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Abstract: Although there have been recent advances in Siamese-network-based visual tracking meth-
ods where they show high performance metrics on numerous large-scale visual tracking benchmarks,
persistent challenges regarding the distractor objects with similar appearances to the target object
still remain. To address these aforementioned issues, we propose a novel global context attention
module for visual tracking, where the proposed module can extract and summarize the holistic global
scene information to modulate the target embedding for improved discriminability and robustness.
Our global context attention module receives a global feature correlation map to elicit the contextual
information from a given scene and generates the channel and spatial attention weights to modulate
the target embedding to focus on the relevant feature channels and spatial parts of the target object.
Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show
improved performance compared to the baseline tracking algorithm while achieving competitive
performance with real-time speed. Additional ablation experiments also validate the effectiveness of
the proposed module, where our tracking algorithm shows improvements in various challenging
attributes of visual tracking.

Keywords: visual tracking; object tracking; attention models; model-free tracking

1. Introduction

Visual tracking is a fundamental field in computer vision research that has seen practi-
cal applications in automated surveillance, autonomous driving, and robotics. The problem
of visual tracking is formulated as follows: given the initial target bounding box coordinates
along with the first frame of a video sequence, the goal of a visual tracking algorithm is
to estimate the bounding box coordinates of the target object in the subsequent frames of
the video. While performing tracking, there are several challenging circumstances, such as
target scale change, illumination change, occlusion from other objects, deformation of the
target, and motion blur. A tracking algorithm must successfully identify the target object
under these challenging attribute changes. Among many of these attributes, distractor
objects of similar appearance to the target object often cause the tracker to drift away from
the target object, making the long-term tracking task even more challenging.

Recently, with the wide application of covolutional neural networks (CNN) in various
computer vision applications [1,2], Siamese-network-based tracking algorithms gained
attention due to their simplicity and fast speed owing to the removal of the online update
process. SiamFC [3] was one of the first works to employ this framework, where the
Siamese network receives two image patches, a target patch and a search patch, and the
network extracts the feature representations from both patches and determines the position
of the target patch inside the search patch through a cross-correlation operation. The whole
process is performed in a fully convolutional manner and can be trained end-to-end. Many
following works focused on improving SiamFC in terms of network architecture design
by employing deeper and wider backbone networks [4,5], by adding region proposal net-
works [6] or centerness estimation for better localization [7,8], and many other approaches
to improve its performance [9–11].
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However, many existing tracking algorithms, including Siamese-network-based track-
ers, still focus on short-term tracking scenarios [12,13], where they make strong assumptions
on the smoothness of the target’s motion. To impose these assumptions, tracking algorithms
often assume a small search window around the target’s previous position and penalize
large displacements using handcrafted cosine window functions with predesignated sizes
and weights. While this strategy is effective for short-term tracking scenarios when the
hyperparameters are properly tuned, this may cause the trackers to be susceptible to error
accumulation and drift in long-term tracking scenarios [14,15], where the target can move
abruptly due to camera motion, distractor objects of similar appearance are more likely
to appear in a scene, and the target can show out-of-frame disappearances. To address
the aforementioned issues, global search strategy-based tracking algorithms [16,17] were
proposed with the benefits of re-detecting the target after long-term disappearances, scene
changes, and recovery from occasional drifts caused by distractor objects. Although a
global, full-frame search strategy for Siamese-network-based tracking algorithms [16,17]
showed improved performance on various long-term tracking scenarios, the issue origi-
nating from distractor objects of similar appearance to the target object persists, where the
tracking algorithms are often trained to find the single most similar-looking region inside a
given frame image without consideration of the global context among numerous objects
inside the scene.

To address the issues arising from the lack of context modeling, we propose a novel
global context attention module for a Siamese-network-based tracking algorithm, where
the tracker can adaptively choose the relevant feature channels and spatial parts of the
target object to improve its discriminability inside a given scene based on the aggregated
information on the context of objects. For implementation, we improve upon the baseline
tracker GlobalTrack [16], which is a two-stage, full-frame search-based tracking algorithm,
where we chose this baseline tracker so that the tracker can fully utilize the global context
information inside a given scene. GlobalTrack [16] also does not employ any motion
model; thus, the benefits of our proposed context attention module can be analyzed
more accurately without the influence of the hyperparameter tuning of the motion model.
The proposed global context attention module receives the intermediate feature correlation
map to extract the contextual information of the scene and generates the channel-wise and
spatial attention weights that are utilized to modulate the target feature representation for
improved discriminability.

In order to show the effectiveness of our proposed method, we perform experiments
on recent large-scale visual tracking datasets to demonstrate the competitive performance
of the proposed algorithm. We also perform ablation experiments to further validate the
improvements owing to the proposed global context attention module. Moreover, our
framework is designed to run at real-time speeds. Our overall tracking framework is
shown in Figure 1. In (a), we show conventional tracking algorithms that treat multiple
candidate regions independently, whereas in (b), our tracker learns to embed the global
context information into the feature representation. Our proposed tracker employs the
global context attention module to model the context of objects in a given scene, where it
can provide the baseline tracker with relevant channel and spatial attention weights for
improved discriminability of the target object in the feature space.
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(a)  Conventional Visual Tracking Pipeline

(b)  Proposed Visual Tracking Pipeline
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Figure 1. Motivation for the proposed tracking framework.

