. The overall framework of online hashing preserving local features and global-balanced
similarity (LSOH). (a) Manifold learning preserves the structural features of newly arrived data, and
obtains the hash codes of newly arrived data through Laplacian Eigenmaps (LE). (b) Learn binary
codes by a balanced similarity matrix built from newly arrived data and existing data to keep all the
hash codes consistent. (c) Our proposed algorithm can learn hash codes preserving dual-semantic
information, and obtain satisfactory retrieval results.

3.1. Notations

Assume that nt training samples are poured into retrieval application at t stage.
They are denoted as Xt =

[
xt

1, xt
2, · · · , xt

nt

]
∈ Rd×nt and their corresponding labels Lt

are defined as Lt =
[
lt
1; lt

2; · · · ; lt
nt

]
∈ Nd×nt . Each training sample expressed as xt

i is d-
dimensional. The goal of hashing is to learn r-dimensional hash codes, which are denoted
as Bt =

[
bt

1, bt
2, · · · , bt

nt

]
∈ {1,−1}r×nt , and meanwhile, r is much smaller than d. The

linear-hash mapping is widely used as a hash function [48], i.e.,

Bt = F
(
Xt) = sgn

(
WtTXt

)
(1)

where F(·) stands for the hash function, Wt ∈ Rd×r is the projection matrix to be learned,
WtT is the transpose of Wt, and sgn(·) is the symbolic function, and its definition is the
following. All symbol notations utilized in this study are presented in Table 1.

f (x) = sgn(x) =

{
−1, x < 0

1, x ≥ 0
(2)
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Table 1. Notations in this paper.

Symbol Notations

Xt input data at t stage
Xt

a data existing before t stage
Lt labels of Xt

Lt
a labels of Xt

a
Bt hash codes learned for Xt

Bt
a hash codes learned for Xt

a.
Wt hashing projection matrix at the t age
d dimension of all input data

Xt
c newly arrived data at the t stage

k dimension of every hash code
Lt

c labels of Xt
c

N amount of input data
Bt

c binary codes generated for Xt
c

nt amount of input data at the t stage

3.2. Manifold Learning
3.2.1. Laplacian Eigenmaps

Laplacian Eigenmaps use the Laplacian operator to make similar data in the original
space as close as possible after being mapped to the low-dimensional space, so as to embed
high-dimensional images in the low-dimensional space. Assume that the original data
denoted as Xt =

[
xt

1, xt
2, · · · , xt

nt

]
are mapped to the low-dimensional space, in which hash

codes are expressed as Bt=
[
bt

1; bt
2; · · · ; bt

nt

]
. We construct a graph whose adjacency matrix

is Ot to maintain the relationships between different data. Then, we define the objective
function to be optimized as follows:

min
Bt ∑

ij
‖bi − bj‖2

2Oij
t (3)

s.t. Bt ∈ {−1, 1}k×nt , BtT Bt = nt I, Oij
t = exp (−

‖xi − xj‖2

ϕ2 ).

where I represents the k-dimensional identity matrix, and Oij
t represents the adjacency

matrix between the sample data. Mathematically, the objective function to be optimized
can be transformed into the formula as follows:

min
Bt

tr
(

Bt(D−O)BtT
)

(4)

s.t. Bt ∈ {−1, 1}k×nt , BtT Bt = nt I.

where Dii = ∑i Oij represents the weight matrix of the sample graph, and D −O is the
Laplace matrix. By eigen decomposition of D−O, the eigenvectors corresponding to the k
smallest non-zero eigenvalues are obtained as the required target hash codes.

3.2.2. Anchor Graph Hashing

It is time-consuming and memory-intensive to compute the adjacency matrix for
large amounts of sample data. Calculating the adjacency matrix by using an anchor
set instead of the dataset can solve the above problem: m anchor points denoted as
[u1, u2, . . . , ui, . . . , um] ∈ Rd are obtained through the k-mean clustering method. When
the number of anchors is less than that of the training samples, both storage cost and
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computation time are greatly reduced. The anchor graph is denoted as At and its elements
are defined as follows:

Aij
t =


exp
(
−‖xt

i−ut
j‖

2/θ
)

∑j′∈{i} exp
(
−‖xt

i−ut
jj′‖

2/θ
) , ∀j ∈ {i}

0, otherwise
(5)

where θ is a defined parameter, and {i} represents the index set of the k nearest anchor
points. Replace the traditional Laplace matrix with anchor graph At, and then the objective
function is obtained.

