
Citation: Senoo, E. E. K.; Akansah, E.;

Mendonça, I.; Aritsugi, M.

Monitoring and Control Framework

for IoT, Implemented for Smart

Agriculture. Sensors 2023, 23, 2714.

https://doi.org/10.3390/s23052714

Academic Editor: Ivan Andonovic

Received: 3 January 2023

Revised: 9 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Monitoring and Control Framework for IoT, Implemented for
Smart Agriculture
Elisha Elikem Kofi Senoo 1 , Ebenezer Akansah 1 , Israel Mendonça 2 and Masayoshi Aritsugi 2,*

1 Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
2 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
* Correspondence: aritsugi@cs.kumamoto-u.ac.jp

Abstract: To mitigate the effects of the lack of IoT standardization, including scalability, reusability,
and interoperability, we propose a domain-agnostic monitoring and control framework (MCF) for
the design and implementation of Internet of Things (IoT) systems. We created building blocks for
the layers of the five-layer IoT architecture and built the MCF’s subsystems (monitoring subsystem,
control subsystem, and computing subsystem). We demonstrated the utilization of MCF in a real-
world use-case in smart agriculture, using off-the-shelf sensors and actuators and an open-source
code. As a user guide, we discuss the necessary considerations for each subsystem and evaluate our
framework in terms of its scalability, reusability, and interoperability (issues that are often overlooked
during development). Aside from the freedom to choose the hardware used to build complete
open-source IoT solutions, the MCF use-case was less expensive, as revealed by a cost analysis that
compared the cost of implementing the system using the MCF to obtain commercial solutions. Our
MCF is shown to cost up to 20 times less than normal solutions, while serving its purpose. We believe
that the MCF eliminated the domain restriction found in many IoT frameworks and serves as a first
step toward IoT standardization. Our framework was shown to be stable in real-world applications,
with the code not incurring a significant increase in power utilization, and could be operated using
common rechargeable batteries and a solar panel. In fact, our code consumed so little power that the
usual amount of energy was two times higher than what is necessary to keep the batteries full. We
also show that the data provided by our framework are reliable through the use of multiple different
sensors operating in parallel and sending similar data at a stable rate, without significant differences
between the readings. Lastly, the elements of our framework can exchange data in a stable way with
very few package losses, being able to read over 1.5 million data points in the course of three months.

Keywords: Internet of Things (IoT); open-source; IoT architecture; smart agriculture; monitoring;
control; framework; domain-agnostic; sensors; actuators

1. Introduction

The Internet of Things (IoT) has the potential to transform a wide range of industries,
including agriculture, healthcare, and transportation. It is said that it will transform
different fields such as healthcare [1–3], education [4], transportation [5], security [6,7],
finance [8,9], agriculture [10,11], and manufacturing [12]. It provides an opportunity for
human-to-machine and machine-to-machine interaction [13,14] and is expected to become
more common in modern society as the technology continues to be adopted more and
more, and it is expected to reach about 75 billion devices by 2025 [15].

A typical IoT system describes a network of sensors and actuators that are either
directly connected to cloud services or to edge devices that may be connected to the
cloud [16–18]. The sensors perform monitoring by collecting data related to phenomena
of interest, and actuators execute the control function, causing changes in the controlled
devices. Different domains require different types of sensors and other devices to col-
lect data on various aspects of the environment or system being monitored, such as soil

Sensors 2023, 23, 2714. https://doi.org/10.3390/s23052714 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4381-8836
https://orcid.org/0000-0002-7845-928X
https://orcid.org/0000-0001-6819-4305
https://orcid.org/0000-0003-0861-849X
https://doi.org/10.3390/s23052714
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052714?type=check_update&version=1

Sensors 2023, 23, 2714 2 of 32

moisture in agriculture, patient vital signs in healthcare, or vehicle localization in trans-
portation [19–21]. These data are then analyzed and used to optimize various activities or
processes, such as irrigation in agriculture, patient care in healthcare, or fleet management
in transportation [20–22].

The organization of devices such as sensors, actuators, edge devices, cloud services,
protocols, and layers that constitute IoT networking systems are referred to as the archi-
tecture [23]. IoT architecture is crucial to delivering desired services. Researchers have
suggested multiple IoT architectures in response to a number of challenges, including
interoperability, security and privacy, dependability, energy limitations, scalability, and the
lack of universal standards [23]. According to Gupta et al. [24], the four major elements of
the IoT environment are physical devices, interconnectivity, real-time applications, and op-
erating platforms. These elements of the IoT environment have seen major advancements
in technologies, protocols, and standards. Xu et al. [25] state that the success of IoT can
be attributed to the advancements being made in many related technologies, including
communication efficiency and the energy efficiency of devices, which have improved over
the years. Gupta et al. [24] also state that, although these technologies, protocols, and stan-
dards are the main forces behind the expansion of the Internet of Things, they present new
challenges to its integration with the traditional Internet framework and network scaling,
in addition to problems unique to IoT, such as device heterogeneity and ambiguities in its
framework standardization.

The adoption of full-stack development solutions for the Internet of Things is still
in its early stages; thus, there are challenges that must be overcome. As expected of any
technology, the increase in interest, and its adoption without widely accepted standards,
has led to a fragmented ecosystem, which makes the interoperability of systems challenging.
The increasing participation of people and institutions has contributed to the fast growth in
IoT, and the diversity of the multitude of contributions has created an environment in which
many systems operate as standalone systems without interoperability or shared resources.

Additionally, teams need to always be concerned with all aspects of the system that are
being developed (electronics, hardware programming, communication, data management,
and security), or bring together a host of subsystems and convince them to work together.
For instance, the building of sensor networks takes a lot of time and resources. There are
only a few open-source methods for integrating various devices and sensory modalities,
making it challenging to expand on prior work [26]. In response, researchers have suggested
IoT designs based on the use of various architectural layers and cutting-edge technologies
for the end-to-end integration of IoT systems [26]. However, the existing solutions present
many challenges, such as: interoperability [27,28], scalability [23,29], and complexity in
customization and extension [23].

To address these challenges, we proposed the monitoring and control framework (MCF),
a conceptual structure for the design and implementation of IoT projects in multiple do-
mains. MCF utilizes a five-layer IoT architecture reference model, focusing on scalability,
security, and interoperability. We have released our code for use, and to obtain open-source
contributions from the IoT community, at https://github.com/dbms-ku/iot-mcf (2 January
2023). We demonstrate the effectiveness of the framework through its implementation in a
case study looking at one of the targeted domains: smart agriculture. Our results show that
MCF is a valuable tool for ensuring the success of IoT projects in a variety of industries. Our
contributions can be summarized as follows:

1. We propose an end-to-end IoT solution to monitor diverse phenomena using sensors.
Our solution has extensibility, scalability, and interoperability as its main advantages,
and allows for users to easily create and tailor our solutions to their needs;

2. Our solution parts from the principle that the user wants to start his project straight
away, providing the tools for a rapid prototyping, construction, and testing;

3. Our solution is focused on using commercial, off-the-shelf products, which makes
it much cheaper than commercially available systems. A price comparison with
common solutions is provided;

https://github.com/dbms-ku/iot-mcf

Sensors 2023, 23, 2714 3 of 32

4. We provide an open-source code for our framework so that the user can use it as necessary;
5. We describe our real-world use-case and provide some steps for the utilization of our framework.

The remainder of this paper is organized as follows: the next section, Section 2,
presents a review of the relevant literature on the existing frameworks for the Internet of
Things (IoT), as well as the motivation, objective, and scope of this work. Section 3 discusses
the five-layer architecture that forms the foundation of our framework and provides a
conceptualization of the monitoring and control framework (MCF). Section 4 provides a
detailed overview of the problems that users often find in IoT systems and how they are
addressed using the MCF. Section 5 describes the MCF’s deployment in a smart agriculture
monitoring system. Section 6 presents a discussion of the results and implications of our
implementation. The final section, Section 7 summarizes the key points of the paper and
highlights future research directions.

2. Background

Before introducing our framework, we establish a parallel between our work and the
related works in Section 2.1. We then explain the motivations that led us to develop the
framework in Section 2.2. We finish this section by stating the objectives and scope of this
work in Section 2.3.

2.1. Related Work

IoT adoption has consistently grown over the years, with many authors noting its use
in the provision of solutions across various industries [3,16,26,30,31]. As such, the devel-
opment of IoT architectures and related frameworks remains an important topic of study.
There are recognized challenges in the adoption of solutions, such as concerns regarding a
lack of standardization [17,32], connectivity issues [28], and security and privacy [33,34].
Palit [35], Kakkar et al. [36], and Mirani et al. [26] provide overviews of the various IoT archi-
tecture frameworks, including their components and functionalities, further corroborating
these challenges.

Various researchers have developed application-specific architectures for IoT [37].
Many of these architectures are domain-specific, with a few of them being used for multiple
domains. Khaoula et al., propose an architecture for an aquaponics system powered by
solar energy [38], Quy et al. [39] and Aivaliotis et al. [40] propose an architecture for
healthcare, Kniess et al. [41] and Salazar-Cabrera et al. [42] propose an architecture for
transportation, and Coito et al. [43] and Voicu et al. [44] propose an architecture for industry.
Despite the great results that were achieved in these works, they are all domain-specific
and not applicable to other domains, or they require extensive modifications to be applied
to other domains. This makes the integration of different solutions difficult.

Konduru et al. [45] clearly states that IoT has potential regarding the building of cross-
domain IoT frameworks and tools, which will allow for new and unanticipated applications
and value-added services. In this regard, there have been works proposing cross-domain
architectures. Trakadas et al. [46] proposed a domain-agnostic reference architecture that
is capable of supporting heterogeneous devices in various network environments. Sim-
ilarly, Sun et al. [47] and Neto et al. [48] propose architectures for cross-domain-sharing
capabilities. However, these and many of the other proposed cross-domain and domain-
agnostic architectures do not provide end-to-end implementation assistance in terms of
software code. The focus of IoT frameworks, however, is addressing challenges in specific
IoT domains [49]. As a result, there are major inadequacies in the literature and prac-
tice in terms of framework architectures that are both domain-agnostic and present an
implementation code.