2. Related Work

Online tracking algorithms formulate the visual tracking problem as tracking-by-
detection, where a tracker attempts to locate the target object inside a search region by
solving a binary classification problem. A classifier model is trained to classify the target
region as positive and the background region as negative, where the tracker chooses the
region with the highest positive score as the output. With the use of powerful feature
representation and classifier models based on neural networks, visual tracking algorithms
also took advantage of these models. Starting from early CNN-based tracker models using
denoising autoencoders [18], MDNet [19] and RT-MDNet [20] used VGG-based [21] feature
representation to train a binary classifier online. A line of tracking algorithms using correla-
tion filters [22–25] also utilized CNN-based feature representation, where correlation filters
are trained on the feature maps with 2D Gaussian labels to obtain maximum response
value at the center of the target object.

Afterwards, the use of a Siamese network also gained traction owing to its simplicity
and fully convolutional approach. Starting from SiamFC [3], where a shared CNN feature
extractor [1] is used to extract features from both target and search image patches, a subse-
quent cross-correlation operation between features results in a score map where the position
with the maximum score can be chosen for the output. To improve upon SiamFC, there have
been numerous approaches where region proposal networks [6] are employed [7,26], deeper
and wider feature extractors are used [4,5], a target centerness aware branch is added [8,10],
and lightweight networks are used for further speed-up [27,28]. Recently, transformer [29]
architecture, which is widely used in natural language and sequence modeling, was also
employed into computer vision applications and visual tracking algorithms, especially
Siamese-network-based visual tracking algorithms. TransT [30] was one of the first works
to employ transformer architecture to substitute the feature cross-correlation layer with its
proposed feature fusion block, composed of multiple multi-head self-attention modules.
Other approaches include using spatiotemporal transformers [31] and incorporation of
encoder–decoder architecture [32,33]. In addition, approaches for using transformers for
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model prediction [34], transformer-based global modeling for multi-object tracking [35],
a unified transformer for both single-target and multi-target tracking [36], and an efficient
exemplar transformer for real-time application of transformers to visual tracking have been
proposed [37].

While the aforementioned tracking algorithms focus on the problem of short-term
tracking where the length of the majority of the test sequences are under a minute, there
have been tracking algorithms that focus on tackling the problem of tracking in longer
sequences by employing global modeling of the scene around the target. Datasets on
the long-term tracking task were also proposed, including LaSOT [14], TLP [38], and Ox-
UvA [15], that consist of longer sequences lasting over a minute with some sequences
containing target disappearance and reappearance challenges. Several approaches were
proposed where two-stage detector-based GlobalTrack [16] employed the global search
strategy and the removal of motion model, with the benefits of re-identifying the target
after its disappearance and reappearance, unaffected by the tracker’s previous failures.
Siam R-CNN [17] is also based on a two-stage detection framework with a tracklet dy-
namic programming algorithm. Other approaches. including [26,39]. employ a confidence
value-based strategy where global search is performed on a larger search region when
the confidence value for target prediction falls under a predefined threshold value. Our
proposed framework shares its two-stage detector-based similarity with the aforemen-
tioned GlobalTrack [16] but differs in several aspects, including the proposed global context
attention module.

Our contributions are as follows: (1) in contrast to GlobalTrack [16] that treats all
regions inside the scene independently without any context modeling between objects, we
introduce a novel global context attention module that can modulate the target feature repre-
sentation, depending on the context of distractor objects; (2) we obtain higher performance
metrics on multiple visual tracking benchmarks using a lighter backbone feature extrac-
tor network, ResNet-18 [2], compared to the much heavier backbone network ResNet-50
used in GlobalTrack [16]; and (3) related to (2), we achieve real-time tracking performance
of 57 fps, thanks to our proposed global context attention module only contributing to
minimal computational load, whereas GlobalTrack [16] shows sub-real-time speeds.

3. Proposed Method

In this section, we describe our proposed global COntext Attention Tracker (COAT),
where the overall tracking framework largely contains three stages: (1) region proposal
stage, (2) global context generation and embedding stage, and (3) the final region classifi-
cation stage. In the following subsections, we first provide an overview of the proposed
tracking framework followed by detailed descriptions on each of the tracking stages, includ-
ing the proposed global context attention module. Afterwards, we elaborate on the training
details and implementation details containing the architectural descriptions and tracking
parameter settings. The figure for the overview for our proposed tracking framework
is shown in Figure 2. Our tracking framework is composed of a baseline tracker and a
global context attention module. The baseline tracker is a two-stage detector-based tracker
composed of a region proposal stage and a region classification stage.
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Figure 2. Overview for the proposed tracking framework.