L1 = min
B̃t ,Wt

m

∑
j=1

n

∑
i=1
‖b̃t

j −WtTxt
i‖

2

2
At

ij , (6)

where B̃t =
[
b̃t

1, b̃t
2 . . . b̃t

j , . . . b̃t
m

]
represents the hash codes of anchor points, WtTxt

i repre-

sents the hash codes of the input images, and Aij
t represents the anchor graph matrix

constructed by the input images and anchor data.

3.3. Global-Balanced Similarity

It performs the anchor hashing based on Laplacian Eigenmaps; the hash function of
newly arrived data is obtained independently, which will ignore the correlation of the
overall data and boost the redundancy of hash codes. Thus, a global similarity constraint is
introduced to build an online hashing model.

3.3.1. Similarity

Suppose that the newly arrived data at t stage are denoted as Xt
c =

[
Xt

c1, Xt
c2, . . . , Xt

cnt

]
,

while the existing data arriving before t stage are denoted as Xt
a =

[
X1

a , X2
a , . . . , Xt−1

a
]
. The

similarity matrix, St, is constructed by the relationships of the data labels between Xt
c and

Xt
a. Each matrix element is defined as follows:

St
ij =

{
1, lt

i = lt
j

−1, otherwise.
(7)

Generally speaking, the more similar the data, the smaller the hash distance. We use
the inner product of hash codes to estimate the distance between different vectors in the
Hamming space. Constraints on hash codes are constructed using the global similarity
matrix which is defined above [35], as shown in Equation (8). Therefore, global semantic
information at any stage of the input data remains in the Hamming space. Therefore, the
loss function that preserves similarity is defined as follows:

L2 = min
Bt

a ,Bt
c

‖Bt
c

T Bt
a − kSt‖

2
F (8)

s.t.Bt
c ∈ {1,−1}r×nt , Bt

a ∈ {1,−1}r×mt

where mt = ∑t−1
i=1 ni represents the total amount of input data arriving before the t stage,

‖·‖F refers to the F norm, and k is the bit length of hash codes.

3.3.2. Balanced Similarity

The introduction of a similarity matrix improves the hash codes generated by anchor
hashing based on LE, and the global semantic information is better reflected. However,
images with different labels among the massive data account for the majority. According to
the definition of the global similarity matrix, the value of the element is 1 only when the
labels are identical. Therefore, the global similarity matrix is sparse. Data imbalance will
cause the loss of similar information, derail the optimization process and eventually drag
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down the retrieval performance. To solve this issue, we employ the balanced similarity
matrix S̃t as follows:

S̃t
ij =

{
µsSt

ij, St
ij = 1

µdSt
ij, St

ij = −1,
(9)

where µs represents the equilibrium factors of similar pairs, and µd represents the equi-
librium factors of dissimilar pairs. Usually, we take µs < 1 and µd < 1, which means
reducing the Hamming distance of similar vectors and increasing the Hamming distance of
dissimilar vectors. By adjusting two equilibrium divisors, the effect that comes from data
imbalance is eliminated. By replacing the global similarity matrix, St, in Equation (8) with
a balanced similarity matrix, S̃t, the loss function that preserves the balanced similarity is
defined as follows:

L2 = min
Bt

a ,Bt
c

‖Bt
c

T Bt
a − kS̃t‖

2
F (10)

s.t.Bt
c ∈ {1,−1}r×nt , Bt

a ∈ {1,−1}r×mt

3.4. Overall Formulation

On one hand, we construct the anchor asymmetric graph to replace the Laplacian
graph, preserving the local structural features of the data, and thus obtaining the objective
function, L1. On the other hand, we perform an inner-product operation on the hash codes
of existing data and newly arrived data and then constrain the learning process of hash
codes with the global-balanced similarity matrix. The loss function, L2, that retains the
semantic information of global-balanced similarity is obtained. Under a unified framework,
the online hashing preserves both local and global dual-semantic information, and the
total loss function L = L1 + L2 is obtained. By adding a quantized loss function, L3, the
quantization error between the hash function and the target hash codes is minimized.