To answer this, some authors propose domain-agnostic IoT architecture frameworks
with code. Piadyk et al. [50] introduce a reconfigurable environmental intelligence platform
(REIP) for fast sensor prototyping, providing a software framework that can be imple-
mented in Python. REIP provides an SDK that includes dozens of blocks for commonly
required tasks such as data acquisition, processing, and storage. REIP SDK is presented

Sensors 2023, 23, 2714 4 of 32

to alleviate the engineering burden of implementing sensor networks. However, REIP
requires the sensing device to connect directly to the cloud, which is not feasible in locations
with poor or no internet coverage. REIP also does not provide for IoT systems that control
actuators in addition to monitoring. The requirement that sensing devices connect to the
cloud, and the lack of support for control through actuators are common features of the
multi-domain architectures that provide a software framework, as observed with the Sign-
post Platform [51] and SensorCentral [52]. Cloete et al. [53] propose a system architecture
for sensing and control without an end-to-end software framework for quick prototyping.

To the best of our knowledge, there is no domain-agnostic IoT architecture for both
monitoring and control, with a software framework that is suitable for implementation
in locations without internet coverage. Therefore, we propose a monitoring and control
framework that is domain-agnostic and has subsystems for both monitoring and control,
as well as a computing subsystem that is self-sufficient without connecting to the internet,
making our framework suitable for locations without internet coverage. The MS and CTS
of the MCF connect to CPS, which can optionally connect to the internet, reducing the
entire system’s exposure to the public internet for enhanced security.

Our framework is a first step toward the domain-agnostic standardization of shelf
sensors. We follow the two standardization strategies proposed by Motlagh et al. [29]: First,
we define systems using a shared understanding to enable equitable access and usage by
all stakeholders. Secondly, we create open information models, architectures, and protocols
for the standards that are freely and publicly available. Our proposed end-to-end IoT
monitoring and control framework and implementation code provides the building blocks
used to create IoT architectures and can be used in a wide range of scenarios, regardless
of the domain.

2.2. Motivation

The MCF was created to address IoT challenges such as scalability, lack of standard-
ization, connectivity, reusability, and security and privacy. The MCF seeks to provide a
domain-agnostic solution to these challenges to address the lack of standardization and
encourage reusability.

2.3. Objective and Scope

The objective of this study is to design and develop the MCF to improve the scalability,
interoperability, and security of IoT projects in a domain-agnostic manner while reducing
development and maintenance costs. The MCF aims to provide an end-to-end solution for
monitoring and control in IoT. The scope of the MCF includes the design and implementa-
tion of the monitoring subsystem, control subsystem, and computing subsystem, which
work together to collect and process data and control devices. The MCF provides a flexible
and extensible architecture, allowing for it to be adapted to a wide range of applications
and domains. The MCF is also accompanied by a code for implementation, to speed up
development and reduce the associated costs.

3. MCF Conceptualization

Several different reference models and architectures have been proposed for the In-
ternet of Things (IoT) by different organizations, such as CREATE-IoT [54], OneM2M [55],
IoT-A [56], and FIWARE [57]. These models differ in the number of layers and their respec-
tive functions, with the most common being the three-layer, five-layer, and seven-layer IoT
architectures. The three-layer IoT architecture consists of the following layers [27,58]:

1. Perception/Sensing Layer (PSL): This layer includes the physical devices and sensors
that collect and transmit data from the physical world;

2. Transportation/Network Layer (TNL): This layer includes the communication infrastruc-
ture that connects the devices and sensors to the platform and enables data transmission;

3. Application Layer (APL): This layer includes the applications and services that run on
top of the IoT platform and enable users to interact with the devices and sensor data.

Sensors 2023, 23, 2714 5 of 32

The five-layer IoT architecture adds two additional layers to the three-layer model:

1. Perception/Sensing Layer (PSL): This layer has the same functionality as the three-
layer model;

2. Transportation/Network Layer (TNL): This layer includes the hardware and software
infrastructure that supports the IoT devices and sensors, as well as the communication
protocols and data management systems;

3. Middleware/Processing Layer (MPL): This layer includes the software and services
that provide functionalities such as data analytics and visualization;

4. Application Layer (APL): This layer has the same functionality as the three-layer model;
5. Business Layer (BSL): This layer includes the business processes and applications that

leverage the data and services provided by the IoT platform to achieve business objectives.

The seven-layer IoT architecture adds two additional layers to the five-layer model:

1. Physical Devices and Controllers Layer: This layer includes the physical devices
and sensors that collect and transmit data from the physical world;

2. Connectivity Layer: This layer includes the hardware and software infrastructure
that enables the devices and sensors to communicate with each other and with the
rest of the IoT system;

3. Edge Computing Layer: This layer includes the hardware and software infrastructure
that supports edge computing, which refers to the processing of data at or near the
source of data generation rather than in a centralized location;

4. Data Accumulation Layer: This layer includes the data storage and management
systems that store and process the data collected by the devices and sensors;

5. Data Abstraction Layer: This layer includes the software and services that provide
functionalities such as data analytics and visualization;

6. Application Layer (APL);
7. Collaboration and Processing Layer: This layer includes the business processes and

applications that leverage the data and services provided by the IoT platform to
achieve business objectives.

In Figure 1, the layers are arranged from top to bottom depending on how close or far
each layer is from the human level or the hardware level. Each of these reference models
has its own strengths and weaknesses, and organizations may choose to adopt a particular
model based on their specific needs and requirements. The five-layer IoT architecture
reference model provides a middle ground that expands on the functionalities of the
three-layer model, while adequately covering the granularity of the seven-layer model [27].
Thus, the five-layer IoT architecture is used as a base reference model to streamline the
functionality of the MCF by carefully considering the responsibilities of each layer of the
reference model. This approach ensures that our proposed framework provides a holistic
implementation, which is capable of being deployed as a complete IoT system. In the
following subsections, we will describe the types of solutions provided by our framework
to solve common problems with each layer.

Sensors 2023, 23, 2714 6 of 32

Figure 1. IoT architectures commonly discussed in the literature. The three-layer IoT architecture,
five-layer IoT architecture, and seven-layer IoT architecture are the most commonly discussed IoT
architectures in the literature.

3.1. Perception/Sensing Layer (PSL)

The Perception/Sensing Layer, also known as the device layer, is the lowest layer in the
IoT architecture. This layer is responsible for generating and collecting data using sensors,
as well as affecting change in the environment or in systems with the use of actuators.

Sensors are devices that detect changes in a physical property (such as temperature,
pressure, or light) and convert these changes into an electrical signal that can be measured
and analyzed. Many different types of sensors are available, including vision and imag-
ing sensors, distance/position sensors, pressure sensors, gas sensors, radiation sensors,
temperature and humidity sensors, flow sensors, and contact sensors. These sensors serve
different purposes, including electrical circuit monitoring, weather monitoring, chemical
monitoring, and optical monitoring. Many different types of sensors are available, and they
can be broadly classified as digital or analog. Digital sensors report data in discrete values,
while analog sensors report data in continuous values. The type of sensor that is used will
determine whether digital or analog input/output pins on the microcontroller board are
used to connect the sensor. It is important to choose an appropriate type of sensor for the
data that are being collected, based on the accuracy and resolution that are required, as well
as the range of values being measured.

Actuators convert an electrical signal into a specific physical action. These can be
classified by the source of motion energy (such as electrical, hydraulic, pneumatic, thermal,
or magnetic) or the type of motion that is produced (such as rotary, oscillating, linear,
or reciprocating). Actuators are used to turn command instructions into precise actions,
causing a change in system status, the environment, or phenomena.

In addition to sensors and actuators, the PSL includes microcontrollers that are used
for hardware communication and to perform basic transformations on the data generated
by the sensors, or to decode and encode control instructions. Thus, it is typically considered
to be the foundation of any IoT system, as it is responsible for providing the data on which
the entire IoT system depends. The number of sensors and actuators needed in this layer
depends on the system objectives and the type of data being collected. The selection of a
microcontroller also plays a key role in the scalability of an IoT implementation, as they only
support a limited number of input/output pins, which limits the number of modules, such
as sensors, actuators, and devices, that the microcontroller can effectively control under nor-
mal operating conditions. In cases where the number of modules that are needed is beyond
a ability of a single microcontroller, multiple microcontrollers can be combined into an inte-
grated system using a digital interface such as the Recommended Standard 485 (RS-485),
Inter-Integrated Circuit (I2C) or Controller Area Network (CAN) bus.

Sensors 2023, 23, 2714 7 of 32

Given that sensors are particularly prone to providing intermittent erroneous values,
some level of data-processing occurs at the PSL to ensure that data are correct and complete.
Our framework provides initial data processing functionalities, as explained in the subsec-
tions below. Energy consumption and some special considerations regarding actuators are
discussed in the following subsections.

3.1.1. Error Detection and Correction

The error detection and correction step during the initial data processing step is impor-
tant in ensuring the accuracy and reliability of the data that are collected and transmitted.
In this step, our framework selects any data values that are outside the expected range
for a particular sensor. These are identified as errors and replaced with the maximum or
minimum acceptable value. This helps to eliminate any incorrect or misleading data that
could impact the performance or functionality of the IoT system. Using this error detection
and correction method, the data recorded for transmission are structured to suppress any
observable deviations. Equation (1) presents a mathematical representation of the error
detection and correction.

Vreg =

xmax x > xmax

x xmin ≤ x ≤ xmax

xmin x < xmin

(1)

where Vreg is the regularized sensor value, x is the reported sensor value, xmin is the
minimum reasonable sensor value, and xmax is the maximum reasonable sensor value.
For every sensor, variables for xmin and xmax are provided for configuration to ensure that
they suit the use-case.

3.1.2. Data Smoothing

The simple average is used as a data-smoothing technique to reduce the impact of
noise or fluctuations in sensor data. This is especially useful when the sensor is sensitive
to external factors or when the data being collected may contain sudden spikes or jumps.
By taking the average of multiple sensor readings, our framework can smooth out these
fluctuations and obtain a more stable and reliable representation of the data. This is
particularly useful for long-term data collection and analysis, where sudden spikes in the
data could lead to incorrect conclusions or misleading results. Equation (2) represents the
average of the reported sensor values

Vav =
1
N

∫ N

0
s(t) dt (2)

where Vav is the average value; N is the number of reported values; s(t) is the sensor
function over time t. For every sensor, we provide a variable that allows for N to be
configured to determine how many values should be averaged. If spontaneous spikes are
considered reasonable or valid data, N should be set to 1.