3.1. Operation of the Baseline Tracker

Feature extraction: Given a pair of RGB input frame images Iz, Ix ∈ RH×W×3 along
with initial bounding box coordinates b1 ∈ R4, where Iz represents the initial frame (query)
image and Ix represents the current frame (search) image, respective feature maps are
obtained using the shared backbone feature extractor network φ(·) where they are denoted
as in φ(Iz), φ(Ix) ∈ Rh×w×c. The input RGB images have spatial dimensions of height H
and width W, and the feature maps have spatial dimensions of height h and width w with
channel dimension of size c. The backbone feature extractor network φ(·) is a pretrained
CNN from an image classification task [2,21,40], where the final linear classification layer is
removed to obtain the intermediate feature representation. In our experiments, we chose
the relatively lightweight ResNet-18 [2] for the feature extractor, where we substitute the
stride of the final residual block to 1 for increased spatial resolution of the feature map.
We also reduce the number of channels by adding 1× 1 convolution layers for efficient
computation in the following stages. Layers before the final residual block are frozen when
training. Additional technical details on the dimensions of the feature maps and training
scheme are described in Sections 3.3 and 3.4.

Region proposal stage: After obtaining the query and search feature maps φ(Iz),
φ(Ix) ∈ Rh×w×c using the backbone feature extractor network φ(·), a region proposal is
performed to find multiple regions that resemble the target object, where these proposed
regions serve as candidate regions for subsequent region classification. Using the query
feature map φ(Iz) and initial bounding box coordinates b1, spatially pooled target feature
representation z ∈ Rs×s×c is obtained using the ROIAlign [41] operation, where s is the
spatial dimension of the pooled feature representation. Afterwards, the depth-wise cross-
correlation operation between the target feature representation z and the search feature
map x = φ(Ix) is performed as in,

x̂ = x ∗ z, (1)

where ∗ denotes the cross-correlation (convolution) operator with unit stride and appropri-
ate zero padding for spatial dimension consistency. The resulting correlated feature map
x̂ ∈ Rh×w×c is then fed into the region proposal network (RPN) module, and a detection
head module similar to FCOS [42] is used to find the candidate regions where the centerness
prediction branch is removed for simplicity. The RPN module produces two prediction
maps using two branches, the classification label map p ∈ Rh×w×2 and the bounding box
regression map q ∈ Rh×w×4 as in,

p = fcls(x̂), q = freg(x̂), (2)
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where both branches fcls and freg include three convolution layers with group normaliza-
tion [43] and ReLU activation functions in between, respectively. Two prediction maps p
and q have the same spatial dimensions as input feature map x̂, where the classification
label map p contains binary logit values for every position inside the label map, and the
bounding box regression map q contains coordinate distance values for bounding box esti-
mation. More specifically, for a given position (i, j) in p, the corresponding tensor pi,j ∈ R2

represents the binary logits indicating that the position (i, j) is inside or outside the target
bounding box. For a position (i, j) in q, the corresponding tensor qi,j ∈ R4 represents
the distances from (i, j) to the four sides (left, top, right, and bottom) of the estimated
bounding box. Subsequently, a softmax operation is conducted on p, and a non-maximum
suppression (NMS) operation is performed to obtain the top-N candidate ROIs.

Region classification stage: For candidate ROIs found in the region proposal stage,
further region classification is performed to classify the candidate ROIs into positive and
negative regions, where a positive label indicates the target region and a negative label
indicates the background region. Given top-N ROIs with their bounding box coordinates
{r1, ..., rN} and search feature map x, we obtain spatially pooled feature representations
{x1, ..., xN} by performing ROIAlign operations on x, where xi ∈ Rs×s×c. Subsequently,
using the target feature representation z, feature modulation is performed for every xi as
in,

x̂i = xi � z, (3)

where � represents the Hadamard (element-wise) product operation. Afterwards, using
the modulated feature representations, region classification and bounding box refinement
is performed as in,

ui = gcls(x̂i), vi = greg(x̂i), (4)

where both branches gcls and greg of the region classification network include three con-
volution layers with group normalization and ReLU activation functions in between,
respectively. Output ui ∈ R2 indicates the logits for binary classification between target
and background, and vi = [v1

i , v2
i , v3

i , v4
i ]

T ∈ R4 represents the regressed values for refining
the bounding box coordinates of the ROI ri. Lastly, we perform a softmax operation on
all of ui to obtain and choose the k-th ROI with the highest positive score and perform
bounding box refinement for rk = [xc

k, yc
k, wk, hk] as in,

xc
k
′ = xc

k + wk · vk,1, yc
k
′ = yc

k + hk · vk,2,

w′k = wk · exp (vk,3), h′k = hk · exp (vk,4),
(5)

to obtain the refined bounding box r′k = [xc
k
′, yc

k
′, w′k, h′k], where xc

k and yc
k are the center

coordinates of the bounding box, and wk and hk are the width and height of the bound-
ing box.

