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Abstract: The rapid development of mobile communication services in recent years has resulted in
a scarcity of spectrum resources. This paper addresses the problem of multi-dimensional resource
allocation in cognitive radio systems. Deep reinforcement learning (DRL) combines deep learning
and reinforcement learning to enable agents to solve complex problems. In this study, we propose a
training approach based on DRL to design a strategy for secondary users in the communication system
to share the spectrum and control their transmission power. The neural networks are constructed
using the Deep Q-Network and Deep Recurrent Q-Network structures. The results of the conducted
simulation experiments demonstrate that the proposed method can effectively improve the user’s
reward and reduce collisions. In terms of reward, the proposed method outperforms opportunistic
multichannel ALOHA by about 10% and about 30% for the single SU scenario and the multi-SU
scenario, respectively. Furthermore, we explore the complexity of the algorithm and the influence of
parameters in the DRL algorithm on the training.

Keywords: resource allocation; machine learning; dynamic spectrum access; deep reinforcement
learning; deep Q-network

1. Introduction

The rapid growth of the data traffic business has been facilitated by the advancement
of mobile communication technologies. However, the limited availability of licensed
spectrum with low utilization struggles to support such a vast scale of services [1]. As a
result, the licensed spectrum used for data traffic is becoming overloaded. To address this
issue, researchers have suggested utilizing unlicensed spectrum as a solution to alleviate
the strain on licensed spectrum and improve network capacity. The upcoming generation
of mobile communication systems will necessitate lower latencies, higher transmission
rates, and more efficient utilization of the spectrum [2]. Therefore, an alternative way of
allocating spectrum is needed to improve efficiency.

Since entering the 21st century, artificial intelligence technology has developed rapidly.
Deep reinforcement learning (DRL) technology, as a branch of it, has also attracted the
attention of researchers in various fields. Deep learning relies on artificial neural networks
to create a complex connection between input and output data. The combination of deep
learning’s feature extraction and perception abilities with the decision-making capabilities
of reinforcement learning (RL) is achieved through the use of DRL, allowing agents to
handle complex decision-making problems. In the training of RL, one commonly used
value-based algorithm is Q-learning, but it may not be suitable for solving large-scale
problems due to its inefficiency. The primary issues with Q-learning are that it requires a
vast amount of storage capacity to keep track of the Q-values for each possible state-action
pair, which renders it unfeasible for large-scale problems. Additionally, as the number
of states in the problem increases, the algorithm’s efficiency deteriorates because of the
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infrequency of visiting certain states [3]. The DeepMind team introduced the Deep Q-
Network (DQN) algorithm, which combines Q-learning with deep learning and achieved
superior performance in the Atari game in 2013 [4].

The purpose of this study is to address the issue of spectrum sharing and power
control in cognitive radio systems using DRL. The proposed algorithm uses DQN-based
training with multiple agents for spectrum access strategy, modeling the allocation of
multiple resources in communication systems as reinforcement learning, and designing
a reward function for users. The training also incorporates freezing target networks and
experience replay, and the complexity of the algorithm is analyzed. The simulation results
demonstrate that secondary users (SU) are able to effectively learn how to access the
spectrum through training with the proposed algorithm in both single SU and multiple SUs
scenarios. The proposed method improves both the average reward and collision rate and
is shown to be more effective than the opportunistic multichannel ALOHA (OMC-ALOHA)
method and greedy method with prior information. In addition, experiments exploring
the influence of parameters in the reward function and active rate of users are conducted.
The contributions of this article are summarized as follows:

(1) The resource allocation problem in the CR system is modeled as a reinforcement
learning task. SUs are represented as agents in this model and their chosen channels
and transmission power are defined as actions. The reward is based on the quality of
communication and potential collisions.

(2) we present a DRL-based algorithm for SUs to access the spectrum and control their
transmission power in the CR system. The algorithm is based on the DQN algo-
rithm and includes features, such as experience replay and freezing target networks.
The artificial neural network structures used in the algorithm are DQN and DRQN.
Through the use of a well-designed algorithm and network structure, users can learn
and optimize their access strategies through training.

(3) Simulation experiments are implemented to compare the proposed algorithm with
other policies and investigate the impact of various parameters such as the coefficients
in the reward function and active rate. The results show that the proposed algorithm
can effectively enhance system performance and reduce interference to the PUs.

We note that a shorter conference version of this paper [5] was presented in IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting 2021. Our
initial conference paper did not show the detailed algorithms and analyze the complexity
and did not finish the complete experiment of the parameters. Compared to the conference
version, we have extended the simulation result section to compare the performance of
the proposed algorithm with other existing methods and analyze the influence of the
parameters in the algorithm on the result of the simulation.

The structure of the paper is as follows. The related work is introduced in Section 2,
the system model is discussed in Section 3, the proposed DRL-based spectrum sharing
method and training algorithm are outlined in Section 4, the simulation outcomes are
shown in Section 5, and our conclusions are given in Section 6.