3.1.3. Data Transformation

Typically, different sensors report values from different value ranges. Some might
be larger than others. As such, the required precision of each sensor may be different.
To avoid losses in data precision, our framework transformed the averaged value into an
integer so that the inverse of the transformation was performed on the transmitted data
to recover the averaged value. Equation (3) shows the mathematical representation of the
data transformation function

Vtrans = lv + k (3)

where Vtrans is the transformed value, l is the multiplicative function, k is the additive
constant, and v is the averaged value. For every sensor, we provide variables for l and k to

Sensors 2023, 23, 2714 8 of 32

be configured to define the transformation function. Where such a transformation is not
desired, l should be set to 1, and k should also be set to 0.

Figure 2 summarizes the initial data processing that was carried out at the PSL before
the data were transmitted to the CPS. Readings from a sensor go through error detection
and correction, data smoothening, data transformation, and data packaging to generate the
reported value.

Figure 2. Block diagram of data processing in the perception/sensing layer (PSL). Sensor readings
go through error detection and correction to regularize their values, then data smoothening, which
involves taking a simple average of the regularized values, followed by data transformation and data
packaging, to generate the reported value.

3.1.4. Energy Consumption

Energy consumption is a critical concern in IoT systems. To minimize energy con-
sumption, it is paramount that the systems designed in this layer adhere to a well-planned
power management scheme. One such scheme is the sleep-and-wake cycle, where sensors
are turned off during their inactive states and only activated to record readings. Each
sensor in a device maintains its own sleep-and-wake cycle to ensure that every sensor is
independent of the others, as shown in Figure 3b. With the sleep-and-wake cycle, in the
sleep state, the sensor is turned off and consumes little to no energy until the end of the
sleep mode. These cycles are precisely controlled by the microcontroller in a systematic
loop, as shown in Figure 3a. The framework provides a robust scheme, with time-based
or CPU clock cycle-based configurable variables that determine the sleep mode and wake
mode of all modules connected to the microcontroller. The flowchart shown in Figure 4
describes the power management scheme as designed in the MCF. For each sensor cycle,
calculations are only performed if the state of the sensor allows this. This state is based on
pre-determined energy-saving profiles that allow for the user to control how much energy
is being spent on the system.

3.1.5. Actuators

The use of actuators presents a different challenge. They are typically expected to
precisely respond to control instructions, provide periodic status reports and, on occasion,
respond to user requests for system status checks and other predetermined functionalities.
Thus, the data processing requirements differ slightly from the case of sensors and other
modules. As expected, the MCF allowed for initial data processing before the instructions
were executed, and for response protocols. The initial data processing that is provided
specifically for control systems by the framework includes:

1. Signal Decoding. The received signals require decoding because these signals are en-
coded before transmission. The structure of the message payload is similar to Figure 5.
In this case, the data component of the received message requires decoding;

Sensors 2023, 23, 2714 9 of 32

2. Signal-to-Instruction Mapping. Here, there is an attempt to map all decoded signals
to a corresponding instruction. Any signal that is not successfully mapped to an
instruction is simply dropped or ignored. Three control instructions are supported
by default by the MCF, with the ability tAmeno easily extend the instruction set to
meet any project’s specifications. The three default instructions are: (1) checking the
actuator status, (2) turning the actuator on, and (3) turning the actuator off;

3. Instruction Execution. This is the point where the actuator performs the instruction,
decides whether to turn on or off, or checks its status and sends the report;

4. Status Response. The execution of all valid instructions is followed by a status check-
and-response procedure. The current status of the actuator is recorded, packaged,
and transmitted.

(a) State diagram of the sensors (b) Timing diagram of the sensors
Figure 3. Sensors attached to a device are managed by sleep-and-wake cycles; (a) Sensor state
diagram showing the endless sleep-and-wake cycle observed by each sensor independent of other
sensors on the same device; (b) Sensor timing diagram showing three sensors on the same device
maintaining sleep-and-wake cycles independently.

start

Value > sensor
maximum?

Set sensor value to
sensor maximum

Value < sensor
minimum?

Set sensor value to
sensor minimum

Keep sensor value
for the average

Sleep Mode?

Wake Mode
Completed?

End

Calculate Average
Value

Transform Average
Value

Yes

Yes

YesYes

No

No

No

No

Read Sensor Value

Figure 4. Sensor flowchart. Each sensor runs through SleepMode and WakeMode. The sensor only
executes a sleep-wait in the SleepMode. The sensor loops to obtain sensor values and calculates the
average when the WakeMode is completed.

Sensors 2023, 23, 2714 10 of 32

Figure 5. Message payload components. The message payload consists of three components: the
acknowledgment (Ack) code, sender address, and data.

Figure 6 summarizes the processes that signals go through, from signal decoding,
signal-to-instruction, to instruction execution, with the status response shown in the
block diagram.

Figure 6. Block diagram of the processes in the perception/sensing layer. The received signals go
through signal decoding, signal-to-instruction mapping, instruction execution with invalid signals
ignored, and actuator status check and response.

The processes described above (error detection and correction, data smoothening, data
transformation, and data packaging), together with the sleep-and-wake cycle, determine
sensor behavior in relation to data management. To enhance the reusability, extensibil-
ity, and readability of the instructions running on the microcontroller at this layer, we
designed the code in a modular fashion. In view of the fact that IoT projects have different
requirements and objectives, we designed the code for the framework to make it easy
to add/remove sensors to/from the project. We created a modular sensor library that
makes it easy to work with sensors or modules that are not yet included in the library.
Figure 7 shows the class diagram of our modular sensor library, which includes 11 sensor
classes derived from the parent class, the RegressiveDataTransformer class (derived from
the DataTransformer class) for transforming the sensor data, and the SensorHandler class,
which is responsible for managing the sensors’ sleep-and-wake cycles.

Figure 7. Class diagram of a modular sensor library, showing 11 concrete sensor classes de-
rived from the AbstractSensor class, the RegressiveDataTrans f ormer class derived from an abstract
DataTrans f ormer class, and the SensorHandler class, which is responsible for the management of the
sensors’ sleep-and-wake cycles.

3.2. Transportation/Network Layer (TNL)

This layer, sometimes called the platform layer, is responsible for data transmission
and connectivity between the different subsystems, end nodes, and modules of an IoT
system. It also handles the routing of data to and from the cloud infrastructure that
manages IoT services.

Several communication technologies and protocols are available for use in the TNL,
each with different capabilities, and each suitable for different use-cases [59–61]. These

Sensors 2023, 23, 2714 11 of 32

technologies can be classified into four main categories: device-to-device (D2D), device-to-
application (D2A), device-to-gateway (D2G), and device-to-cloud (D2C) [62].

During D2D communication, devices establish direct communication with each other,
without the need for an application server, base stations, or access points. D2A communi-
cation involves seamless communication between IoT devices and applications through
well-implemented protocols. In D2G communication, devices communicate through a local
gateway, such as access points and network servers, which act as a middleware service
provider for communication translation. Finally, in D2C communication, devices directly
handle information transfer and resource management on a cloud service infrastructure.

Different communication technologies and protocols may be combined in the TNL to
control the flow of messages and optimize throughput, power consumption, and resource
usage. The TNL plays a critical role in the IoT system, as it enables the devices and sensors
to communicate with each other and other system components.

3.2.1. Communication

We implemented the framework with LoRa as the radio communication module,
providing an easy modification that allows for the use of other communication modules,
such as nRF24L01. LoRa is a long-range modulation that can cover regions up to tens of
kilometers away in rural areas and a few kilometers away in urban areas [63]. In comparison
to competing technologies, the LoRa SX127x family from Semtech Corporation provides
significant benefits in terms of range, reliable performance, and battery longevity [64].

The MCF provides three options for communication:

1. Acknowledged Message. This option is a bare-bones option that automatically sup-
ports the acknowledgment of messages sent, and executes a number of retry attempts
in the event of failure. The number of retries is configurable;

2. Round Robin Communication. This option places an extra layer of functionality
over the acknowledged message option such that each device is assigned a time slot
to offload message payloads. We provide configuration variables that can determine
the minimum time interval between successive transmission opportunities;

3. Multi-receiver Communication. This provides extra functionality to support communi-
cation with a large number of devices. This option involves the use of multiple receivers
on the same central node to coordinate, receive, and send acknowledged messages.

A receiver, in the context of our implementation, is a module principally made of
an Arduino microcontroller and a LoRa module, which is programmed to autonomously
receive and send messages and uses serial output for communication with other devices.
The receiver uses the Ack Code in the message to acknowledge receipt of the payload to
the sender. After a successful acknowledgment process, the payload is unpacked to extract
the data component. The data component is written to a serial output. This ensures that
the receiver can easily be replaced by any module with a serial output, thus making the
system customizable.

3.2.2. Data Packaging

We also implemented communication acknowledgment. Message failure leads to
retries to increase successful message delivery in challenging environments. Each message
that is to be transmitted over the network has a randomly generated alphanumeric token
called an Ack Code attached to the data payload, which is used to authenticate and
confirm the receipt of the transmitted payload. The configurable parameters for efficient
communication include the token’s size, the alphanumeric characters that are permitted,
and the amount of time until a communication exchange is classified as unsuccessful.
This offers the flexibility to avoid situations such as data collisions. Equation (4) was
used to calculate the minimal length of the Ack Code N for any character set size S and
the number of devices D with an Ack Code collision probability of 1 in 100,000 (that

Sensors 2023, 23, 2714 12 of 32

is, 0.00001), as well as a worst-case scenario in which all devices on the network are
communicating simultaneously:

1
100, 000

=
D
SN (4)

We rewrote Equation (4) to determine the minimum recommended Ack Code size,
as shown in Equation (5):

N =
5 + log(D)

log(S)
(5)

In terms of payload configuration, the MCF uses a fixed payload size. This enables
messages to be sent successfully without reserving a special character as a delimiter to mark
the end of a message, and also ensures uniformity and standardizes the data unpacking
process. We provide a configuration variable to control the payload size, allowing for the
size to be customized to suit project specifications. The structure of the payload consists of
three components: the acknowledgment code, the message sender’s address, and the data,
as shown in Figure 5.