3.2. Incorporating the Global Context Attention Module

Herein, we introduce our proposed module for global context attention and describe
the formulation for context aggregation and feature embedding. To obtain the global
context information from a given scene, we utilize the correlation map x̂ obtained at the
region proposal stage. The global context attention module consists of four sub-networks
where each operates as in,

mx
s = hx

s (x̂), mz
s = hz

s(x̂),

mx
c = hx

c (x̂), mz
c = hz

c(x̂),
(6)

where global context information is embedded into spatial soft-attention masks mx
s ,

mz
s ∈ Rs×s×1 and channel-wise soft-attention masks mx

c , mz
c ∈ R1×1×c using four sub-

networks of the global context attention module, hx
s , hz

s , hx
c , hz

c . All sub-networks share the
common spatial pooling layers which consist of two convolution layers and adaptive aver-
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age pooling layer that pools the feature representation into Rs×s×c. After spatial pooling
is performed, each sub-network can produce its respective spatial and channel attention
masks using two convolution layers and an adaptive average pooling layer, with sigmoid
activation at the last layer for restricting the range of the attention masks to [0, 1]. Sub-
sequently, spatial and channel attention masks are used in the region classification stage,
where attention masks are applied to each spatially pooled ROI features xi and target
feature representation z as in,

x̃i = xi �mx
s �mx

c ,

z̃ = z�mz
s �mz

c ,
(7)

where mismatching dimensions can be broadcasted for shape consistency. After applying
the attention masks for both ROI and target feature representations, ROI feature modulation
is performed equivalent to Equation (3) as in,

x̂i = x̃i � z̃, (8)

where subsequent region classification and bounding box refinement branches are equiva-
lent to Equation (4). By applying two separate attention masks to ROI and the target feature
representations, we can increase the adaptability of our proposed module to various scenes.
An overview for the structure and operation of our proposed global context attention mod-
ule is shown in Figure 3, and the overall step-by-step operation of our proposed tracking
algorithm is shown in Algorithm 1.

Correlated Feature Map 

Global Context Attention Module

Common Spatial 
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Intermediate context 
representation

Spatial Attention
    Branch

Spatial Attention
    Branch

Channel Attention
     Branch 
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           Refined
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Figure 3. Overview of the global context attention module. Detailed view for the operation of the
proposed global context attention module.
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Algorithm 1: Visual tracking with global context attention

Input : Video sequence with length L, with frame images {I1, I2, ..., IL}
Target bounding box coordinates for the initial frame b1

Output : Target bounding box coordinates bt for all frames in the video

# Initialization at time t = 1
Compute query feature map φ(I1) using feature extractor φ
Obtain spatially pooled target feature representation z using initial box b1 and
ROIAlign [41]

# For later frames in the video sequence t > 1
for t = 2 to L do

# Region proposal stage
Compute search feature map x = φ(It) using feature extractor φ
Perform depth-wise cross correlation with z to obtain correlation map x̂ as in
Equation (1)

Obtain N candidate boxes {r1, ..., rN} using region proposal network
Equation (2)

Obtain spatially pooled candidate feature representations {x1, ..., xN} with
candidate boxes using ROIAlign

# Extracting and embedding global context information
Extract global context information as spatial and channel attention masks

mx
s , mz

s , mx
c , mz

c using global context attention module Equation (6)
Apply spatial and channel attention masks to target and candidate feature

representations to obtain z̃, x̃i as in Equation (7)

# Region classification stage
Compute ROI feature modulation using z̃ as in Equation (8)
Perform ROI-wise classification and bounding box refinement using region
classification network as in Equations (4) and (5)

Choose refined ROI with the highest softmax classification score as final
estimated output b̂t for frame t

end

3.3. Training the Overall Tracking Framework

In order to train the overall tracking framework, we enforce two separate loss functions
for the region proposal network and the region classification network. The global context
attention module is trained with upstream gradients delivered from enforcing the loss
function on the region classification network using backpropagation.

Loss function for the region proposal network: To train the region proposal network,
we enforce loss functions that are similar to the ones used in the object detection framework
FCOS [42] where we train two branches, the binary classification branch fcls and the
bounding box regression branch freg. Total RPN loss is denoted as L f

RPN , loss for the

classification branch is denoted as L f
cls, and loss for the regression branch is denoted as L f

reg
with respective loss functions formulated as follows,

L f
RPN({p, p∗}, {q, q∗}) = 1

hw ∑
i,j

L f
cls(pi,j, p∗i,j) +

λRPN
Npos

1{p∗i,j>0}∑
i,j

L f
reg(qi,j, q∗i,j), (9)

where p ∈ Rh×w×2 and q ∈ Rh×w×4 are the output maps of the classification and regression
branches, respectively, and p∗ and q∗ are the ground truth label maps with the identical
spatial dimensions. Npos is the number of positions in p∗ with positive labels. For the

classification branch, focal loss [44] L f
cls is enforced for every position (i, j) inside the output

classification map p, where p∗i,j = 1 for positions inside the bounding box of the target
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object, and p∗i,j = 0 for the remaining positions in the background region with the following
formulation,