2. Related Work

There has been a significant amount of research on dynamic spectrum access tech-
nology in cognitive radio (CR) systems, with some studies using game theory to analyze
spectrum sharing among users in the communication system [6]. Users in the communica-
tion system are modeled as players and their access strategies are analyzed. For example,
in [7], a game-theoretic algorithm and utility function were presented for spectrum sharing
in CR systems, while reference [8] proposed a method using game theory and the decision
tree. A pricing strategy based on the Stackelberg game was suggested in another study [9]
to improve spectrum sharing, and researchers developed an algorithm to minimize the
cost of bandwidth allocation for primary users (PU) and SU [10]. Additionally, the Cournot
model was applied to analyze PU spectrum allocation in CR systems [11].
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Previous research has focused on the issue of spectrum handoff in CR networks,
specifically addressing how SUs can access the spectrum without disrupting PUs. One
solution that has been proposed is using a negotiation method based on fuzzy logic,
as outlined in reference [12]. Another approach is utilizing particle swarm optimization
(PSO) to minimize the time spent on spectrum handoff, as discussed in [13]. Additionally,
a system using fuzzy logic controllers (FLCs) has been proposed to prevent unnecessary
hand-offs in an LTE-Advanced system, as described in [14].

Applying DRL technology to manage resources in communication systems has proven
to be a practical approach, with researchers using DRL in modern communication networks
to improve the speed and performance of the algorithm [15]. Several studies have investi-
gated models based on DQN for dynamic spectrum access in distributed communication
systems [16–18], and a DQN-based power control method for cognitive radios to optimize
communication quality through power adjustments was presented in [19]. The quality of
communication was considered and a power control method was developed for a simple
model with two users. In [20], the performance of DRL was tested in an interweave cogni-
tive radio system, and literature [21] introduced a power control strategy based on DRL to
enable SUs to adjust to the appropriate state in a limited time while avoiding interference
with PUs. Another approach [22] used the asynchronous advantage actor-critic (A3C)
and distributed proximal policy optimization (DPPO) for power adjustment to meet the
quality of service requirements of each user. The spectrum was dynamically managed by a
combination of DQN and evolutionary game theory in [23], and the double deep Q-network
(DDQN) has also been applied to spectrum sharing [24,25]. In [26], a research project ex-
amined a spectrum management approach based on deep Q-learning, using the echo state
network to implement Q-learning, enabling users to allocate the spectrum individually and
intelligently. However, deep Q-networks are not suitable for problems with partial observa-
tion, so deep recurrent Q-networks (DRQN) have been implemented to handle the dynamic
allocation of spectrum in discrete frequency channels [27–29]. Literature [30] considered
the correlation between multiple channels. Besides distributive dynamic spectrum access
(DSA), deep multi-user reinforcement learning is also applied to centralized DSA [31].
In addition, DRL is effective in DSA for vehicular ad hoc networks [32] and dynamic
spectrum sensing and aggregation in wireless networks [33]. The channel access prob-
lem for cognitive radio-enabled unmanned aerial vehicles was studied with a DRL-based
method [34]. Literature [35] noticed both the allocation of power and spectrum resources
in the cognitive network, and reference [36] proposed a DSA based on traditional RL for
the cognitive industrial Internet of Things (CIIoT). Despite their effectiveness, the majority
of current solutions to the dynamic spectrum allocation problem have certain limitations.
For instance, different from the actual system, users always need to transmit data in most
studies [37].

3. System Model

We consider a cognitive radio system with M PUs and N SUs, each of which has a
transmitter and receiver. PUs have high priority in the system and own the channels, while
SUs can only access a channel for data transmission if it is not currently occupied by a PU.
It is assumed that each PU in the system has its own channel, and can either be using a
channel or not using one. The state of each PU is determined by the Markov process’s state
transition matrix, which specifies the probabilities of changing from one state to another.
Each SU has a specified likelihood of being active and needing to transmit, and when
inactive, it takes no action. The SU’s power level is chosen from a pre-defined set of L
options, and the locations of transmitters and receivers are distributed randomly within a
certain area. The goal of the study is to allow SUs to use idle channels for communication
when active, while minimizing power usage and meeting required transmission quality
standards, without affecting the communication of PUs.

SUs gather information about the channels by observing them in each time slot,
including whether the current channels are occupied by PUs and the communication
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quality recorded by the receivers in that time slot. Based on the learning strategy, each
SU makes a decision on whether to select a channel and transmission power or not select
a channel at all. The state of the channels changes in the next time slot, and if the SU is
active, the chosen channel and power level are used to transmit data. If the SU is inactive
during the next time slot, it does not utilize any channel. The receivers of SUs record the
signal-to-interference-plus-noise ratio (SINR), and the reward assigned to the SUs by the
system is based on their SINR values and transmission powers. Figure 1 illustrates a sketch
map showing the positions of transmitters and receivers with M = 8 and N = 3.
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Figure 1. Positions of SUs and PUs.