3.3. Middleware/Processing Layer (MPL)

The Middleware/Processing Layer, also known as the Data Layer, serves two essential
functions in an IoT architecture. First, it acts as the data accumulation layer by aggregating
data from all sources and managing the flow of data and control instructions. This requires
the MPL to be able to accept and interpret different communication protocols, data formats,
and types. To ensure interoperability, the design of this layer should consider syntactic
interoperability (allowing for different types of applications to communicate and share
data regardless of their language or protocols), structural interoperability (ensuring data
exchange formats are standardized and homogeneous), and semantic interoperability
(ensuring that the meaning of exchanged data and information is preserved).

The second function of the MPL is to process the received data and store them for
future retrieval for reporting and analytical purposes. Security and privacy are crucial in
this layer, as vulnerabilities may lead to compromises in the data, which could adversely
affect the usability of upstream data. Scalability and reliability are also important consid-
erations in this layer, as the system should be able to handle increasing data flows and
maintain availability.

Two common technologies used for data storage in IoT projects are relational databases, such
as MySQL and PostgreSQL, and NoSQL databases, such as MongoDB and Cassandra [65–67].
These technologies offer different trade-offs in terms of performance, scalability, and data model
complexity, and the appropriate choice depends on the specific requirements of the IoT sys-
tem. The MPL plays a critical role in the IoT system, as it enables the aggregation, processing,
and storage of data from the devices and sensors.

The MCF provides data processing and decision-making functions, in addition to
data modeling and storage. We implemented the MPL using Flask, a micro-web frame-
work written in Python. As it does not require any specific tools or libraries, it is con-
sidered a micro-framework. Flask has no database abstraction layer; as such, we used
MongoEngine (as a document–object mapper) and MongoDB to store processed data.
MongoDB is a cross-platform document-oriented NoSQL database program that uses
JSON-like documents for data storage. The data model implemented with MongoEngine
is shown in Figure 8, with six documents: Sensor , SensorData (individual records of data
from sensors), Device (collection of sensors on a common Arduino), Field (group of devices
in a physical location), Actuator, and ActuatorStatusChange (individual records of changes
in the status of actuators).

Sensors 2023, 23, 2714 13 of 32

Figure 8. Data model implemented in the MongoDB database in the computing subsystem.

3.4. Application Layer (APL)

The APL is responsible for enabling users to interact with the devices and sensor data
in the system through applications and services. It sits above the MPL and below the BSL in
the reference model. To facilitate this interaction, the APL applies a suitable data formatting
protocol for effective data pushing and pulling. This can be implemented using various
protocols, such as REST, WebSocket, Message Queue Telemetry Transport (MQTT), FTP,
and HTTP/HTTPS [68]. These protocols can be used to implement different communication
modalities, such as client/server architectures and subscription mechanisms.

Some protocols, such as FIWARE and MQTT, use a publish–subscribe system, which
is a distributed data messaging system that efficiently handles multiple data streams by
categorizing data into independently accessible classes in a centralized broker. The publish–
subscribe system allows for devices to publish data to a centralized broker, which then
distributes the data to subscribed devices. This can be useful when handling large volumes
of data or enabling real-time communication between devices. The APL serves as an
interface between the lower layers of the system and the users, translating the data and
functionality provided by the lower layers into user-friendly applications and services.
It plays a critical role in enabling users to access and interact with the data and services
provided by the IoT system.

We provided an extensible RESTful application programming interface (API) with
some initial endpoints. Representational state transfer (REST) is a software architectural
style that defines a set of constraints and properties for the creation of web services. API
endpoints are the specific points at which the API can be accessed by a client. By creating
extensible endpoints, it is possible to allow for the expansion and customization of the API
as the system scales to accommodate additional functionality. The API provides JavaScript
object notation (JSON) data exchange. JSON is a lightweight data-interchange format
that is easy to parse and generate, making it well-suited for use in IoT systems. There
are numerous front-end technologies and libraries, such as React and VueJS, that can be
utilized to provide user interactions and different teams have different preferences in terms
of graphical user interfaces; hence, we do not provide a code implementation for user
interfaces in the MCF, although a simple interface is provided with ReactJS in the Smart
Agriculture implementation. However, we provided API endpoints that are accessible to
most available front-end frameworks.

3.5. Business Layer (BSL)

In a five-layer IoT architecture, the BSL is the highest layer and is responsible for defin-
ing the overall goals and objectives of the IoT system. It determines the value proposition
of the system and defines the customer segments that it targets. It comprises analytical,
visualization, and perception services that focus on analyzing the data provided by the
IoT subsystems to provide users with useful information and insights for data-driven
decision-making. These services can take various forms, such as dashboards, reports, alerts
and notifications, depending on the specific requirements of the system.

The BSL also handles user interactions with the IoT system by receiving control
commands and user preferences through intuitive interfaces. These interfaces can be web-
based, mobile-based, or other types of user interfaces that allow for users to interact with the
system in a convenient and user-friendly way. It is critical to the success of an IoT system,
as it determines how useful the users perceive the services to be. As a result, a careful

Sensors 2023, 23, 2714 14 of 32

design and implementation, which focuses on user-friendliness, responsiveness, security,
and user privacy, is essential. The BSL plays a crucial role in defining the overall value
proposition of the IoT system and determining its target customer segments. In general,
this layer determines the overall goals and objectives of the system and defines the business
processes and rules that govern its operation.

For the avoidance of doubt regarding the difference between the BSL and the APL,
the BSL is focused on the business goals and end-user experience, while the APL is focused
on the technical aspects of data exchange and communication between the different system
components. As a result, the BSL is domain-specific and is not directly provided in the
MCF. However, Section 5 demonstrates the BSL, where a farmer is able to monitor soil and
atmospheric conditions, and control irrigation in paddy rice fields using a curated business
logic for this specific use-case.

4. Monitoring and Control Framework Implementation

IoT projects, independent of the domain, are usually structured in many different
subsystems. This relates to scalability and the reduction of having a single point of
failure (SPOF). In this section, we demonstrate the actual implementation of our framework
in terms of three different subsystems. Our objective is to provide a conceptual structure for
the design and implementation of IoT projects that is drawn from experience and aims to
address common IoT system challenges, such as scalability, reusability, and interoperability,
that can arise from the lack of standardization in the IoT space.

Figure 9 illustrates how each subsystem exchanges information with each other,
and their respective responsibility. Each of these subsystems will be explained in detail in
the following subsections.

Figure 9. The monitoring and control framework (MCF) showing the three subsystems; monitoring
and control subsystems communicating with the computing subsystem.

4.1. The Monitoring Subsystem

The monitoring subsystem is responsible for collecting (or generating) data related
to a phenomenon that is being monitored. This subsystem typically consists of sensors,
a microcontroller board, a communication module, and a power system supply system.
The sensors convert the physical properties of the environment into electronic signals that
can be measured and interpreted as data. These data are then processed before being sent

Sensors 2023, 23, 2714 15 of 32

to interested entities. The micro-controller board is responsible for orchestrating the whole
operation: communicating with the sensors to fetch data, performing the necessary transfor-
mations to these data, packaging them and transmitting them through the communication
channel. In our implementation, the communication is carried out via wireless antennas,
and the entity that receives these data is the computing subsystem. Figure 10a presents a
simple overview of the monitoring subsystem.

Micro
Controller

Sensor 2

Sensor 1

Antenna

①

①

②

③

(a)

Core
Communications

Data Handler

Sensor 1 Sensor 2

(b)

Figure 10. Implementation of the monitoring subsystem: (a) A conceptual model of a monitoring
module. These data are first read from sensors monitoring a phenomenon; after that, they are
internally processed in the microcontroller and finally transmitted to the point of interest. (b) How
this module can be implemented using our framework: by using the predefined modules, fewer
than 20 lines of code are needed to obtain a working system with many advantages, such as error
detection, data smoothing, transformation, and packaging.

4.1.1. Monitoring Subsystem Concerns

From our experience, when a user needs to build an effective monitoring subsystem,
there is one important point that needs to be ensured, namely data reliability; otherwise,
the whole operation can become compromised. If there is no trust that the data arriving to
the server is correct, the decisions taken by other subsystems can have catastrophic results.
To guarantee that the data are correct, the user needs to consider the two major SPOFs:

1. Data reading: The process of reading the sensors’ value for small/starting projects,
in which the main source of information to the user is the sensor’s manual on how to
read values. Determining how to correctly read values from different sensors may
become overwhelming to users. If this process fails, the data have no value to the re-
ceiving end; in some cases, this can even lead the system to operate in the wrong way;

2. Data transmission: The communication between the sensors and the receiving part
is typically one-way communication, with data being transferred from the nodes to
the computing subsystem. As there are many communication options, there are many
errors that can arise with the chosen communication module, for example, protocol
errors, packaging errors, and configuration errors. Having a solid communication
protocol is essential to obtaining an effective system.

Sensors 2023, 23, 2714 16 of 32

These points require the user to spend time reading documentation and making crucial
decisions. However, using our framework, many of these concerns are abstracted from the
user and are guaranteed to be standardized and working. The following subsection shows
how a user could use the proposed framework to build a monitoring subsystem.

Another point of concern in the monitoring subsystems is their energy consumption.
Unaware users may be tempted to continuously transmit the sensor data to obtain the
system status in real-time. However, some sensor values do not change this often. For in-
stance, a weather temperature monitoring sensor does not need to transmit every 1 ms,
since, under normal conditions, the temperature will not change that quickly. Additionally,
the careless transmission of data will flood the data transmission media, which will cause
many package collisions, and the data may never reach their destination. Lastly, data read-
ing and transmission are power-intensive tasks, and conducting these tasks too often will
quickly exhaust the power system, which will result in power outages and, consequently,
compromise the whole operation. How the MCF approaches these problems is explained
in the next section.

4.1.2. MCF Approach of the Monitoring Subsystem

Using the notation defined in Section 3, we can state that this subsystem includes
elements from both the perception layer and the transportation layer. Figure 10b shows
which parts can be used to make a monitoring system using our framework. Given that the
user is using our supported sensors and LoRa, we remove the user overhead regarding
how to reliably read the data (as the framework already provides error correction, data
smoothing, and transformation). The user does not need to worry about how to send the
data (as the packaging is also provided by our framework). The user only needs to select
the sensors they would like to use, instantiate the data-handler to process the data from the
sensors, and instantiate a communication module. Figure 11 illustrates a small monitor
subsystem code using two sensors and the LoRa communicator.