L f
cls(pi,j, p∗i,j) = −p∗i,j(1− pi,j)

γ log(pi,j)− (1− p∗i,j)pγ
i,j log(1− pi,j), (10)

where γ is the focusing parameter that controls the weighting for easy/hard examples.
For the regression branch, IoU loss, which is based on the L1 distance, is enforced only on
the positions inside the target bounding box (p∗i,j > 0) with the following formulation,

L f
reg(qi,j, q∗i,j) = 1−

|qi,j
⋂

q∗i,j|
|qi,j

⋃
q∗i,j|

, (11)

where | · | denotes the area of the region,
⋂

is the intersection between two bounding boxes,
and

⋃
is the union over two bounding boxes.

Loss function for the region classification network: At the training stage, a region
classification network is trained with loss functions that are similar to the ones used
for the RPN. Loss is enforced on the region classification branch gcls and the bounding
box refinement branch greg, where total loss is denoted as Lg

RCL, the loss term for the
classification branch is denoted as Lg

cls, and the loss term for the bounding box refinement
branch is denoted as Lg

reg with respective loss functions formulated as follows,

Lg
RCL({u, u∗}, {v, v∗}) = 1

N ∑
i

Lg
cls(ui, u∗i ) +

λRCL
Npos

1{u∗i >0}∑
i

Lg
reg(vi, v∗), (12)

where u ∈ RN×2 and v ∈ RN×4 are the output logits and refined bounding box coordinates,
respectively, u∗ ∈ RN and v∗ ∈ R4 are the ground truth labels for each output branch,
and Npos is the number of output boxes with positive class labels. For the classification
branch, loss is enforced on all N candidate ROI bounding boxes where the ground truth
class label u∗i for the candidate box is determined by the IoU value IoU(ri, v∗) calculated
between the candidate box ri and the target bounding box v∗, where u∗i = 1 is assigned if
IoU(ri, v∗) > τp and u∗i = 0 if IoU(ri, v∗) < τn. In our implementation, we use threshold
values (τp, τn) = (0.5, 0.4), and the loss is not enforced on candidate boxes without labels.
For the classification branch loss Lg

cls(ui, u∗i ), the same focal loss used in training the
classification branch of RPN is used as in Equation (10). In addition, for the regression
branch loss Lg

reg(vi, v∗), the same IoU loss used in training the regression branch of RPN is
used as in Equation (11).

Optimizing the overall loss function: Using the individual loss functions defined
above, we formulate the overall loss function Ltotal as in:

Ltotal({p, p∗}, {q, q∗}, {u, u∗}, {v, v∗}) = L f
RPN({p, p∗}, {q, q∗}) + λLg

RCL({u, u∗}, {v, v∗}), (13)

where λ is used for balancing the importance between two loss functions. To stabilize the
overall training process, we start from λ = 0 at the beginning of the training process, only
training the RPN. When a sufficient number of training iterations is achieved (e.g., we used
104 iterations in our experiments), we change the value to λ = 1 to start jointly training
the RPN, the region classification network, and the global context attention module. This
prevents the training of the region classification network when the majority of the region
proposals made from the RPN are labeled negative at the beginning of the training stage,
where they can enforce a strong negative bias on the region classification network and
the global context attention module. By minimizing the overall loss function above using
a gradient descent-based optimization algorithm, the RPN and the region classification
network can be trained simultaneously, while the proposed global context attention module
can be trained using the upstream gradients from the region classification network.
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3.4. Implementation Details

Herein, we clarify the comprehensive details on the proposed architecture, parameter
settings, training dataset used, and training details.

3.4.1. Architectural Details and Parameter Settings

For the backbone feature extractor network φ(·), we employ ResNet-18 [2] since it is
relatively lightweight compared to other backbone feature extractors used in other tracking
algorithms [16,30,31], where it retains the real-time speed while demonstrating adequate
performance. All input frame images are resized to H = 400, W = 666 before they can
be processed by the tracking framework, where the original aspect ratio is retained by
matching the length of the longest edge to the corresponding H or W and adding zero-
padding to the bottom or right side of the image. The feature map produced by φ(·) has the
spatial dimension of h = 25, w = 42, where a 1× 1 convolution layer is added at the final
stage to reduce the size of the channel dimension from the original c′ = 512 to c = 256.

The region proposal network and the region classification network operate on the
same correlated feature map x̂ ∈ Rh×w×c where the RPN spatially pools the target feature
representation z into a size of s = 5. Both branches fcls and freg have two 1× 1 convolution
layers with input and output channel sizes of c = 256, where group normalization [43]
with the number of groups G = 16 and ReLU activation are inserted in between. The final
3× 3 convolution layer is used to convert the feature maps to appropriate dimensions
of p and q. As output of the RPN, the total of the top N = 64 ROI candidate boxes are
obtained using non-maximum suppression with an overlap threshold value of 0.9. Using
the ROI boxes ri, the region classification network spatially pools from x to obtain candidate
feature representations xi with a size of s = 5. Both branches gcls and greg are formulated
identically to fcls and freg except for the final convolution layer of filter size s× s, where
it maps the feature representation into binary logits and regressed bounding box values,
respectively.