L3 = min
Wt
‖F
(
Xt)− Bt‖2

F (11)

The F norm of the projection matrix is used as the penalty term to prevent the model
from overfitting. The final objective function is obtained as follows:

L = min
Bt

c ,Bt
a ,B̃t ,Wt

αt
m
∑

j=1

n
∑

i=1
‖b̃t

j −WtTxt
i‖

2

2
At

ij + ‖Bt
c

T Bt
a − kŜt‖

2
F

+βt‖WtTXt
c − Bt

c‖
2
F + γt‖Wt‖2

F

(12)

where αt, βt, and γt are parameters that control the weight of each module.

3.5. Alternating Optimization

Because of the binary constraints, Equation (12) is a non-convex objective function
in terms of Wt, Bt

a, Bt
c, B̃t. We adopt an alternative optimization approach to deal with

the overall formula, L; i.e., and when a variable is updated we assume that the remaining
variables are fixed as constants.

• Wt-step: fix Bt
a, Bt

c, B̃t, then learn hash weights Wt. The second term in Equation (12)
is eliminated, and the objective function becomes:

min
Wt

αt
m

∑
j=1

n

∑
i=1
‖b̃t

j −WtTxt
i‖

2

2
At

ij + βt‖WtTXt
c − Bt

c‖
2
F + ‖γtWt‖2

F (13)

We transform and simplify Equation (13) by Equation (14), which reveals the relation
between F norm and the trace of a matrix. Then, Equation (15) is obtained.

‖ A ‖F=
√

tr(AT A) =
√

tr(AAT) (14)
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min
Wt

[(
αt + βt)Xt

cXt
c

T
+ γt I

]
tr
(

WtWtT
)
− 2tr

(
WtT

Xt
c

(
αt At B̃tT

+ βtBt
c

T
))

(15)

where I represents the identity matrix of d-dimensional. Equation (15) takes the partial
derivative with respect to Wt, then assigns it zero. We have the following formula:[(

αt + βt)Xt
cXt

c
T
+ γt I

]
Wt − Xt

c

(
αt At B̃tT

+ βtBt
c

T
)
= 0 (16)

Thus, we can get the Equation (17) to update Wt

Wt =
[(

αt + βt)Xt
cXt

c
T
+ γt I

]−1
Xt

c

(
αt At B̃tT

+ βtBt
c

T
)

(17)

• Bt
a-step: fix Wt, Bt

c, B̃t, the second term in Equation (12) is retained and the formula
becomes:

min
Bt

a

‖BtT

c Bt
a − kŜt‖

2
F (18)

According to [49], the L1 norm replaces the F norm, and the result is as follows:

Bt
a = sgn(Bt

cŜt) (19)

• Bt
c-step: fix Wt, Bt

a, B̃t, the first and the fourth term in Equation (12) are eliminated,
and the corresponding sub-problem is:

min
Bt

c

‖BtT

c Bt
a − kŜt‖

2
F + βt‖WtTXt

c − Bt
c‖

2
F (20)

In Equation (20), we remove irrelevant terms and the optimization problem becomes:

min
Bt

c

‖BtT

a Bt
c‖

2
F − 2tr

(
PT BT

c

)
(21)

where tr(·) is trace norm, P = kBt
aŜtT

+ βtWtTXt
c. In the light of supervised discrete hashing

(SDH) [50] and BSODH [35], the solution of Equation (21) becomes NP hard. Therefore, we
transfer this issue to row-by-row updating, considering that the matrix is made up of row
vectors. Thus, Equation (21) becomes:

min
b̃t

cr

‖b̃tT

ar b̃t
cr + B̃tT

a B̃t
c‖

2
F − 2tr

(
p̃tT

r b̃t
cr + P̃tT

B̃t
c

)
(22)

where b̃t
cr, b̃t

ar and p̃t
r are the rth row of Bt

c, Bt
a and P̃t, respectively; Bt

c, Bt
a and P̃t stand for

the remaining parts of Bt
c, Bt

a and P̃t except b̃t
cr, b̃t

ar and p̃t
r respectively. Expanding Equation

(22), we get the following:

min
b̃t

cr

‖b̃tT

ar b̃t
cr‖

2
F + ‖B̃tT

a B̃t
c‖

2
F + 2tr

(
B̃tT

c B̃t
a b̃tT

ar b̃t
cr

)
− 2tr

(
p̃tT

r b̃t
cr

)
− 2tr

(
P̃tT

B̃t
c

)
(23)

After simplification, the Equation (23) becomes the following:

min
b̃t

cr

tr
((

B̃tT

c B̃t
a b̃tT

ar − p̃tT

r

)
b̃t

cr

)
(24)

Therefore, we solve the sub-problem by following updating rules below:

b̃t
cr = sgn

(
p̃t

r − b̃t
ar B̃tT

a B̃t
c

)
(25)
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• B̃t-step: fix Wt, Bt
a, Bt

c, only the first term remains in Equation (12), and it is transformed
into the formula, as follows:

max
B̃t

tr
(

WtTXt
c At B̃tT

)
(26)

Finally, we get the following rule to update the hash codes of the anchor data.