1 #include II Arduino. h 11

2 #include- 11 util .h 11

• RadioRRComNode rCommunicator(&fetchMessageForRadio, &

beforeUsingRadio, &afterUsingRadio);

s DistanceSensor metaDistanceSensor (80, 2);

a HumiditySensor metaHumiditySensor(20, 5);

a void setup() {

e32ttl10 0.begin();

w pinMode(LedPin, OUTPUT);

11 }

12

1a void loop() {

M rCommunicator.routine();

� SHandler.routine(metaDistanceSensor, 0);

u SHandler.routine(metaHumiditySensor, 1);

11 delay (50) ;

18 }

Figure 11. Monitor subsystem using our framework. The user needs fewer than 20 lines of code to
obtain a working subsystem with all the advantages provided by the framework.

Notably, the MCF uses an algorithm to control the data-reading and transmission
based on the type of sensors to which it is attached. Each sensor has a value associated
with the number of cycles required between readings. Doing this not only saves energy but
also reduces the number of packages routed in the network, which eases the sensor burden
when re-transmitting data.

Sensors 2023, 23, 2714 17 of 32

4.2. The Control Subsystem

The control subsystem is responsible for the execution of control functions on the
elements with which it is associated. This subsystem primarily comprises actuators, a mi-
crocontroller, and a communication module. Control instructions are sent from the edge
device to be executed by this subsystem. Although its main function is to control, in some
cases it can double as a monitoring system by providing information on the status of
the controlled elements and sensors. Similarly to the monitoring subsystem, the control
subsystem usually has a micro-controller board that is responsible for orchestrating the
whole operation. The main difference is that, in this system, the micro-controller not only
senses but is also responsible for taking action in the associated elements. This leads to a
different relationship between it and the edge module, in which the communication is now
bi-directional, with the system sending and receiving data. Figure 12a illustrates a simple
control system.

Micro
Controller

Actuator 1

Antenna

(a)

Core
Communications

Data Handler

(b)

Actuator 1

Figure 12. The implementation of the control subsystem: (a) A conceptual model of a control module.
Similarly to the monitor subsystem, the data are read, processed, and transmitted to the point of
interest. However, the main difference is that the module also receives instructions, which it actuates.
(b) How this module can be implemented using our framework. By using the pre-defined modules,
very little code is needed to obtain a working system with many advantages, such as error detection,
data smoothing, transformation, and packaging.

4.2.1. Control Subsystem Concerns

The control subsystem has the same SPOFs as the monitor subsystem, and some
extra SPOFs related to the actuators. This subsystem needs to receive messages to control
its actuators; however, many problems arise when we need to guarantee that the edge
module is aware that its message arrived safely, and to inform the interested modules of
the internal state of its actuators. As many messages are exchanged, the communication
channel can become busy and messages can be lost, resulting in two subsystems with
incoherent information regarding the real state of affairs.

These problems incur in increments in the time required for the user to ensure that the
system works properly. As users need to worry about signal encoding/decoding, signal-
to-instruction mapping, instruction execution, and status response. The next subsection
shows how a user could use the proposed framework to build a control system with
minimal effort.

Sensors 2023, 23, 2714 18 of 32

4.2.2. MCF Approach to the Control Subsystem

Similar to the monitor subsystem, the control subsystem uses elements from both
the perception and the transportation layer. Figure 12b shows which parts could be used
to create a control system using our framework. As the user is using our supported
sensors, actuators, and LoRa, we can easily create a system that coordinates the sensors and
actuators, reducing the user overhead when they want to create such a subsystem. Similarly
to the monitoring system, the user only needs to select the sensors and actuators that it
would like to use, instantiate the data-handler to process the data that come from the sensors
and from the instructions to actuators, and instantiate a communication module. Figure 13
illustrates a small code of a control subsystem using one sensor, one actuator, and a
LoRa communicator.

, #include "Arduino .h"

2 #include~ 11 util .h"

• RadioRRBComNode rBCommunicator(&fetchMessageForRadio, &

beforeUsingRadio, &afterUsingRadio);

s PumpSwitchActuator pumpActuator(1, 2);

7 void setup() {

e32ttl100.begin();

pinMode(LedPin, OUTPUT);

10 }

11

u void loop() {

u rBCommunicator.routine();

u AHandler.routine(pumpActuator, 0);

u delay(50);

u }

Figure 13. Control subsystem using our framework. The user needs fewer than 20 lines of code to
obtain a working subsystem with all the advantages provided by the framework.

4.3. Edge Computing Subsystem

The edge computing subsystem is the central location for data processing and stor-
age. It is also responsible for making decisions that determine the behavior of the control
subsystem. The computing subsystem is provided by edge computing, which can op-
tionally be supported by cloud services. This usually consists of a computing module
that communicates with both monitoring and control subsystems, periodically backing
up data to the cloud. This way, the edge device offers cloud services at the network edge,
which enhances the response time, bandwidth usage, efficiency, and dependability of any
IoT application. The edge device also provides data aggregation before transference to
the cloud [69]. This setup also ensures that exposure to the public internet is reduced,
as recommended by Ref. [70], since the only point of exposure to the public internet is
the connection to the cloud. Figure 9 shows the MCF with the computing subsystem as a
combination of an edge device and cloud services, communicating with the monitoring and
control subsystems’ devices. The computing subsystem spans four of the five architecture
layers, exempting the perception/sensing layer.

4.3.1. Edge Computing Subsystem Concerns

Our experience shows that the main problem of the edge computing subsystem is
that it needs to coordinate the transmission and reception of data through busy media
while keeping the protocols in place as simple as possible. Basic functionalities such as
acknowledgment of data and the means of addressing this are not usually provided, and the
user has to either give up on these or implement them from scratch.

Sensors 2023, 23, 2714 19 of 32

Libraries are usually hardware-dependent, and finding one that attends to the user’s
needs is not straightforward. Similar to the previous subsections, these problems take time
for the user and, in some cases, may even be a deal-breaker regarding whether a user can
finish something on time.

4.3.2. MCF Approach to the Edge Computing Subsystem

The MCF provides solutions regarding all layers used in the computing subsystem.
It provides the minimum requirements for the user to build a node that is capable of
sending and receiving messages to nodes in a coordinated way. Our framework provides
ACK messages as well as a round-robin system that guarantees a fair system in which
nodes communicate in an orderly manner, providing an equal chance for all nodes in each
subsystem to transmit/receive data. MCF also provides tools for re-transmission in case
of data loss.

4.4. Assembling MCF Subsystems

As discussed in previous sections, the MCF comprises three subsystems: the moni-
toring subsystem (MS), the control subsystem (CTS), and the computing subsystem (CPS).
The purpose of designing the MCF to have subsystems is to allow for each subsystem to
perform its tasks independently of other subsystems. This enhances the interoperability
and minimizes the implementation costs, as subsystems can easily be added to or removed
from the system when necessary. Figure 14 presents a visualization of the model of the
three assembled MCF subsystems. The MS and CTS have two architecture layers (TNS
and PSL), while the computing subsystem has four architecture layers (BSL, APL, MPL,
and TNL). All the subsystems communicate with each other at the TNL.

Figure 14. MCF subsystems assembled. The monitoring subsystem and control subsystems both
have two architecture layers (transportation/network layer and perception/sensing layer), and the
computing subsystem has four architecture layers (business layer, application layer, middleware/pro-
cessing layer, and transportation/network layer). All three subsystems communicate with each other
at the transportation/network layer.

5. Case Study of the Framework in Smart Agriculture

This section presents a real-world case study for a Smart Agriculture farm. The ob-
jective of this case study is to demonstrate the use of the MCF. A more detailed report
is presented by Akansah et al. [11]. The system consists of three subsystems working
seamlessly to monitor the ambient and soil conditions necessary for the optimal growth of
paddy rice, while maintaining an adequate water level in the paddy fields throughout the
growing period. The framework provides the necessary design structure, ensuring that
the system is easily scalable and maintainable. The monitoring and control subsystems,
including the deployment of a test, are shown in Figure 15.

Sensors 2023, 23, 2714 20 of 32

Figure 15. The monitoring and control subsystems of our smart agriculture use-case. (a) The
monitoring subsystem consists of: (1) 18650 lithium–ion battery pack, (2) LM393 Rain Sensor, (3)
E32-900T20D LoRa radio module, (4) Arduino nano hlATmega328P microcontroller in a protective
enclosure, (5) SHT20 I2C temperature and humidity sensor, (6) HC-SR04 ultrasonic sensor. (b) The
control subsystem, consisting of: (7) E32-900T20D LoRa radio module, (8) emergency push button
and two-pole switch, (9) power supply for 5V components, (10) connection terminals, (11) Arduino
nano ATmega328P microcontroller, 5 V relay and ACS712 current sensors in a protective enclosure,
(12) Mitsubishi Electric S-T10 three-pole contactor. (c) Test deployment of the monitoring subsystem.

The monitoring subsystem consists of weatherproof outdoor sensor nodes collecting
valuable information such as ambient temperature and humidity, soil pH, soil nitrogen–
phosphorus–potassium content, and soil moisture and temperature. These nodes are
capable of working continuously due to the design of the reliable power system, which
is explained in detail in Section 5.2. The reliability of the sensor data and the hardware
communication robustness are discussed in Sections 5.3 and 5.4.

The control subsystem is responsible for listening for a specific command instruction
from the computing subsystem and then acting on the command, either by turning the
water pump it controls on or off, or by sending the current state of the water pump to
the computing subsystem. It sends periodic statuses regarding its current state, not only
to serve as valuable information for the end-user through the user interface but also to
ensure reliable and uninterrupted communication, and assure the functionality of the
subsystem. This closed feedback loop relationship ensures that commands are carried out
with precision in a timely fashion.

The computing subsystem, consisting of a Raspberry Pi 4 Model B development board
with Broadcom BCM2711, Quad-core Cortex-A72 64-bit SoC, 4 GB of RAM and 256 GB
of storage as an edge computing device, handles the data pipeline, the custom-built data
visualization, and the control application. The subsystem was implemented as described in
Section 4.3, ensuring efficient communication between different services, components, and
applications, with a focus on extensibility and scalability.