The global context attention module operates on the correlated feature map x̂ and
contains four network branches hx

s , hz
s , hx

c , hz
c , where hx

s and hz
s are used to produce spatial

masks, and hx
c and hz

c are used to produce channel masks, respectively. All branches share
common layers composed of two 3× 3 convolution layers with group normalization and
ReLU in between, and subsequent adaptive spatial pooling layer pools the feature map
into a 7× 7 feature map to summarize the scene-specific context information. Then, spatial
mask branches hx

s and hz
s process the feature map using two 3× 3 convolution layers with

group normalization and ReLU in between, followed by spatial adaptive pooling to s× s
and sigmoid activation. Similarly, channel mask branches hx

c and hz
c also contain two 3× 3

convolution layers with group normalization and ReLU in between, followed by spatial
adaptive pooling to 1× 1 and sigmoid activation.

3.4.2. Training Data

To train the overall framework, training splits of ImageNetVID [45], LaSOT [14],
GOT-10k [46], and YouTubeBB [47] datasets are used, with a subset of the LaSOT dataset
assigned for the validation set. From these large-scale video datasets, pairs of query images
Iz and search images Ix are sampled from a randomly chosen video sequence along with
their bounding box annotations, where a specific dataset is first randomly chosen based
on the probability proportional to its size. For sampled image pairs, random data aug-
mentations, each with probability of 0.2, i.i.d., are performed for improved generalization,
including horizontal flips, additive Gaussian noise, color jittering, and Gaussian blurring.
In addition, bounding box coordinates are randomly jittered by ±1% of the original box
height/width. Pixel intensity values for the augmented input images are first scaled to
[0, 1], then RGB channels for all input images are normalized as in I−µ

σ , using the mean µ
and standard deviation σ values from the default setting of the original ResNet [2], where
µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225] are used in practice.
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3.4.3. Training Details and Hyperparameters

To optimize the loss function in Equation (13), we used the Adam [48] optimizer with
a batch size of 16 image pairs per each training iteration. The learning rate was set to
10−4, and the weight decay penalty was set to 10−5. Training was performed for 10 epochs
with each epoch of 106 iterations, and the learning rate was decayed by a factor of 0.9 for
every epoch. For initialization, we employed the pretrained weights from the ResNet-18
architecture, and we froze the weights except for the last residual block where its stride
was modified to 1 for increased resolution of the output feature map. For the focal loss
terms used for training the classification branches fcls, gcls as defined in Equation (10), we
use a focusing hyperparameter value of γ = 2.0 in our experiments. For the balancing
terms in Equations (9) and (12), λRPN = λRCL = 1 was used for simplicity. We implement
our framework using Python 3.6 and PyTorch [49] library (v1.6.0) on Ubuntu 16.04. For the
hardware environment, we run our algorithm and perform run-time speed measurements
on a single Nvidia Tesla V100 GPU with 32GB of VRAM with Intel Xeon CPU and 128GB
of RAM.

4. Experiments

In this section, to evaluate our proposed tracking algorithm, we use large-scale tracking
benchmarks LaSOT [14] and GOT-10k [46] for our experiments, representative of long-
term and short-term tracking tasks, respectively. We perform quantitative and qualitative
evaluations to compare our proposed tracking algorithm with other recently proposed
tracking algorithms. In addition, we perform ablation experiments on our proposed
global context attention module to further validate the performance gains and show the
effectiveness of the proposed global context attention module.

4.1. Quantitative Evaluation

For the quantitative evaluations, we evaluate our tracker on the test sets of LaSOT [14]
and GOT-10k [46], where we fix all parameters for all benchmarks and experiments. LaSOT
is a large-scale, long-term tracking benchmark where average length of all sequences is
longer than one minute, whereas GOT-10k has shorter sequences but includes a larger
number of sequences with more diverse categories of target objects.

The LaSOT [14] dataset is a large-scale, long-term tracking video dataset containing
1400 sequences, where the average sequence length is 2512 frames (83.7 s under 30 fps
setting), with a total of approximately 3.5 M annotated frames. All frames are annotated
with bounding box coordinates of the target object, with occlusion and out-of-view frame
indications, and sequence-level natural language descriptions of the target object. We
evaluate our proposed tracking algorithm on the test split of the LaSOT dataset, which
contains 280 sequences. We evaluate our tracker based on the performance metrics of
area-under-curve (AUC) of the success plots, location precision plots, and normalized
precision plots. The GOT-10k [46] dataset is a large-scale, short-term oriented tracking
dataset containing 10,000 sequences in total, where its test split contains 420 sequences
for evaluation with average sequence length of 150 frames (15 s under 10 fps setting).
The dataset is collected to evaluate the one-shot generalization performance of the tracking
algorithm where the training split and test split have disjoint object categories. Evaluation
metrics include calculating the success rate (SR) with two overlap threshold values 0.5 and
0.75 and an average overlap (AO) value of the estimated bounding box and the ground
truth bounding box. All evaluations were performed under the conventional OPE (one-pass
evaluation) setting where the tracker is initialized using the ground truth bounding box
given at the first frame and run sequentially throughout the subsequent test sequence.
The tracker produces the output of estimated bounding boxes for each frame, where they
are evaluated using precision and overlap values.