B̃t = sgn
(

WtTXt
c At
)

. (27)

The proposed LSOH is presented in Algorithm 1.

Algorithm 1 the online hashing preserving local features and global-balanced similarity

Input: training samples, X; labels L; code length, k; the number of sample batches, T; divisors
αt,βt, γt.
Output: hash codes B and the mapping matrix W.

Initialize W with the normal Gaussian distribution
while T← 1 do

Denote the newly arrived data as Xt
c

Set Xt
a =

[
Xt

a;Xt
c
]
, Bt

a =
[
Bt

a;Bt
c
]

Compute m anchor points [u1, u2, . . . , ui, . . . , um] by means of K-means clustering
Obtain anchor graph At via Equation (5) and compute the global-balanced similarity matrix

S̃
t

by labels
Update Wt, Bt

a, B̃
t

via Equation (17), Equation (19) and Equation (27), respectively
while r becomes k ← 1 do

Update b̃
t
cr via Equation (25)

end while
end while

Set W = Wt and calculate Bt = sgn
(

WtTXt
)

ReturnW, B

3.6. Computational Complexity

The main computation cost of the iterative algorithm is from the construction of
anchor graph A and the optimization of variables. In total, it costs O(Tdntm + dntm)
to construct an anchor graph, where T is the iteration times to generate anchors by the
clustering algorithm. The time complexities of updating Wt, Bt

a , Bt
c and B̃t at the tth round

are O(d3 + ntd2 + mntr + ntdr), O(rntmt), O(kmnt+ kdnt + krm + krnt) and O(drnt + mrnt)
respectively. Since d, r, m, nt, and k are much smaller than mt, we obtain the time complexity
of our proposed LSOH as linear to the size of the data. Obviously, it is scalable to large-
scale data.

4. Experiments
4.1. Datasets

The three datasets used in this paper are CIFAR-10, MNIST, and Places205.
CIFAR-10 [51] is a widely recognized dataset. It is made up of 60K samples among

10 classes. Every sample is represented by a 4096-dimensional CNN feature. Following [34],
CIFAR-10 is divided into a retrieval set and a test set, where the retrieval set has 59K samples
and the test set has 1K samples. The 50K samples within the retrieval set participate in
the learning hash function. Twenty example images from each category of CIFAR-10 are
shown in Figure 2.
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Figure 2. Example images of CIFAR-10 dataset.

MNIST is a set of handwritten digit images, with a total of 70 K samples. Every
sample is expressed as a 784-dimensional vector. A test set is constructed by sampling 100
samples from each category and the remaining samples form a retrieval set. There are 60 K
instances among the retrieval set which participate in the learning hash function. We select
27 example instances randomly from each category, as shown in Figure 3.
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Places205 has 2.5 million scene images among 205 categories. The instances are firstly
processed by the fc7 layer of AlexNet and are fallen to 128-dimensional vectors by PCA. The
20 samples are randomly selected from each category forming the test set. Thus, the rest
form the retrieval set. We select a subset of 30K instances randomly from the retrieval set to
learn the online hash function. The two hundred images shown in Figure 4 are sampled
randomly from Places205.
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4.2. Experimental Setting
4.2.1. Parameter Setting

Given experience, the scopes of αt, βt, γt for LSOH are set in [0:0.05:1]. For CIFAR-10,
the best setting of (αt, βt, γt) is empirically adopted to (0.05, 0.6, 0.3). For the MNIST, we set
(0.05, 0.6, 0.3) as the configuration of (αt, βt, γt). For Places205, (0.05, 0.8, 0.3) corresponds
to (αt, βt, γt). Table 2 shows the specific parameters of our proposed LSOH on the three
datasets mentioned above. We conduct a large number of experiments, where the bit length
is taken from the set of [8,16,32,48,64,128]. In addition, the batch size should be greater than
that of hash codes in SketchHash [38]. Therefore, the experimental results of SketchHash
are presented only when the hashing codes are under 64 bits.