The channel capacity is the deterministic factor for the quality of communication in
the system’s optimization objective. It represents the maximum rate of information that can
be transmitted without error. The calculation of channel capacity can be done with SINR.
In this paper, the SINR at the receivers of SUs is calculated using the WINNER II channel
model [38], which is used to determine the channel gain from transmitters to receivers.
WINNER II channel is a widely recognized standard in the area of wireless communication,
and can be used to predict the performance of multi-channel wireless systems in different
environments, considering various scenarios [39], and therefore is adopted as the channel
model in the simulation. If the i-th SU selects a channel that is not occupied by the PU,
the SINR value at the i-th secondary receiver is determined by [1,19]

SINRi =
pi
∣∣h2

ii

∣∣
∑k 6=i pk

∣∣h2
ki

∣∣+ BN0
, i = 1, 2, . . . , N, (1)

where the channel gain from the i-th transmitter to the i-th receiver and from the k-th
transmitter to the i-th receiver are represented by hii and hki, respectively. The transmission
powers of the i-th and k-th SUs are denoted by pi and pk, respectively. The bandwidth of
the channel and noise spectral density are represented by B and N0, respectively.

The training algorithm proposed in this paper is based on the DQN algorithm, which
combines deep learning and Q learning. Q learning is a reinforcement learning algorithm,
which is independent of the model. It judges the current optimal action by calculating
the value function of each action to complete the decision. In the DQN algorithm, the Q
table for querying value functions based on actions and states in Q learning is replaced
by the artificial neural network, so as to alleviate the problem that the Q table is too
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complex when the number of states and behaviors is large in Q learning and improve the
learning efficiency.

4. DRL-Based Spectrum Sharing Method
4.1. Reinforcement Learning Model

In the process of reinforcement learning, the agents learn how to map the current
environment information to their behavior in the training process. Through repeated
attempts, the agents can independently find the most valuable action with the highest
reward. These actions will determine the reward of the agent, affect the environment at
the next moment, and indirectly affect the subsequent reward [40]. Figure 2 shows the
basic principle of reinforcement learning. In order to transform the problem of resource
allocation in the unlicensed spectrum into the problem of reinforcement learning, it is
necessary to clarify the specific meanings of agent, environment, state, action, and reward
in this problem.

State

(Channel 

Occupancy)

Environment

(Channels and 

Primary Users)

Reward

Action

(Access the 

Channel)

Agent

(Secondary 

Users)

Channel State

1 Occupied

2 Idle

…… ……

M Idle

SU Action

1 Access Channel 2

2 No Access

…… ……

N Access Channel M

Figure 2. Principle of the reinforcement learning techniques.

In this study, SUs are referred to as agents, and their actions represent the channel
and power usage choices they make. The reward function is on the basis of the quality of
communication, taking into account whether collisions occur and the SU’s power usage. If a
SU accesses a channel that is currently occupied by a PU, a collision occurs, resulting in a
negative reward for the SU. If a SU does not utilize any channel, the reward assigned to it is
0. The reward in other situations is largely determined by the capacity of the channel, which
is related to the SINR. When there is only one available power level (L = 1), the reward is
determined according to [1]

rs =


0 , no channel access,
−C , collision with PU,
log2(1 + SINR) , other cases,

(2)

where C is a positive constant. When multiple available transmit powers are considered,
the reward function is designed as

rm =


0 , no channel access or

SINR is not up to standard,
−C1 , collision with PU,
C2 − C3 log2 P , SINR is up to standard,

(3)
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where positive coefficients C1, C2, C3, and transmission power P determine the reward.
The trend and relative value of the reward are more significant than its absolute value.

4.2. Deep Q-Network and Deep Recurrent Q-Network

The training algorithm in this study utilizes the state of channel usage as an input
for the DQN, which outputs Q values for the actions and includes fully connected layers.
There is a separate DQN for each SU in the system. The optimization method chosen is a
gradient descent-based algorithm, such as stochastic gradient descent (SGD) or mini-batch
gradient descent (MBGD). Once training is complete, the final decisions on which channel
to access and which transmission power to use for SUs are determined by

an = arg max
a

Q(s, a), (4)

where Q(s, a) is the output for a given state s and action a. The complete extraction and
integration of information from input data can be achieved through the fully connected
layer in the neural network. The ability to learn more intricate relationships between
input and output data is facilitated by an increase in the number of layers. Nonetheless,
a higher layer count demands a larger amount of training data and more calculations. Thus,
the network architecture selected in the DQN method has three fully connected layers.
In the simulation for the DRQN model, to provide the users with memory capabilities
to process sequences with time information, the DQN is replaced with DRQN, which
includes a gated recurrent unit (GRU) layer in addition to fully connected layers. The GRU
layer allows the network to avoid the problem of long-term dependency [41] in traditional
recurrent neural network (RNN) structures, and it is a more straightforward neural network
architecture compared to long short-term memory (LSTM) [42]. Figure 3a,b show the
complete network structures of the DQN and DRQN, respectively, and the effectiveness of
both DQN and DRQN structures is assessed through the simulations.