5.1. Evaluation Parameters

In this section, we describe the parameters we used to evaluate the real case study:

• Power Consumption: To evaluate the amount of energy consumed by the system,
we measured the voltages of the solar panels and battery pack. This metric is impor-
tant because it provides insights into how much power our framework is utilizing,
and consequently measures the efficiency of our system and helps to identify areas
for optimization. Additionally, power can also be consumed to assess the energy
usage of individual devices within the system and determine which devices are the

Sensors 2023, 23, 2714 21 of 32

most energy-intensive. This information can be used to target areas for energy-saving
improvements and determine the overall impact of these changes on the system;

• Data Reliability: To evaluate the accuracy and dependability of the data readings ob-
tained from sensors, devices, and other sources within our power system. This metric
is important because it is necessary to have accurate and reliable data to make in-
formed decisions and monitor the performance of the system. Data-reading reliability
can be affected by factors such as device malfunctions, network issues, and inter-
ference from other devices. A low data-reading reliability can result in inaccurate
readings, which can lead to incorrect decisions and affect the overall performance
of the system;

• Communication Robustness: To evaluate the ability of the communication systems
already in place. Communication robustness can be impacted by factors such as
network outages, interference from other devices, and communication errors. Low
communication robustness can result in communication failures and disruptions,
which can impact the performance and reliability of the power system.

The following subsections discuss the use-case study in detail, in light of the afore-
mentioned evaluation metrics. Section 5.2 talks about the power system, Section 5.3 talks
about data reliability, and Section 5.4 talks about communication robustness.

5.2. Power System Evaluation

A critical component of our monitoring subsystem is our power supply system, as the
reliability of the subsystem is highly dependent on its ability to work at all times, even in
unfavorable weather conditions. To achieve this, our outdoor sensor nodes were powered
by a pack of 18,650 lithium–ion rechargeable batteries. These batteries have a large capacity
and a higher energy density, require less maintenance, and operate in wide temperature
ranges (typically −20 ◦C to 60 ◦C). A major drawback of these batteries is their tendency to
be overcharged and over-discharged; thus, to ensure the longevity of our batteries, we incor-
porated a battery protection system into our battery pack. We implemented an effective but
inexpensive circuit using the DW01 + battery protection IC with 8205A MOSFETs to ensure
that our battery pack did not overcharge and over-discharge, and provided over-current
and short circuit protection. We also incorporated an efficient power distribution and
charging module using the CN3791 PWM switch-mode battery charge controller with a
constant voltage and current mode. The versatility of this charging solution enabled our
sensor nodes to be powered by power sources such as photovoltaic cells, power banks,
and DC power adapters, while recharging our battery pack. The output voltage was
regulated through two MT3608 switch-mode DC-to-DC boost converters, ensuring that
a constant supply of +5 V and +12 V was channeled to our different sensor categories,
microcontrollers, and communication modules.

Energy efficiency is a major concern in wireless sensor networks. The sensor nodes
deployed in remote field applications must employ smart power management systems
to ensure continuous operation. Common approaches include designing power-efficient
circuitry and reducing power usage during the node’s idle states by inducing sleep modes.
The authors in Ref. [71] introduced an energy management architecture that employs an on-
board, off-chip real-time-clock configuration, to control the sleep–wake phases of sensors
and a microcontroller connected to IoT remote nodes. They designed and demonstrated
their proposed system using the ICARUS prototype mote. The mote features ultra-low-
power ARM Cortex-M4 microcontroller, some integrated sensors, and expansion sockets for
wireless interfaces and other sensors. The mote exhibited roughly 22 nA during sleep mode,
which is about a 98% reduction, compared to the most power-efficient boards available.
However, the mote lacks high-power rails, high-voltage power, and high current sensors.
A software approach was experimented with by Ref. [72] using the SWORD algorithm
to implement a wake/sleep scheme for sensor devices. The algorithm compares sensor
values and determines which values are sent over the communication module, thereby
reducing the overall power consumption of their system by 86.45%. However, not all

Sensors 2023, 23, 2714 22 of 32

sensors or electronic modules have a low-power sleep mode that can be controlled by a
software implementation. An example sensor is the multi-parameter soil sensor, which has
a maximum working current of 12.5 mA (at 12 V), with no sleep mode [73].

For our solution, we implemented a hardware power-switching mechanism using
MOSFETs controlled by microcontroller pin outputs to control the power delivery to sensors
and modules during preprogrammed sleep/wake cycles. The FQP30N06L logic-level N
channel MOSFET has a drain-source voltage of 60 V and a drain current of 32 A, which is
capable of switching power to most power-hungry IoT sensors and modules. It also features
a typical low gate charge of 15 nC, providing a fast switching time of 15 ns. This robust
solution has the flexibility that allows for it to completely disable and isolate unneeded and
faulty sensors, thereby preventing unnecessary power draws and possible damage to the
entire system. All the components of our circuits were carefully chosen to optimize the
power conversion processes to reduce losses through current leakages and heat and ensure
a longer node life.

Figure 16 shows the battery voltage (in green), and the solar voltage (in blue) for
recharging the battery pack for one node during our experiment. It can be observed that
there was wasted power (above the red line) from the solar panel, when the battery protec-
tion system cuts off the solar voltage, to protect the battery pack. Thus, such information is
vital in the optimization of the design of the power system to reduce wastage by advising a
developer/user to either increase the storage capacity of the system’s battery pack or use
different specifications for an optimal solar panel.

Figure 16. Sample visual of the recorded battery and solar voltages for one outdoor node.

5.3. Data Reliability Evaluation

An extensive literature review was carried out by Refs. [74–76] on crucial sensors
used in smart agricultural systems (SAS). These sensors play a key role in the collection
of ambient, crop, and soil conditions and other relevant data to determine the state of the
crops and the necessary actions to ensure optimal plant growth. Our proposed system is
designed to accommodate a wide range of sensors depending on the monitoring needs of
the crops and their environment. Some basic sensors, such as ambient temperature and
humidity sensors, which are needed by most SAS, are incorporated by default in the sensor
nodes while provisions are made for special-purpose sensors. These sensors are connected
to the nodes through weatherproof aviation plugs, which ensures the continuous delivery
of power and protects sensitive signal lines between the sensors and the microcontroller
from fretting corrosion and oxidation. The data from the sensors are collected by a micro-
controller, which is programmed to check the accuracy of the data, and the validated values
are packaged and sent to the CPS through the communication module.

Sensors 2023, 23, 2714 23 of 32

To test the reliability of our processed data, we deployed redundancies in the MSes;
that is, two nodes per field. The objective was to use the data values collected through these
redundancies to monitor and detect inconsistencies in these data. To visualize one instance,
we plotted two-week datapoints showing the ambient temperature from two nodes in a
single field. As can be observed in Figure 17, the graph shows very little deviation between
the recorded values. These results show that our choice of sensors, although inexpensive,
provided stable and reliable recordings and this phenomenon can be observed throughout
our redundant sensor pairs.

Figure 17. Sample visual of the recorded ambient temperature from two outdoor nodes in the
same field.

5.4. Communication Robustness Evaluation

The main challenge in interfacing multiple hardware systems is the communication
protocol. All sensors, communication modules and actuators possess a physical medium,
which they use to send and receive data, and they differ greatly in their implementation.
The same type of sensor, when obtained from different manufacturers, could have different
communication protocols. This means that a microcontroller is required to interface with
these devices and process their communication into desired outputs. This makes the choice
of a microcontroller highly dependent on the choice of device, as effective communication
and control are reliant on the microcontroller’s ability to accurately interpret and transmit
the desired communication signals. Microcontrollers have limited resources and commu-
nication interfaces; thus, it is imperative to obtain the holistic requirements of the system
before the circuitry design and hardware acquisition.

In the case of D2D radio communication, a typical LoRa radio network is set in the
star-of-stars topology. This topology consists of a central node receiving multiple messages
from sensor nodes, which are spread across the fields under observation. Our scenario
implements a strict fixed transmission mode, which ensures that the transmitted data are
encoded with the specific configuration information of the target node. The transmitted
data are received promptly, without interference. The results of this implementation can be
observed through the field deployment, which lasted for 132 days, during which 1,608,143
sensor values were successfully received with close to no data losses. Through the volume
of data that were collected and processed, we identified key points of improvement in our
system through exploratory data analysis.

Sensors 2023, 23, 2714 24 of 32

6. Discussion

In this section, we will discuss some of the key issues and challenges in the design
and deployment of IoT architectures, specifically focusing on domain restriction, scalability,
interoperability, and security.

6.1. Domain Restriction

It is important to address the issue of domain restriction in IoT architectures. Many
existing frameworks are designed specifically for a particular domain [49]. This can be
limiting, as it means that these frameworks may not be suitable for use in other domains.

To address this issue, we implemented the MCF as a domain-agnostic framework.
This means that the MCF can be used in a variety of domains, as it comprises subsystems
(MS, CTS, and CPS) that are common to IoT applications independently of their domains.
The organization of IoT systems into MS, CTS and CPS is applicable to healthcare IoT
(HIoT) [77–80], industrial IoT (IIoT) [81–85], Smart Agriculture [86,87], Smart Energy [58,88],
Transportation [89–92], environment, waste management, and security, among others. For
example, the monitoring subsystem, which includes sensors and microcontroller boards,
is a fundamental component of many different IoT systems, regardless of their specific
domain. By designing the MCF in this way, we made it more flexible and adaptable to a
wide range of different use-cases.

Furthermore, a domain-agnostic framework can help to facilitate interoperability
between different IoT systems. By using a common set of subsystems, it becomes easier for
different systems to communicate and exchange data, regardless of their specific domain
of application. This can help to improve the overall efficiency of the IoT ecosystem, as it
becomes easier to integrate different systems and extract insights from the collected data.

6.2. Scalability

Scalability is an important consideration for IoT systems, as it determines the sys-
tem’s ability to handle an increasing amount of data and devices without a decrease in
performance. The MCF framework was designed with scalability in mind, with a focus on
modularity and flexibility.

One way in which the MCF is scalable is through the use of the monitoring subsystem,
which can easily be expanded by adding more devices to accommodate more sensors as
needed. Each device operates independently, allowing for the system to scale up without
affecting the performance of other devices. The modular design of the MCF allows for the
easy addition or removal of devices in the monitoring subsystem, without affecting the
overall functioning of the system. This enables the system to scale up or down according to
the user’s needs.