Table 2. Parameter settings on three datasets of LSOH.

Parameter CIFAR-10 MNIST Places205

αt 0.05 0.05 0.05
βt 0.6 0.6 0.8
γt 0.3 0.3 0.3
µs 1.2 1.2 1
µd 0.2 0.2 0
nt 5000 10,000 10,000

4.2.2. Evaluation Protocols

Some evaluation indicators are adopted, such as the mean average precision (mAP),
precision within a Hamming sphere with a radius of 2 centered on every query point (Pre-
cision@H2), and the precision of the top-K retrieved neighbors (Precision@K) to evaluate
the proposed LSOH. It is worth noting that we apply the average accuracy of the first
1000 retrieved samples (mAP@1000) for Places205, to save calculation time. We adopt
the precision–recall (PR) curves on MNIST and CIFAR-10 as well, to compare LSOH and
several algorithms.

4.2.3. Compared Methods

To prove the effectiveness of LSOH, we perform abundant experiments and com-
pare LSOH with several advanced OH algorithms such as OKH [24], SketchHash [38],
AdaptHash [32], OSH [33], BSODH [35] and DSBOH [52]. The codes of the above compari-
son methods are publicly available. All the results of the above methods are achieved on a
single computer that runs MATLAB and is equipped with a 3.0 GHz Intel Core i5-8500CPU
and 16GB RAM. To reduce the error, each experiment was randomly run three times, and
then the average is given in this work.

4.3. Results and Discussion

The values of mAP and Precision@H2 on the CIFAR-10 dataset are shown in Table 3.
It lists the results when generating 8-bit, 16-bit, 32-bit, 48-bit, 64-bit, and 128-bit hash codes
under different online methods. The results show that (1) mAP: values of our proposed
LSOH are the highest in all the cases. Our proposed LSOH improves the accuracy by 3.3%,
0.4%, 1.9%, 3.4%, 1.5%, and 1.5%, respectively, over the second-best algorithm. It can be
seen that LSOH improves the average accuracy, effectively. (2) Precision@H2: our proposed
LSOH algorithm is 2.4% higher than the suboptimal algorithm in the situation of 48-bit. It
is the second-best algorithm in the case of 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit, while no
algorithm can rank first in all the cases. In this way, LSOH still performs well, compared
with other algorithms.



Sensors 2023, 23, 2576 12 of 18

Table 3. mAP and Precision@H2 comparisons on CIFAR-10.

mAP Precision@H2

Methods 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.100 0.134 0.223 0.252 0.268 0.350 0.100 0.175 0.100 0.452 0.175 0.372

SketchHash 0.248 0.301 0.302 0.327 - - 0.256 0.431 0.385 0.059 - -

AdaptHash 0.116 0.138 0.216 0.297 0.305 0.293 0.114 0.254 0.185 0.093 0.166 0.164

OSH 0.123 0.126 0.129 0.131 0.127 0.125 0.120 0.123 0.137 0.117 0.083 0.038

BSODH 0.564 0.604 0.689 0.656 0.709 0.711 0.305 0.582 0.691 0.697 0.690 0.602

DSBOH 0.556 0.669 0.703 0.696 0.720 0.727 0.411 0.730 0.737 0.655 0.552 0.371

Ours 0.589 0.673 0.722 0.730 0.735 0.742 0.366 0.662 0.733 0.721 0.675 0.541

The best results are displayed in bold.

Table 4 reveals the values of mAP and Precision@H2 on MNIST. Results show that (1)
mAP: In the case of 8-bit, 16-bit, 48-bit, 64-bit, and 128-bit, our proposed LSOH is 2.6%,
0.7%, 0.7%, 0.7%, and 0.8%, respectively, higher than the suboptimal algorithm orderly. It is
the second-best algorithm when generating 32-bit hash codes. The advantage of LSOH is
verified. (2) Precision@H2: values of Precision@H2 on LSOH are the highest under 8-bit
and it ranks second in other code bits. As the bit length grows, the performance of LSOH is
worse than that of BSODH under 48-bit, 64-bit, and 128-bit, but better than DSBOH.