During the training of DQN, the weights of the network are randomly initialized. Each
SU observes and adopts the ε-greedy method [1] to select an action as

an =

arg max
a

Q(s, a), with probability 1− ε,

random action, with probability ε,
(5)

where ε is a parameter that ranges from 0 to 1. The next state and the reward are calcu-
lated by the system and the results are stored. After sufficient training data are gathered,
the weights of the neural networks are updated using the optimization method. The freez-
ing target network technique [43] is used to enhance the training effect and minimize
oscillation and the loss function is described by [4]

L(θ) = E[(r + γQ∗(s′, a′)−Q(s, a))2], (6)

where θ are the weights of DQN, the discounted rate of the future reward is represented by
γ. Q∗ and Q are the target network and the estimation network, respectively. The estimation
network Q is updated in each iteration, but the target network Q∗ remains unchanged until
it is occasionally updated with the value of Q. The order of the training data is shuffled and
the experience replay technique is utilized to break the correlations between training data
and improve the efficiency of training. The replay memory [3] is used to store the agents’
experiences for future training, improving the utilization of the training data.

During the training of DRQN, the sequential information is preserved when updating
the weights of the neural network, rather than shuffling the order. The neural network
processes continuous sequences of input for calculation. Due to the characteristics of RNN,
it is impossible to perform the gradient descent on the data of one time slot alone when
updating parameters. Instead, it is necessary to calculate the gradient of each weight
of the network according to the backpropagation through time algorithm (BPTT) [44]
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with a sequence of a certain length as the sample, and update the parameters. In this
process, the gradient of the GRU part needs to be calculated iteratively in a specific time
sequence. Since the hidden state in the GRU network needs to be updated with every data
input, DRQN calculation is also required even when the SU is inactive. The other training
procedures of DRQN are similar to those for DQN.
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Figure 3. Illustration of the adopted network structures. (a) Illustration of the adopted DQN structure.
(b) Illustration of the adopted DRQN structure.

4.3. DRL-Based Training Algorithm

The complete training algorithms of the DQN method and the DRQN method are
shown in Algorithms 1 and 2, respectively. S is the current state of the system, Sn is the
next state of the system, a is the action selected by the SU at the next time slot, r is the
reward received by the SU at the next time slot, and active represents whether the SUs are
active. DQNe is the estimation network, and DQNt is the target network. T is the length of
the extracted sequence in the DRQN method. E, B1, and B2 are constants that control the
number of training steps.
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Algorithm 1 Training Algorithm of the DQN Method

Initialize the state of the system and the weights of DQNe of each SU. DQNt = DQNe.
for episode = 1, E do

for i = 1, B1 do
for n = 1, N do

if SUn is active in the next time slot then
Input S into the DQNe of SUn and obtain the output.
SUn obtains an according to the ε-greedy method.

end if
end for
The state of the system changes, calculate r and store a set of S, Sn, a, r.

end for
Randomly extract B2 groups of data from the experience memory.
for i = 1, B2 do

for n = 1, N do
if SUn is active in the next time slot then

Input S in the i-th group of data to DQNe and DQNt, and obtain the outputs.
Calculate the gradient and update the weights of DQNe.

end if
end for
Every certain number of samples, let DQNt = DQNe.

end for
end for

Algorithm 2 Training Algorithm of DRQN Method

Initialize the state of the system and weights of DRQNe of each SU. DRQNt = DRQNe.
for episode = 1, E do

for i = 1, B1 do
for n = 1, N do

if SUn is active in the next time slot then
Input S into the DRQNe of SUn and obtain the output.
SUn obtains an according to the ε-greedy method.

end if
end for
The state of the system changes, calculate r, and store a set of S, Sn, a, r.

end for
Randomly extract B2 sequences. Each sequence is composed of consecutive T groups of data.
for i = 1, B2 do

for n = 1, N do
for t = 1, T do

Input the S in the i-th extracted sequence to DRQNe and DRQNt, and obtain the outputs.

Record relevant information for subsequent calculation of gradient.
end for
Calculate the gradient based on recorded information and update the weights of DRQNe.

end for
Every certain number of samples, let DRQNt = DRQNe.

end for
end for

The space complexity of the DQN and DRQN algorithm mainly comes from a large
number of training data stored in the experience memory. Each group of data includes five
items (S, Sn, a, r, and active). Among them, S and Sn contain the occupancy information
of M channels and, therefore, have a space complexity of O(M). a, r, and active are
generated for each SU, so they have a space complexity of O(N). In summary, the total
space complexity of Algorithms 1 and 2 is O(M + N).

In the process of generating data, the generation of each group of data requires
three matrix multiplication operations and three ReLU operations for each SU. The time
complexity of generating data for each SU is O(M2L2), where L is the number of selectable
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power levels. The time complexity of the gradient calculation process of Algorithm 1
when the weights of a SU are updated is O(M3L2). Algorithm 1 has a time complexity of
O(M3NL2) while the total time complexity of Algorithm 2 is O(M2NL2).

5. Simulation Results
5.1. Performance under a Different Number of Users

Figures 4–9 display the results of simulations that demonstrate the changes in collision
rate and average reward during the training of DQN and DRQN. The performance of
the DRL-based methods is compared to the greedy method with prior information and
OMC-ALOHA scheme in [45]. In each time slot, SUs access the channel that they expect
will yield the highest reward, based on the prior information about PUs’ state transition
matrix in the greedy method.
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Figure 4. The collision rate of the proposed method with different training steps (single SU).
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Figure 5. The throughput of the proposed method with different training steps (single SU).
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Figure 6. The average reward of the proposed method with different training steps (single SU).
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Figure 7. The collision rate of the proposed method with different training steps (multiple SUs).
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Figure 8. The throughput of the proposed method with different training steps (multiple SUs).
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Figure 9. The average reward of the proposed method with different training steps (multiple SUs).