The computing subsystem is also designed to be scalable using cloud-based servers
and services. By using cloud servers, it is possible to add more server resources, such
as CPU, RAM, and storage, as the demand for them increases. This ensures that the
computing subsystem can handle an increase in the volume of data being transmitted
from the monitoring subsystem and the number of control commands being sent from the
control subsystem.

Another aspect of MCF’s scalability is its ability to adapt to changes in the business
requirements or goals. The business layer can easily be modified or extended to incorporate
new features or functions as needed, without impacting the lower layers of the architec-
ture. This allows for the system to easily adapt to changing business needs and remain
relevant over time.

6.3. Interoperability

One major challenge facing IoT systems is interoperability, which refers to the ability
of different devices and systems to seamlessly communicate and exchange data. This is
important because IoT systems often involve the integration of a wide range of devices and
systems from different vendors, with different protocols and standards. Without interoper-

Sensors 2023, 23, 2714 25 of 32

ability, it would be difficult for these devices and systems to work together and achieve the
desired outcomes.

The MCF addresses the issue of interoperability in several ways. First, it uses stan-
dard protocols and interfaces, such as HTTP and REST, for communication between the
monitoring and computing subsystems. This ensures that devices and systems using these
protocols can easily integrate with the MCF. Additionally, the MCF includes a flexible data
formatting protocol at the application layer that allows for the exchange of data in various
formats, such as JSON. This allows for the integration of devices and systems that use
different data formats.

The MCF also addresses this challenge by providing a standardized and modular struc-
ture for the development of IoT systems. By dividing the system into three main subsystems
(monitoring, control, and computing) and implementing a clear communication protocol
between these subsystems, the MCF allows for easy integration and interoperability with
other devices and systems.

6.4. Security

Security is a critical concern in IoT architectures, as the connected nature of these
systems makes them vulnerable to attacks and data breaches. The MCF is designed to
minimize the exposure of devices in the monitoring and control of subsystems in the
public internet. This is achieved by implementing a centralized broker in the computing
subsystem that acts as a mediator between the monitoring and control subsystems and the
rest of the internet. Only subsystem devices that have been registered with the broker are
recognized and allowed to communicate with the computing subsystem. This registration
process ensures that only authorized devices can access the system, providing an additional
layer of security.

Additionally, the communication subsystem in the MCF is designed to support secure
communication protocols such as SSL/HTTPS, which encrypt the data being transmit-
ted between devices to prevent unauthorized access or tampering. This is especially
important for IoT applications that handle sensitive data such as personal information or
financial transactions.

6.5. Cost Analysis for the Monitoring System

In this analysis, we describe the costs of our proposed MS, presented side-by-side with
the costs of commercial solutions with similar components and functionality. The high cost
of commercially available alternatives is one of the primary reasons why people want to
build custom IoT devices [93,94]. This is important because the cost of the MS, which typi-
cally consists of many devices, could have a substantial impact on the overall system cost.
Furthermore, commercial solutions often lack the control functionality, as implemented
in the CTS of the MCF. These commercial solutions often rely on the direct connection of
sensing devices to the cloud and may lack an edge device that is comparable to the CPS.

The MS in the agricultural use-case described in Section 5 primarily contains an
Arduino nano with ATmega328P microcontroller, HC-SR04 ultrasonic distance sensor,
SHT20 I2C waterproof temperature and humidity sensor, RS485 Modbus waterproof multi-
parameter soil-integrated sensor, LM393 rain detection sensor, DC power system with a
3.7 V 13.6 AH protected battery pack, and 2 A DC-DC Boost Step-Up Conversion Module
from 3.7 V to 5 V. The MS for the use-case with all these components cost USD 390 at
the time of deployment. Commercially available alternatives from well-known providers
ranged in price from USD 1000 to USD 12,000. Table 1 shows the prices of similar products
from recognized vendors, and the corresponding cost of an MCF implementation with
similar features. According to Table 1, the low end of commercial solutions cost 400% of the
MCF implementation while the more high-end solutions cost upwards of 2200%. It is worth
noting that, despite ensuring that the comparisons are similar in terms of their features,
there are certain nuances that were not considered. For instance, the components used by
these vendors may be of a higher quality than those used for our implementation. However,

Sensors 2023, 23, 2714 26 of 32

the MCF provides the flexibility to use any component. Thus, there is the possibility of
developing solutions with high-end components, thereby removing the limitations of
commercial solutions that have specific component catalogs as add-ons to their solutions.
The software component of commercial systems often uses proprietary implementation,
accompanied by user support from the vendors, which contributes to the higher overall
cost of their solutions.

Table 1. A price comparison between the MCF’s MS use-case and similar commercial solutions.

Vendor Description of Product Product Price (USD) MCF Price (USD) Proportion in Percentage

Vendor 1 Soil temperature and moisture 1031.84 257.85 400.17

Vendor 2 Complete Weather Station 1777.61 330.63 537.64

Vendor 3 Complete Weather Station 7447.01 330.63 2252.37

Vendor 4 Complete Weather Station 3323.92 330.63 1005.33

7. Conclusions and Future Work

In conclusion, the Monitoring and Control Framework (MCF) is a scalable and interop-
erable architecture for IoT projects that aims to minimize the challenges that arise from the
lack of IoT standardization. The MCF is composed of three main subsystems: the monitor-
ing subsystem, the control subsystem, and the computing subsystem, with communications
between them.

The monitoring subsystem is responsible for the collection or generation of data related
to the phenomena of interest, and comprises sensors, a microcontroller board, a commu-
nication module, and a power supply system. The control subsystem is responsible for
the control of physical devices based on data received from the computing subsystem,
and comprises microcontroller boards, actuators and a communication module. The com-
puting subsystem is responsible for data storage, analysis, and visualization, and comprises
a server, a database, and applications.

Our framework was shown to be stable in real-world applications, with the code not
incurring a significant increase in power utilization, and could be operated using common
rechargeable batteries and a solar panel. It used so little energy that the usual amount of
available energy surpassed up to two times the amount necessary for the system to operate.

Our framework was also proved to be reliable by accurately reading data from multiple
sensors that operate concurrently. We observed that these sensors’ data are consistent and
stable, with very similar readings. This contributes to the reliability of the data that are
collected and processed by the system. To further improve data reliability, the sensors
are designed to send readings at a consistent rate. This can be customized to represent as
many details as possible and ensure that the collected information is as accurate as possible.
In addition to the use of multiple sensors, the components of our framework are designed
to effectively exchange data. The data exchange process is intended to be stable, with very
few lost packages (over 1.5 million packages received during the experiment). This helps
to minimize interruptions in the flow of information and ensures that the data used are
current and accurate. Our framework is intended to provide reliable data by utilizing
multiple sensors operating in parallel, as well as a stable data exchange process. This helps
to ensure that the data being collected and processed are correct, consistent, and up-to-date.
Our real-world use-case demonstrated the system’s dependability, power-consumption
viability, communication stability, and the overall suitability of the MCF.

We demonstrated the implementation of the MCF using an open-source code and
discussed the subsystems in detail, including the five-layer IoT reference model. We
also discussed the communication between the subsystems and the energy optimization
techniques applied in the monitoring subsystem.

In this paper, we presented an end-to-end IoT solution, MCF, which is applicable to
multiple domains. Our solution has extensibility, scalability, and interoperability as its

Sensors 2023, 23, 2714 27 of 32

main advantages, and allows for users to easily create and customize our framework to
their project specifications. Additionally, our agricultural use-case is up to 20 times cheaper
than commercial solutions. We provided an open-source code for our framework, enabling
a broader collaborative development.

There are several areas for future work in the development of the MCF. One potential
direction is to explore the use of different communication protocols and technologies in
the TNL to improve the reliability and efficiency of data transmission. Another area of
exploration is the integration of machine learning and artificial intelligence techniques
to enhance the data analysis and decision-making abilities of the system. Additionally,
further research will be conducted on the design and implementation of our user-friendly
interfaces in the BSL to improve the usability and user experience of the IoT system. Finally,
continuing efforts to improve the security and privacy of the system will be essential to
ensure the integrity and trustworthiness of the system.

We are aware that the mathematical formulations of this work are mostly empirical,
and a more theoretical analysis is required. However, at this time, our main objective was
to have it open to the community, so that it could be tested together with other researchers.
We expect the community to adopt our framework, and expand upon it, making it a strong
competitor to available solutions.

Overall, the aim of the MCF, which is to provide a conceptual structure for the design
and implementation of IoT projects by providing a domain agnostic framework, was achieved
through the development of modular and extensible subsystems. Our framework will make
it easier for IoT developers to create scalable, reusable, and interoperable solutions.

Author Contributions: Conceptualization, M.A. and I.M.; methodology, M.A. and I.M.; software,
I.M., E.E.K.S., and E.A.; hardware, I.M., E.E.K.S., and E.A.; field deployment, M.A., I.M., E.E.K.S.,
and E.A.; data collection, I.M., E.E.K.S., and E.A.; resources, M.A. and I.M.; writing—original
draft preparation, E.E.K.S. and E.A.; writing—review and editing, M.A., I.M., E.E.K.S., and E.A.;
supervision, M.A. and I.M.; project administration, I.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their valuable comments,
which strongly improved our paper. Two of the authors (Senoo E. E. K. and Akansah E.) are
grateful to the Japan International Cooperation Agency (JICA) for their two-year full scholarship
under the Master’s Degree and Internship Program of African Business Education Initiative for
Youth (ABE Initiative).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
APL Application Layer
BSL Business Layer
CAN Controller Area Network
CPS Computing Subsystem
CPU Central Processing Unit
CTS Control Subsystem
D2A Device-to-application
D2C Device-to-cloud
D2D Device-to-device
D2G Device-to-gateway

Sensors 2023, 23, 2714 28 of 32

DC Direct Current
DoS Denial of Service
FTP File Transfer Protocol
GSM Global System for Mobile communication
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
I2C Inter-Integrated Circuit
IoT Internet of Things
JSON JavaScript Object Notation
LoRa Long Range
LPWA Low Power Wide Area
MCF Monitoring and Control Framework
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
MPL Middleware/Processing Layer
MQTT Message Queue Telemetry Transport
MS Monitoring Subsystem
NL Network Layer
PSL Perception/Sensing Layer
PWM Pulse-Width Modulation
RAM Random-Access Memory
REST Representational State Transfer
RS-485 Recommended Standard 485
SAS Smart Agricultural System
SSH Secure Shell
SSL Secure Sockets Layer
TNL Transportation/Network Layer
WiFi Wireless Fidelity

References
1. Khan, M.A.; Din, I.U.; Majali, T.; Kim, B.S. A Survey of Authentication in Internet of Things-Enabled Healthcare Systems. Sensors

2022, 22, 9089. [CrossRef] [PubMed]
2. Adame, T.; Bel, A.; Carreras, A.; Melià-Seguí, J.; Oliver, M.; Pous, R. CUIDATS: An RFID–WSN hybrid monitoring system for

smart health care environments. Future Gener. Comput. Syst. 2018, 78, 602–615. [CrossRef]
3. Jeong, Y.S.; Shin, S.S. An IoT healthcare service model of a vehicle using implantable devices. Clust. Comput. 2018, 21, 1059–1068.