Table 4. mAP and Precision@H2 comparisons on MNIST.

mAP Precision@H2

Methods 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.100 0.155 0.224 0.273 0.301 0.404 0.100 0.220 0.457 0.724 0.522 0.124

SketchHash 0.257 0.312 0.348 0.369 - - 0.261 0.596 0.691 0.251 - -

AdaptHash 0.138 0.207 0.319 0.318 0.292 0.208 0.153 0.442 0.535 0.335 0.163 0.168

OSH 0.130 0.144 0.130 0.148 0.146 0.143 0.131 0.146 0.192 0.134 0.109 0.019

BSODH 0.593 0.700 0.747 0.743 0.766 0.760 0.308 0.709 0.826 0.804 0.814 0.643

DSBOH 0.596 0.721 0.759 0.751 0.781 0.781 0.403 0.803 0.849 0.788 0.651 0.415

Ours 0.622 0.728 0.756 0.758 0.788 0.789 0.418 0.757 0.846 0.796 0.761 0.487

The best results are displayed in bold.

The outcomes of mAP and Precision@H2 on the Places205 dataset are expressed in
Table 5. (1) mAP: our proposed LSOH is the best algorithm with 3.3% and 1.1% higher than
the suboptimal algorithm under 16-bit and 32-bit, respectively. In other cases, the results
of LSOH are not optimal. Due to the huge amount of data in Places205, other comparison
algorithms have not always performed optimally. In contrast, the LSOH algorithm has
better stability and relatively higher retrieval accuracy. (2) Precision@H2: our proposed
LSOH has optimal values under 16-bit and 48-bit, with 1.1% and 0.8%, respectively, better
than the second-best algorithm, and it ranks second in other code bits. In conclusion, our
proposed LSOH algorithm performs well and has high retrieval accuracy on Precision@H2.
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Table 5. mAP@1000 and Precision@H2 comparisons on Places205.

mAP Precision@H2

Methods 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit 8-bit 16-bit 32-bit 48-bit 64-bit 128-bit

OKH 0.018 0.033 0.122 0.048 0.114 0.258 0.007 0.010 0.026 0.017 0.217 0.075

SketchHash 0.052 0.120 0.202 0.242 - - 0.017 0.066 0.220 0.176 - -

AdaptHash 0.028 0.097 0.195 0.223 0.222 0.229 0.009 0.051 0.012 0.185 0.021 0.022

OSH 0.018 0.021 0.022 0.032 0.043 0.164 0.007 0.009 0.012 0.023 0.030 0.059

BSODH 0.035 0.174 0.250 0.273 0.308 0.337 0.009 0.101 0.241 0.246 0.212 0.101

DSBOH 0.046 0.154 0.240 0.286 0.313 0.347 0.011 0.089 0.264 0.175 0.119 0.037

Ours 0.043 0.187 0.251 0.282 0.296 0.323 0.013 0.110 0.244 0.254 0.213 0.098

The best results are displayed in bold.

For further testing of our proposed LSOH, Precision@K curves in the case of 8-bit,
16-bit, 32-bit, 48-bit, 64-bit, and 128-bit are drawn on CIFAR-10 and MNIST, as displayed in
Figures 5 and 6. Comparative experiments of these metrics on the Places205 dataset are not
conducted, due to its large memory requirements.Data 2022, 7, x FOR PEER REVIEW 13 of 17 
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From Figure 5, we can see the Precision@K curves on the CIFAR-10 dataset. It is
obvious that the Precision@K curve of our proposed LSOH is higher than other comparison
curves in the case of 8-bit, 16-bit, 32-bit, 48-bit, 64-bit, and 128-bit. Thus, the performance
of 32-bit and 64-bit hash codes is particularly outstanding. As shown in Figure 6, LSOH
continuously reveals a higher Precision@K curve, compared with other algorithms on the
MNIST dataset. Only when generating 8-bit hash codes, does our proposed LSOH have a
temporary fluctuation on the CIFAR-10 dataset. As hash bits increase, the retrieval accuracy
goes up slightly, which shows the robustness and superiority of the LSOH algorithm.
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Figure 7 shows the precision–recall (PR) curves under 32-bit. By calculating the area
under curve (AUC) of the PR curves, we obtain the values of 95.85% and 91.77% in turn,
which demonstrates that the proposed LSOH has a doubly high ratio of precision and
recall.
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4.4. Parameter Sensitivity

In this subsection, we conduct the ablation studies on the hyper-parameters of αt, βt,
and γt, as defined in Equation (12). Without loss of generality, we conduct experiments
with varying values of these hyper-parameters concerning mAP(mAP@1000) in the case
of 32-bit, in Figure 8. (Detailed values used in this paper are outlined in Table 2.) Similar
experimental results can be observed in other hashing bits.
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sive experiments on the benchmark datasets verify that LSOH has significant advantages, 
compared with other advanced algorithms. However, similar to other state-of-the-art 
online-hashing algorithms, LSOH decreases the retrieval accuracy with the hash-bits in-
crease. Recently, cross-modal retrieval has had more application requirements, and our 
method of mining the local structural features of the retrieval data and finding similarity 
measures of the global data is also worthy of reference and of application in cross-modal 
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Figure 8. Comparisons of mAP(@1000) performances concerning varying values of αt, βt, γt when
the hashing bit is 32.