From Figures 4–6, the number of PUs is set to 15 and there is a single SU. The active rate
of the SUs is set to 1, and the SU uses a fixed transmission power. Simulation parameters
are listed in Table 1. The reward value of SU is calculated using (2). New training data are
created based on (5) and stored in the replay memory during each iteration. The weights
of the network are updated using randomly selected sequences from the replay memory,
which are also used to calculate the collision rate and the average reward.

Table 1. Parameters of the first simulation (Single SU).

Parameter Value

Number of PU 15
Number of SU 1

Active Rate 1
Selectable Transmission Power 20 mW

Learning Rate 10−6

Discounted Rate (γ) 0.9

Training resulted in a decrease in the collision rate and an increase in throughput and
the average reward, demonstrating the effectiveness of the proposed method. The col-
lision rate significantly decreased at the start of training and then gradually stabilized.
The throughput and the reward increased during training and converged, in contrast to the
collision rate, which decreased over time. There was no notable performance difference
between the DQN and DRQN structures. DRQN reached its optimal performance at a
slower pace compared to DQN. Both outperformed the OMC-ALOHA method in terms
of collision, throughput, and reward, and were comparable to the greedy method. This
is because the greedy method has access to prior information that the DRL method lacks,
and is theoretically the optimal solution in the case of a single SU. As a result, the DRL
method can be seen as delivering near-optimal results in situations where there is only one
SU and no prior information regarding the PU is available. The greedy method—being the
optimal solution for a single SU—makes the result of the simulation satisfactory. The SU is
able to acquire the strategies that maximize the reward while minimizing collisions.

From Figures 7–9, the number of PUs is set to 8 and there are 4 SUs, each with
3 available power levels. The active rate of the SUs is set to 0.3. Simulation parameters are
listed in Table 2. The reward calculation for the case of multiple SUs is determined by (3).
The results indicate that compared to the OMC-ALOHA and greedy methods, the proposed
methods can achieve a higher reward in this scenario. When the greedy algorithm is
used, all SUs prefer to choose the same channel that they believe is the best, leading to an
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increase in collisions between SUs and a decrease in average reward. The OMC-ALOHA
method achieves a throughput close to the DQN and DRQN methods, but receives a lower
reward due to a higher collision rate and a lower communication quality compliance rate.
The DRQN method slightly surpasses the DQN method in terms of collision rate and
throughput, resulting in roughly comparable overall performance. The DQN structure also
converges faster than the DRQN structure in this scenario. The SUs can develop strategies
that enable them to avoid collisions with PUs and other SUs while accessing channels
with appropriate transmission power in both scenarios. The simulation findings indicate
that in the system model established in the paper, both the DQN and DRQN algorithms
produce comparable outcomes after convergence, however, the convergence pace of DRQN
is slower compared to that of the DQN algorithm. This slower rate may be due to the
intricate structure of the GRU layer in DRQN. Nonetheless, in a more complex system
model, the DRQN algorithm may surpass the performance of a fully connected network by
learning the sequences.

Table 2. Parameters of the second simulation (Multiple SUs).

Parameter Value

Number of PU 8
Number of SU 4

Active Rate 0.3
Selectable Transmission Power 1 mW, 10 mW, 100 mW

Learning Rate 10−6

Discounted Rate (γ) 0.9

5.2. Parameters in the Reward Functions (2) and (3)

In reinforcement learning, the design of the reward function directly affects the learn-
ing objectives of agents and has an important impact on the results. Therefore, this section
adjusts the coefficients in the reward function and observes the change. Table 3 shows the
reward after 200,000 training steps with different coefficients C in (2) with M = 10, N = 1,
and L = 1. The order of magnitude of C should not differ too much from log2(1 + SINR),
so C is set between 3 and 300.

Table 3. The reward after 200,000 steps under different C (Single SU).

Method C = 3 C = 30 C = 300

DQN 28.7938 23.8333 −0.1785
DRQN 28.4703 25.0642 0

Random 23.6995 20.0518 −28.3294
Greedy 29.1707 25.9507 0

The reduction of C means that the loss caused by the risk of collision with PU is
reduced. The system encourages users to access as much as possible. However, the result
does not increase significantly when C = 3. The possible reason is that the channel is idle
for a system with only one SU. As a consequence, the SU always tends to access even if
C = 30. When the collision penalty is large enough, the reward is close to zero. The system
is affected by the excessive value of C, and the high cost of collision risk causes the SU to
tend not to access. In this case, the utilization rate of the spectrum is extremely low, which
is a phenomenon that needs to be avoided. Therefore, it is necessary to set an appropriate
C value.