Comparison with other trackers: We evaluated our proposed tracking algorithm
on the LaSOT test set and provide the results in Table 1. We denote our tracker, global
COntext Attention Tracker as COAT, in the subsequent tables and figures. For comparison,
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we mainly chose trackers with similar backbone feature extractor architectures, where
GlobalTrack [16], ATOM [50], DiMP [51], SPLT [52], SiamRPN++ [4], and Ocean [53] have
ResNet [2] as backbone and are chosen for comparison. In this manner, we can provide a
fair comparison in terms of model complexity and feature representation. The results show
that our proposed tracking algorithm outperforms other ResNet backbone-based tracking
algorithms, which are SiamRPN++ [4], ATOM [50], SPLT [52], and our baseline tracking
algorithm GlobalTrack [16]. Additionally, our tracker runs faster than most tracking
algorithms, running at a real-time speed of 57 fps, whereas the baseline GlobalTrack runs
at sub real-time speed. We obtained higher performance on all metrics compared to
GlobalTrack using the lighter backbone network ResNet-18, whereas GlobalTrack employs
ResNet-50, achieving comparable performance to DiMP-50 which also employs ResNet-50
as backbone. Detailed success and precision plots with varying threshold values of AUC,
precision, and normalized precision are also shown in Figure 4.

Table 1. Quantitative comparison on the LaSOT test set.

COAT GlobalTrack
[16]

ATOM
[50]

DiMP-50
[51]

SiamRPN++
[4]

DASiam
[26]

SPLT
[52]

MDNet
[19]

Ocean
[53]

SiamFC
[3]

CFNet
[54]

AUC 0.556 0.521 0.518 0.569 0.496 0.448 0.426 0.397 0.560 0.336 0.275
Precision 0.575 0.529 0.506 - 0.491 0.427 0.396 0.373 0.566 0.339 0.259
Norm. Precision 0.616 0.599 0.576 0.650 0.569 - 0.494 0.460 - 0.420 0.312

FPS 57 6 30 43 35 110 25.7 0.9 25 58 43

Furthermore, we also evaluated our tracker on the GOT-10k test set and provide
the result in Table 2, where we show the performance on relatively short-term tracking
scenarios. COAT achieves competitive performance in terms of success rate and average
overlap metrics, outperforming most tracking algorithms that were oriented for short-
term tracking tasks. Performance metrics were obtained using the online evaluation site
provided by the authors. Even without any temporal smoothness priors, motion priors,
and meticulous tuning of cosine window weighting, COAT manages to achieve competitive
performance with the same parameter settings used for long-term tracking, showing its
generalizability on a wide range of visual tracking tasks.

Figure 4. Success and precision plots for LaSOT test set. Best viewed on high-resolution display.

Table 2. Quantitative comparison on the GOT-10k test set.

(%) COAT ATOM
[50]

DiMP-50
[51]

SiamMask
[11]

Ocean
[53]

CFNet
[54]

SiamFC
[3]

GOTURN
[55]

CCOT
[22]

ECO
[23]

CF2
[56]

MDNet
[19]

SR0.50 64.3 63.4 71.7 58.7 72.1 40.4 35.3 37.5 32.8 30.9 29.7 30.3
SR0.75 49.1 40.2 49.2 36.6 - 14.4 9.8 12.4 10.7 11.1 8.8 9.9
AO 57.2 55.6 61.1 51.4 61.1 37.4 34.8 34.7 32.5 31.6 31.5 29.9

4.2. Ablation Experiments

To perform more in-depth analysis on COAT and the proposed global context at-
tention module, we performed additional ablation analysis on the challenge attributes



Sensors 2023, 23, 2695 13 of 18

and component-wise comparisons. For the ablation experiments, AUC of the success plot
obtained on the LaSOT test set was used for the evaluation metric.

Attribute-wise ablation: To analyze the effectiveness of our proposed global context
attention module with COAT, we show the success plots under eight different challenge
attributes of the LaSOT test set in Figure 5. COAT was able to achieve high performance
metrics on all eight challenge attributes, where it achieves noteworthy performance gains
on attributes of aspect ratio change, deformation, rotation, scale variation, and background
clutter compared to the baseline tracker GlobalTrack, owing to the effect of context informa-
tion provided by the proposed global context attention module. Using our global context
attention module, our proposed tracker is able to fully utilize the context information from
the given scene to accurately localize the target under various challenging circumstances.
Additionally, the full-frame search-based GlobalTrack shows lower performance on the
background clutter attribute compared to ATOM and SiamRPN++, due to the frequent
errors made by mislabeling similar background object as the target. Even with the same
full-frame search-based design, our proposed COAT is able to successfully suppress the
errors originating from the background clutter and achieve high performance metrics.