As shown in Equation (12), αt is used to reflect the importance of anchor graph hashing.
Figure 8a plots the influence of different values of αt on the performance. Generally
speaking, when αt = 0.05 on CIFAR-10 and MNIST, LSOH obtains the best mAP (0.739
on CIFAR-10 and 0.760 on MNIST). When αt = 0.05 on Places205, LSOH obtains the best
mAP@1000, with 0.251. Moreover, when αt = 0, LSOH suffers a performance degradation,
as can be seen in Figure 8a. More specifically, in this case, the mAP(mAP@1000) scores are
0.740, 0.731, and 0.200 on MNIST, CIFAR-10, and Places205, respectively. To analyze, when
αt = 0, LSOH is similar to BSODH. In the experiments, we empirically set the values of αt

as 0.05 on all three datasets.
As shown in Equation (12), βt is used to reflect the importance of the quantized loss

function. From Figure 8b, we can observe that when βt = 0.6 on CIFAR-10 and MNIST,
LSOH obtains the best mAP (0.768 on MNIST and 0.747 on CIFAR-10). When βt = 0.8 on
Places205, LSOH obtains the best mAP@1000, with 0.251. Moreover, when βt = 0, LSOH
suffers great performance degradation, as can be seen in Figure 8b (0.278 on CIFAR-10,
0.244 on MNIST, and 0.13 on Places205). We can observe from Figure 8b that properly
applying the quantized loss term in Equation (11) can significantly boost the performance
of the three datasets. In the experiments, we empirically set the values of βt as 0.6 on
CIFAR-10 and MNIST, and 0.8 on Places205.

From Figure 8c, we can observe that when γt = 0.3 on CIFAR-10 and MNIST, LSOH
obtains the best mAP (0.768 on MNIST and 0.745 on CIFAR-10). When γt = 0.3 on Places205,
LSOH obtains the best mAP@1000, with 0.251. Moreover, when γt = 0, LSOH suffers great
performance degradation, as can be seen in Figure 8c. Thus, it is necessary to use a penalty
term properly to prevent the model from overfitting. In the experiments, we empirically
set the values of γt as 0.3 on the three datasets.

4.5. Limitations and Potential Improvements

By comparing the weights of each module in Equation (12), it can be seen that the
global-balanced similarity plays an important role in training hash codes. However, some
operations on a matrix need to be processed, due to the introduction of anchor hashing,
which leads to the training time of LSOH being slightly slower than that of the BSODH
algorithm. For example, LSOH takes several seconds longer than BSODH when generating
a 32-bit hash code, but it is shorter than OSH. In addition, the inverse of the matrix is
required when calculating Wt, and its time complexity is O(d3). In other words, it is time-
consuming when the dimension of the retrieval image is too large. Therefore, employing
a more effective and efficient method to perform the matrix operation is desirable and
worthwhile.

5. Conclusions

In this paper, a novel hashing algorithm preserving both the local and global dual
semantics for image retrieval, i.e. LSOH, was proposed. By extracting the local manifold
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structure for data coming at the same time, and constructing a global-balanced similarity
matrix from data at a different time, we obtain a relatively comprehensive hash constraint,
which avoids the problem of over-reliance on labels and imbalanced data updates. Then,
an alternative-iteration algorithm is used to solve the discrete binary optimization. Exten-
sive experiments on the benchmark datasets verify that LSOH has significant advantages,
compared with other advanced algorithms. However, similar to other state-of-the-art
online-hashing algorithms, LSOH decreases the retrieval accuracy with the hash-bits in-
crease. Recently, cross-modal retrieval has had more application requirements, and our
method of mining the local structural features of the retrieval data and finding similarity
measures of the global data is also worthy of reference and of application in cross-modal
retrieval. Given the strong capability for feature representation, the research on online
hashing with deep learning networks is also a valuable topic for the future.
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