For the case of multiple SU, we explore the impact of C1 and C2 in (3) on the simulation.
As mentioned earlier, the relative value of the reward is more important than the absolute
value. Therefore, we only need to focus on the ratio of C1 to C2. Fix the value of C1 as
25, and only adjust the value of C2. The reward and collision rates are represented in
Tables 4 and 5 when M = 8, N = 3, and L = 3.
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Table 4. The reward after 200,000 steps under different C2 (multiple SUs).

Method C2 = 3 C2 = 30 C2 = 300

DQN −6.2809 15.2238 223.8512
DRQN −3.7978 16.9011 246.8618

Random −4.9356 4.9345 161.5352
Greedy −3.9868 5.2668 135.2807

Table 5. The collision rate after 200,000 steps under different C2 (multiple SUs).

Method C2 = 3 C2 = 30 C2 = 300

DQN 20.6760% (with PU)
12.9720% (with SU)

18.1336% (with PU)
2.9058% (with SU)

21.4618% (with PU)
4.3354 (with SU)

DRQN 17.4286% (with PU)
0 (with SU)

16.8952% (with PU)
0 (with SU)

15.4653% (with PU)
0 (with SU)

Random 17.8571% (with PU)
3.9442% (with SU)

21.0887% (with PU)
5.1209% (with SU)

18.2176 (with PU)
2.0970% (with SU)

Greedy 10.5238% (with PU)
63.7143% (with SU)

11.8952% (with PU)
59.7984% (with SU)

14.6789% (with PU)
46.2647% (with SU)

Increasing the value of C2 is equivalent to reducing the penalty of collision with PU
and encouraging SU access. Similar to the situation of C = 3 in Table 3, the system resources
are abundant, so a large C2 has little influence on the collision rate. The rewards in all of
the methods rise as C2 rises. When the value of C2 is low, the excessive penalty makes
the DRL-based method unable to work properly and has no advantage over the random
and greedy methods. The algorithm can achieve effect only when the proportion between
parameters is appropriate.

5.3. Active Rate

Unlike most related works, it is assumed that SU does not always need to communicate
in this paper, so it is important to explore the impact of the SU’s active rate on experimental
results. When the number of PU is more than SU, the system is idle and the spectrum
resource is abundant. The change in the active rate has little influence on the experimental
results. Therefore, we consider that the system is in a state of resource shortage; that is,
there is fewer PUs than SUs in the system (M = 3, N = 6, L = 3). The reward after
200,000 steps under different active rates is shown in Table 6.

Table 6. The reward after 200,000 steps under different active rates (M = 3, N = 6, L = 3).

Method Active Rate = 1 Active Rate = 0.5 Active Rate = 0.2

DQN 4.0523 5.9819 9.6539
DRQN 2.0296 6.8767 9.5976

Random −2.2040 3.7478 5.1396
Greedy −2.9390 −2.5156 −2.5097

When the active rate of SUs is 1, the available channels are insufficient to meet users’
needs. After DRL-based training, some SUs will give up access and the others will con-
tinue to try to access, making the average reward slightly greater than 0. The random
method and greedy method obtain negative rewards due to high collision. Under various
activity rates, the DQN method and DRQN method have significantly better performance
than the random method and greedy method. In the extreme case of spectrum shortage,
the proposed method can still use communication resources for data transmission as much
as possible.
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6. Conclusions

In this paper, we deal with the resource allocation challenge in CR systems through
DRL. In the system, SUs are modeled as agents, and their selection of channels and uti-
lization of transmission power are deemed as their actions. The reward is designed based
on the communication quality and whether collision exists. To enhance access to the spec-
trum and manage transmission power in CR systems, a DRL algorithm is put forward,
which blends the DQN algorithm with techniques, such as freezing target networks and
experience replay. The DQN and DRQN neural network structures are employed in the
algorithm to improve access strategies. We conducted simulation experiments to verify the
performance of the algorithm and examine the impact of factors, such as the coefficients of
reward and active rate. The results show that the proposed algorithm can significantly en-
hance system performance while decreasing interference to the PUs. The proposed method
surpasses OMC-ALOHA in the reward by approximately 10% and 30% in the single SU
scenario and the scenario with multiple SUs, respectively. The algorithm complexity was
also examined, and the influence of parameters on experimental results was investigated.
The results indicate that the method is effective under diverse active rates of SUs when
reward function coefficients are set properly.

Author Contributions: Conceptualization and methodology, S.L., F.Y. and J.S.; software and vali-
dation, S.L., F.Y., C.P. and C.Z.; writing, S.L., F.Y. and J.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by China’s National Key R&D Program of China under grant
2020YFB1807600, Peng Cheng Laboratory under grant PCL2021A10, and the Guoqiang Institute of
Tsinghua University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chang, H.; Song, H.; Yi, Y.; Zhang, H.; He, H.; Liu, L. Distributive dynamic spectrum access through deep reinforcement learning:

A reservoir computing-based approach. IEEE Internet Things J. 2019, 6, 1938–1948. [CrossRef]
2. Zong, J.; Liu, Y.; Liu, H.; Wang, Q.; Chen, P. 6G Cell-Free Network Architecture. In Proceedings of the 2022 IEEE 2nd International

Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29 May 2022.
3. Naparstek, O.; Cohen, K. Deep multi-user reinforcement learning for distributed dynamic spectrum access. IEEE Trans. Wirel.