Figure 5. Success plots for eight challenge attributes of LaSOT test set. Best viewed on high-
resolution display.

Component-wise ablation: To precisely quantify the effectiveness of our propose
global context attention module, we report the performance metrics on the LaSOT test set
without the proposed module in Table 3.

Table 3. Ablation analysis on the global context attention module. Results without the global context
attention module are shown in the second column.

COAT COAT
w/o GCAM

GlobalTrack
[16]

AUC 0.556 0.532 0.521
Precision 0.575 0.541 0.529
Norm. Precision 0.616 0.605 0.599

From the results, we can validate the effectiveness of our proposed module where it
achieves +2.4% performance gain on the AUC metric. When compared with GlobalTrack,
our tracker without the proposed module also achieves performance gains, where this is
speculated to be due to the changes in design of the region proposal network. The anchor-
free design [42] of the region proposal network can localize candidate regions of various
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scales and aspect ratios compared to previous network design that relies on the predes-
ignated template anchor boxes. In addition, the anchor-free design reduces the number
of parameters compared to previous anchor-box-based design, where it is less prone to
overfitting to certain sizes and shapes of candidate regions.

4.3. Qualitative Evaluation

In this section, we visualize the qualitative outputs of our proposed tracking algorithm
on the LaSOT test set to facilitate further understanding of the characteristics of our
proposed tracking algorithm. We first show the comparison between output bounding
boxes produced by different tracking algorithms and show some sample visualization of
the attention weights to provide an explanation for the role of the attention weights when
locating the target object.

Qualitative comparison: We present qualitative results and compare our proposed
tracker to GlobalTrack, ATOM, SiamRPN++, SPLT, and VITAL in Figure 6 for selected
sequences from the LaSOT test set. The color of the bounding box denotes the result of a
specific tracker, and frame indices are shown in the top-left corner. For sequences zebra-17,
pool-12, and gorilla-9, where objects of similar class and appearance simultaneously appear
in a scene, our tracker can successfully locate the correct target, whereas other trackers fail
to discriminate similar objects. In addition, our tracker can successfully handle scenarios
with partial occlusion such as in fox-5, and can recover from out-of-scene disappearances
where a target completely leaves the scene, such as in giraffe-10, whereas other trackers fail
to find the correct region of the target object. Strengths of our tracker for the aforementioned
attributes were also quantified in the earlier attribute-wise ablation experiments, where
success plots for background clutter, partial occlusion, and out-of-view attributes are
visualized in Figure 5.

Figure 6. Qualitative results on the LaSOT test set. Tracking results are for sequences zebra-17,
giraffe-10, fox-5, pool-12, and gorilla-9. Best viewed on a high resolution display.
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Visualizing the attention weights: We present sample visualizations of the spatial
attention masks in Figure 7. We show query and search images, Iz and Ix, where they are
annotated with ground truth bounding boxes (red) and the estimated bounding boxes
(green). Spatial attention weights mz

s and mx
s are visualized in the bottom-right corner of

respective images, where relative magnitudes of the attention weights are color-coded
according to the map in the bottom of the figure. For the query image Iz and search image Ix,
where target feature z and candidate features xi are obtained using the backbone network
and the region proposal network, spatial attention weights mz

s and mx
s obtained from the

global context attention module are applied to the respective features as in Equation (7).
We visualize the relative magnitude of the attention weights using color-coded heatmaps,
where parts with higher attention weights are considered more significant and helpful
when discriminating the target in the subsequent region classification stage, and vice versa
for parts with lower attention weights. We can see that the spatial attention weights
can adaptively change according to the target object and its context, where the global
context attention module is learned to focus on different object parts for discriminating and
correctly identifying the target object.

Attention Weight
HighLow

Figure 7. Visualization of spatial attention masks on the LaSOT test set.

5. Conclusions

In this paper, we proposed a novel global context attention module for visual tracking,
where our proposed module can extract and summarize the global scene information
to provide the target feature representation with spatial and channel attention weights.
The context-modulated target feature representation can be used to discriminate similar
objects using relevant feature channels and spatial parts. We show the effectiveness of
our proposed method on two large-scale visual tracking benchmarks, test splits of La-
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SOT and GOT-10k, where our tracker achieves competitive performance metrics on both
datasets, while running at a real-time speed. Our tracker shows large improvements in
both performance and speed compared to the baseline GlobalTrack, with higher metrics
on all challenge attributes of the LaSOT benchmark. Additional ablation experiments
also validate the effectiveness of our proposed module for various challenging attributes
of visual tracking, achieving improved performance on numerous challenging scenarios
owing to the success of the proposed global context embedding module.
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