Bistatic Radar Cooperative Imaging Based on Complementary Random Waveform
Abstract
:1. Introduction
2. Echo Model of Bistatic Radar Cooperative Imaging
3. Motion Compensation Method Based on Complementary Random Waveform
3.1. Distance Difference Compensation
3.2. Echo Motion Compensation
4. Band Fusion Imaging Based on Tight Constrained Rearrangement and Zero Complement
4.1. Coherent Processing
4.2. Imaging Process
5. Experimental Results
5.1. Validation of Simulation Data
5.2. Data Validation of High-Frequency Electromagnetic Calculations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Huang, P.; Yang, H.; Zou, Z.; Xia, X.-G.; Liao, G. Multichannel Clutter Modeling, Analysis, and Suppression for Missile-Borne Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3236–3260. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y. Performance Analysis on Coherent Receiving Radar Based on Electromagn-etic Scattering Characteristics of Target. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Mei, H.; Li, Y.; Xing, M.; Quan, Y.; Wu, C. A Frequency-Domain Imaging Algorithm for Transla-tional Variant Bistatic Forward-Looking SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1502–1515. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Mao, X.; Lei, W. Terrain Classification of Polarimetric SAR Images Based on Optimal Polarization Features. In Proceedings of the 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shijiazhuang, China, 22–24 July 2022; pp. 400–403. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, H.; Qi, G. Analysis of Terminal Area Airspace Operation Status Based on Traje-ctory Characteristic Point Clustering. IEEE Access 2021, 9, 16642–16648. [Google Scholar] [CrossRef]
- Strelnikov, A.P.; Volkov, A.S.; Bakhtin, A.A.; Gorelik, A.V.; Kobzev, V.A. Alamouti Scheme a-nd Spatial Diversity MIMO Algorithms. In Proceedings of the 2021 IEEE East-West Design & Test Symposium (EWDT-S), Batumi, Georgia, 10–13 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO Radar with widely separated antennas. IEEE Signal Process. Mag. 2008, 25, 116–129. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, S.; Su, H.; Yu, Y. Detection performance of spatial-frequency diversity MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3137–3155. [Google Scholar]
- Zhang, Y.; Wang, T.-J.; Zhao, H.-P.; Zhang, Y.; Zhao, H. Multiple radar subbands fusion algorithm based on support vector regression in complex noise environment. IEEE Trans. Antennas Propag. 2018, 66, 381–392. [Google Scholar] [CrossRef]
- Liu, S.; Jia, Y.; Liu, Y.; Zhang, X. Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression. Sensors 2022, 22, 9829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hou, C.; Lin, Y.; Zhang, J.; Xu, Y.; Chen, S. Frequency Hopping Signal Modulation Recognition Based on Time-Frequency Analysis. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 46–52. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, B.; Jiang, Z.; Guo, Y.; Wang, D. Microwave Staring Correlated Imaging Method Based on Steady Radiation Fields Sequence. Sensors 2020, 20, 6859. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, X. Research of a Radar Imaging Algorithm Based on High Pulse Repetition Random Frequency Hopping Synthetic Wideband Waveform. Sensors 2019, 19, 5424. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Liu, H.; Guo, J.; Wang, Y.; Zhang, J. Research on Configuration Constraints of Airborne Bistatic SARs. Sensors 2022, 22, 6534. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, T.; Zhang, L. Longtime Coherent Integration Algorithm for High-Speed Maneuvering Target Detection Using Space-Based Bistatic Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Hong, S.; Moon, W.M.; Paik, H.Y.; Choi, G.H. Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; IEEE: New York, NY, USA, 2002; Volume 6, pp. 3323–3325. [Google Scholar]
- Liao, Z.-K.; Hu, J.-M.; Lu, D.-W.; Zhang, J. Motion analysis and compensation method for random stepped frequency radar using the Pseudorandom code. IEEE Access 2018, 6, 57643–57654. [Google Scholar] [CrossRef]
- Li, X.; Liu, G.-S.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1252. [Google Scholar] [CrossRef]
- Liao, Z.-K.; Lu, D.-W.; Hu, J.-M.; Zhang, J. Waveform design for random stepped frequency radar to estimate object velocity. Electron. Lett. 2018, 54, 894–896. [Google Scholar] [CrossRef]
- Tian, B.; Chen, Z.-P.; Xu, S.-Y. Sparse sub-band fusion imaging based on parameter estimation of geometrical theory of diffraction model. IET Radar Sonar Navig. 2014, 8, 318–326. [Google Scholar] [CrossRef]
- Tian, J.-H.; Sun, J.-P.; Wang, G.-H.; Wang, Y.; Tan, W. Multiband radar signal coherent fusion processing with IAA and apFFT. IEEE Signal Process. Lett. 2013, 20, 463–466. [Google Scholar] [CrossRef]
- Bai, X.-R.; Zhou, F.; Wang, Q.; Xing, M.; Bao, Z. Sparse sub-band imaging of space targets in high-speed motion. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4144–4154. [Google Scholar] [CrossRef]
- Hu, P.-J.; Xu, S.Y.; Wu, W.-Z.; Chen, Z. Sparse sub-band ISAR imaging based on autoregressive model and smoothed ℓ0 algorithm. IEEE Sens. J. 2018, 18, 9315–9323. [Google Scholar] [CrossRef]
- Zhou, F.; Bai, X.-R. High-resolution sparse sub-band imaging based on Bayesian learning with hierarchical priors. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4568–4580. [Google Scholar] [CrossRef]
- Yang, T.; Shi, H.; Guo, J.; Liu, M. FMCW ISAR Autofocus Imaging Algorithm for High-Speed Maneuvering Targets Based on Image Contrast-Based Autofocus and Phase Retrieval. IEEE Sens. J. 2020, 20, 1259–1267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hu, J.; Zou, B.; Zhu, Y.; Song, Z. Bistatic Radar Cooperative Imaging Based on Complementary Random Waveform. Sensors 2023, 23, 2577. https://doi.org/10.3390/s23052577
Li X, Hu J, Zou B, Zhu Y, Song Z. Bistatic Radar Cooperative Imaging Based on Complementary Random Waveform. Sensors. 2023; 23(5):2577. https://doi.org/10.3390/s23052577
Chicago/Turabian StyleLi, Xin, Jiemin Hu, Bo Zou, Yongfeng Zhu, and Zhiyong Song. 2023. "Bistatic Radar Cooperative Imaging Based on Complementary Random Waveform" Sensors 23, no. 5: 2577. https://doi.org/10.3390/s23052577
APA StyleLi, X., Hu, J., Zou, B., Zhu, Y., & Song, Z. (2023). Bistatic Radar Cooperative Imaging Based on Complementary Random Waveform. Sensors, 23(5), 2577. https://doi.org/10.3390/s23052577