Commun. 2013, 18, 310–323. [CrossRef]
4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
5. Liu, S.; Wang, T.; Pan, C.; Zhang, C.; Yang, F.; Song, J. Deep reinforcement learning for spectrum sharing in future mobile

communication system. In Proceedings of the 2021 IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), Chengdu, China, 4–6 August 2021.

6. Haykin, H. Cognitive radio: Brain-empowered wireless communications. IEEE J. Select. Areas Commun. 2005, 23, 201–220.
[CrossRef]

7. Zhou, W.; Zhu, Q.; Ling, Y. An improved game-theoretic algorithm for competitive spectrum sharing. In Proceedings of the 2010
International Conference on Communications and Mobile Computing, Shenzhen, China, 12–14 April 2010.

8. Cai, F.; Gao, Y.; Cheng, L.; Sang, L.; Yang, D. Spectrum sharing for LTE and WiFi coexistence using decision tree and game theory.
In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016.

9. Ahmad, I.; Wei, Z.; Feng, Z.; Bai, Y.; Zhang, Q.; Zhang, P. Joint price and power allocation under interference constraint for
dynamic spectrum access networks. In Proceedings of the 2014 IEEE International Symposium on Dynamic Spectrum Access
Networks, McLean, VA, USA, 1–4 April 2014.

10. Pandit, S.; Singh, G. Spectrum sharing in cognitive radio using game theory. In Proceedings of the 2013 3rd IEEE International
Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013.

11. Zhang, N.; Yang, D.; Jing, L. An advanced algorithm for spectrum allocation of primary users based on cournot game. In
Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China,
11–13 December 2019.

http://doi.org/10.1109/JIOT.2018.2872441
http://dx.doi.org/10.1109/TWC.2018.2879433
http://dx.doi.org/10.1109/JSAC.2004.839380


Sensors 2023, 23, 2622 15 of 16

12. Alhammadi, A.; Roslee, M.; Alias, M.Y. Fuzzy logic based negotiation approach for spectrum handoff in cognitive radio network.
In Proceedings of the 2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT), Kuala Lumpur,
Malaysia, 28–30 November 2016.

13. Alhammadi, A.; Roslee, M.; Alias, M.Y. Analysis of spectrum handoff schemes in cognitive radio network using particle swarm
optimization. In Proceedings of the 2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT), Kuala
Lumpur, Malaysia, 28–30 November 2016.

14. Roslee, M.; Alhammadi, A.; Alias, M.Y.; Nmenme, P.U. Efficient handoff spectrum scheme using fuzzy decision making in
cognitive radio system. In Proceedings of the 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP), Paris,
France, 6–8 September 2017.

15. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

16. Gao, X.; Dou, Z.; Qi, L. A new distributed dynamic spectrum access model based on DQN. In Proceedings of the 2020 15th IEEE
International Conference on Signal Processing, Beijing, China, 6–9 December 2020.

17. Nguyen, H.Q.; Nguyen, B.T.;Dong, T.Q.; Ngo, D.T.; Nguyen, T.A. Deep Q-Learning with multiband sensing for dynamic spectrum
access. In Proceedings of the 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul,
Republic of Korea, 22–25 October 2018.

18. Wang, S.; Liu, H.; Gomes, P.H.; Krishnamachari, B. Deep reinforcement learning for dynamic multichannel access in wireless
networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 257–265. [CrossRef]

19. Li, X.; Fang, J.; Cheng, W.; Duan, H.; Chen, Z.; Li, H. Intelligent power control for spectrum sharing in cognitive radios: A deep
reinforcement learning approach. IEEE Access 2018, 6, 25463–25473. [CrossRef]

20. Wang, X.; Teraki, Y.; Umehira, M.; Zhou, H.; Ji, Y. A usage aware dynamic spectrum access scheme for interweave cognitive radio
network by exploiting deep reinforcement learning. Sensors 2022, 22, 6949. [CrossRef] [PubMed]

21. Ye, F.; Zhang, Y.; Li, Y.; Jiang, T.; Li, Y. Power control based on deep Q network with modified reward function in cognitive net-
works. In Proceedings of the 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium),
Montreal, QC, Canada, 5–10 July 2020.

22. Zhang, H.; Yang, N.; Huangfu, W.; Long, K.; Leung, V.C.M. Power control based on deep reinforcement learning for spectrum
sharing. IEEE Trans. Wirel. Commun. 2020, 19, 4209–4219. [CrossRef]

23. Yang, P.; Li, L.; Yin, J.; Zhang, H.; Liang, W.; Chen, W.; Han, Z. Dynamic spectrum access in cognitive radio networks
using deep reinforcement learning and evolutionary game. In Proceedings of the 2018 IEEE/CIC International Conference on
Communications in China, Beijing, China, 16–18 August 2018.

24. Xu, Y.; Yu, J.; Headley, W.C.; Buehrer, R.M. Deep reinforcement learning for dynamic spectrum access in wireless networks. In
Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference, Los Angeles, CA, USA, 29–31 October 2018.

25. Yadav, M.A.; Li, Y.; Fang, G.; Shen, B. Deep Q-network based reinforcement learning for distributed dynamic spectrum access.
In Proceedings of the 2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI),
Beijing, China, 6–8 May 2022.

26. Song, H.; Liu, L.; Ashdown, J.; Yi, Y. A deep reinforcement learning framework for spectrum management in dynamic spectrum
access. IEEE Internet Things J. 2021, 8, 11208–11218. [CrossRef]

27. Xu, Y.; Yu, J.; Buehrer, R.M. Cache-enabled dynamic spectrum access via deep recurrent Q-networks with partial observation.
In Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks, Newark, NJ, USA, 11–14
November 2019.

28. Xu, Y.; Yu, J.; Buehrer, R.M. The application of deep reinforcement learning to distributed spectrum access in dynamic heteroge-
neous environments With partial observations. IEEE Trans. Wirel. Commun. 2020, 19, 4494–4506. [CrossRef]

29. Xu, Y.; Yu, J.; Buehrer, R.M. Dealing with partial observations in dynamic sectrum access: Deep recurrent Q-networks. In
Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference, Los Angeles, CA, USA, 29–31 October 2018.

30. Bhandari, S.; Ranjan, N.; Kim, Y.; Kim, H. Deep reinforcement learning for dynamic spectrum access in the multi-channel wireless
local area networks. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication
(ICEIC), Jeju, Republic of Korea, 6–9 February 2022.

31. Cong, Q.; Lang, W. Deep multi-user reinforcement learning for centralized dynamic multichannel access. In Proceedings of the
2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021.

32. Wang, Y.; Li, X.; Wan, P.; Shao, R. Intelligent dynamic spectrum access using deep reinforcement learning for VANETs. IEEE Sens.
J. 2021, 21, 15554–15563. [CrossRef]

33. Li, Y.; Zhang, W.; Wang, C.; Sun, J.; Liu, Y. Deep reinforcement learning for dynamic spectrum sensing and aggregation in
multi-channel wireless networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 464–475. [CrossRef]

34. Jiang, W.; Yu, W.; Wang, W.; Huang, T. Multi-agent reinforcement learning for joint cooperative spectrum sensing and channel
access in cognitive UAV networks. Sensors 2022, 2, 1651. [CrossRef] [PubMed]

35. Maulik, S.; Roy, R.; De, A.; Bhatttacharya, A. Online dynamic resource allocation in interference temperature constrained cognitive
radio network using reinforcement learning. In Proceedings of the 2012 International Conference on Signal Processing and
Communications, Bangalore, India, 22–25 July 2012.

http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/TCCN.2018.2809722
http://dx.doi.org/10.1109/ACCESS.2018.2831240
http://dx.doi.org/10.3390/s22186949
http://www.ncbi.nlm.nih.gov/pubmed/36146300
http://dx.doi.org/10.1109/TWC.2020.2981320
http://dx.doi.org/10.1109/JIOT.2021.3052691
http://dx.doi.org/10.1109/TWC.2020.2984227
http://dx.doi.org/10.1109/JSEN.2021.3056463
http://dx.doi.org/10.1109/TCCN.2020.2982895
http://dx.doi.org/10.3390/s22041651
http://www.ncbi.nlm.nih.gov/pubmed/35214553


Sensors 2023, 23, 2622 16 of 16

36. Liu, X.; Sun, C.; Yu, W.; Zhou, M. Reinforcement-learning-based dynamic spectrum access for software-defined cognitive
industrial internet of things. IEEE Trans. Ind. Inform. 2022, 18, 4244–4253. [CrossRef]

37. Janiar, S.B.; Pourahmadi, V. Deep reinforcement learning for fair distributed dynamic spectrum access in wireless networks. In
Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
9–12 January 2021.

38. Meinilä, J.; Kyösti, P.; Jämsä, T.; Hentilä, L. Winner II channel models. In Radio Technologies and Concepts for IMT-Advanced; Wiley:
Hoboken, NJ, USA, 2009; pp. 39–92.

39. Couillard, G.; Dahman, G.; Poitau, G.; Gagnon, F. Quantifying range extension capability of MIMO: A simulation study based on
WINNER II model. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE),
Edmonton, AB, Canada, 5–8 May 2019.

40. Sutton, R.S.; Andrew, G.B. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
41. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
42. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networkson sequence modeling. arXiv

2014, arXiv:1412.3555.
43. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
44. Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
45. To, T.; Choi, J. On exploiting idle channels in opportunistic multichannel ALOHA. IEEE Commun. Lett. 2010, 1, 51–53. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2021.3113949
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/LCOMM.2010.01.091494

	Introduction
	Related Work
	System Model
	DRL-Based Spectrum Sharing Method
	Reinforcement Learning Model
	Deep Q-Network and Deep Recurrent Q-Network
	DRL-Based Training Algorithm

	Simulation Results
	Performance under a Different Number of Users
	Parameters in the Reward Functions (2) and (3)
	Active Rate

	Conclusions
	References