[CrossRef]
4. Alhazmi, A.K.; Kaed, E.; Al-Hammadi, F.; Alsakkaf, N.; Al-Hammadi, Y. The Internet of Things as a Tool Towards Smart

Education: A Systematic Review. In Lecture Notes in Networks and Systems , Proceedings of the Future Technologies Conference (FTC),
Vancouver, BC, Canada, 20–21 October 2022; Arai, K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; Volume 3,
pp. 633–648. ._45. [CrossRef]

5. Mohammed, K.; Abdelhafid, M.; Kamal, K.; Ismail, N.; Ilias, A. Intelligent driver monitoring system: An Internet of Things-based
system for tracking and identifying the driving behavior. Comput. Stand. Interfaces 2023, 84, 103704. . [CrossRef]

6. Yesmin, T.; Agasti, S.; Pandit, J.K.; Mondal, B. Cyber Security and Its Prediction with Cloud Data Computing and IoT. In ICT with
Intelligent Applications; Choudrie, J., Mahalle, P., Perumal, T., Joshi, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp.
43–50. ._6. [CrossRef]

7. Pandey, J.K.; Jain, R.; Dilip, R.; Kumbhkar, M.; Jaiswal, S.; Pandey, B.K.; Gupta, A.; Pandey, D. Investigating Role of IoT in the
Development of Smart Application for Security Enhancement. In IoT Based Smart Applications; Springer International Publishing:
Cham, Switzerland, 2023; pp. 219–243. ._13. [CrossRef]

8. Abdullah, T.; Zainuddin, S.A.; Md Nasir, N.A.; Said, N.M.; Yasoa’, M.R.; Muhamad, S.F.; Yusoff, M.N.H. Delivering Future-Ready
Financial Management Course for Non-finance Students Using Internet of Things (IoT). In Impact of Artificial Intelligence, and
the Fourth Industrial Revolution on Business Success; Alareeni, B., Hamdan, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2023; pp. 73–87. ._5. [CrossRef]

9. Kumar, J.A. Role of the Internet of Things (IoT) in Digital Financial Inclusion. In IoT Based Smart Applications; Springer International
Publishing: Cham, Switzerland, 2023; pp. 363–373. ._21. [CrossRef]

10. Ouhami, M.; Hafiane, A.; Es-Saady, Y.; El Hajji, M.; Canals, R. Computer Vision, IoT and Data Fusion for Crop Disease Detection
Using Machine Learning: A Survey and Ongoing Research. Remote Sens. 2021, 13, 2486. [CrossRef]

11. Akansah, E.; Senoo, E.E.K.; Mendonça, I.; Aritsugi, M. Smart Agricultural Monitoring System: A Practical Design Approach.
In Proceedings of the 12th International Conference on the Internet of Things, Delft, The Netherlands, 7–10 November 2022;
Association for Computing Machinery: New York, NY, USA, 2023; pp. 139–142. [CrossRef]

http://doi.org/10.3390/s22239089
http://www.ncbi.nlm.nih.gov/pubmed/36501799
http://dx.doi.org/10.1016/j.future.2016.12.023
http://dx.doi.org/10.1007/s10586-016-0689-z
http://dx.doi.org/10.1007/978-3-031-18344-7_45
http://dx.doi.org/10.1016/j.csi.2022.103704
http://dx.doi.org/10.1007/978-981-19-3571-8_6
http://dx.doi.org/10.1007/978-3-031-04524-0_13
http://dx.doi.org/10.1007/978-3-031-08093-7_5
http://dx.doi.org/10.1007/978-3-031-04524-0_21
http://dx.doi.org/10.3390/rs13132486
http://dx.doi.org/10.1145/3567445.3569165

Sensors 2023, 23, 2714 29 of 32

12. Frankó, A.; Hollósi, G.; Ficzere, D.; Varga, P. Applied Machine Learning for IIoT and Smart Production—Methods to Improve
Production Quality, Safety and Sustainability. Sensors 2022, 22, 9148. [CrossRef]

13. Hasan, M.K.; Habib, A.A.; Shukur, Z.; Ibrahim, F.; Islam, S.; Razzaque, M.A. Review on cyber-physical and cyber-security system
in smart grid: Standards, protocols, constraints, and recommendations. J. Netw. Comput. Appl. 2023, 209, 103540. [CrossRef]

14. Maroua, B.; Rachida, A.A.; Abdelaziz, M. Smart farming architectures based on IoT review: Comparative study. Procedia Comput.
Sci. 2022, 203, 783–788 . [CrossRef]

15. Fizza, K.; Banerjee, A.; Mitra, K.; Jayaraman, P.P.; Ranjan, R.; Patel, P.; Georgakopoulos, D. QoE in IoT: A vision, survey and
future directions. Discov. Internet Things 2021, 1, 4. [CrossRef]

16. Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective.
IEEE Internet Things J. 2014, 1, 349–359. [CrossRef]

17. Al-Qaseemi, S.A.; Almulhim, H.A.; Almulhim, M.F.; Chaudhry, S.R. IoT architecture challenges and issues: Lack of standardiza-
tion. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 731–738.
[CrossRef]

18. Hinai, S.A.; Singh, A.V. Internet of things: Architecture, security challenges and solutions. In Proceedings of the 2017 International
Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), Dubai, United Arab
Emirates, 18–20 December 2017; pp. 1–4. [CrossRef]

19. Kumari, T.; Kumar, R.; Dwivedi, R.K. Design of a Secure and Smart Healthcare IoT with Blockchain: A Review. In Proceedings of
the IOT with Smart Systems; Choudrie, J., Mahalle, P., Perumal, T., Joshi, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp.
229–238. ._25. [CrossRef]

20. Sumit.; Chhillar, R.S. A Review of Intelligent Transportation Systems in Existing Framework using IoT. Int. J. Eng. Trends Technol.
2022, 70, 137–143. [CrossRef]

21. Whaiduzzaman, M.; Barros, A.; Chanda, M.; Barman, S.; Sultana, T.; Rahman, M.S.; Roy, S.; Fidge, C. A Review of Emerging
Technologies for IoT-Based Smart Cities. Sensors 2022, 22, 9271. [CrossRef] [PubMed]

22. Thibaud, M.; Chi, H.; Zhou, W.; Piramuthu, S. Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS)
industries: A comprehensive review. Decis. Support Syst. 2018, 108, 79–95. [CrossRef]

23. Samizadeh Nikoui, T.; Rahmani, A.M.; Balador, A.; Haj Seyyed Javadi, H. Internet of Things architecture challenges: A systematic
review. Int. J. Commun. Syst. 2021, 34, e4678. [CrossRef]

24. Gupta, B.; Quamara, M. An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurr.
Comput. Pract. Exp. 2020, 32, e4946. [CrossRef]

25. Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Informatics 2014, 10, 2233–2243. [CrossRef]
26. Mirani, A.A.; Velasco-Hernandez, G.; Awasthi, A.; Walsh, J. Key Challenges and Emerging Technologies in Industrial IoT

Architectures: A Review. Sensors 2022, 22, 5836. [CrossRef]
27. Bellini, P.; Nesi, P.; Pantaleo, G. IoT-Enabled Smart Cities: A Review of Concepts, Frameworks and Key Technologies.

Appl. Sci. 2022, 12, 1607. [CrossRef]
28. Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE

Commun. Mag. 2017, 55, 26–33. [CrossRef]
29. Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13,

494. [CrossRef]
30. Mohamad Jawad, H.H.; Bin Hassan, Z.; Zaidan, B.B.; Mohammed Jawad, F.H.; Mohamed Jawad, D.H.; Alredany, W.H.D. A

Systematic Literature Review of Enabling IoT in Healthcare: Motivations, Challenges, and Recommendations. Electronics 2022,
11, 3223. [CrossRef]

31. Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A Review of IoT-Enabled Mobile Healthcare: Technologies, Challenges,
and Future Trends. IEEE Internet Things J. 2022, 9, 9478–9502. [CrossRef]

32. Saleem, J.; Hammoudeh, M.; Raza, U.; Adebisi, B.; Ande, R. IoT Standardisation: Challenges, Perspectives and Solution. In
Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, 26–27 June 2018;
Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

33. Vogel, B.; Varshney, R. Towards Designing Open and Secure IoT Systems: Insights for Practitioners. In Proceedings of the
8th International Conference on the Internet of Things, New York, NY, USA, 15–18 October 2018; Association for Computing
Machinery: New York, NY, USA, 2018. [CrossRef]

34. Liang, W.; Ji, N. Privacy challenges of IoT-based blockchain: A systematic review. Clust. Comput. 2022, 25, 2203–2221. [CrossRef]
35. Palit, A.K. Internet of Things (IOT) Architecture—A Review. In Advances in Intelligent Systems and Computing, Proceedings of the

International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, Hyderabad, India, 16–17 September
2023; Gunjan, V.K., Zurada, J.M., Eds.; Springer Singapore: Singapore, 2021; pp. 67–72. [CrossRef]

36. Kakkar, L.; Gupta, D.; Saxena, S.; Tanwar, S. IoT Architectures and Its Security: A Review. In Lecture Notes in Networks and Systems,
Proceedings of the Second International Conference on Information Management and Machine Intelligence, Jaipur, India, 24–25 July 2020;
Goyal, D., Gupta, A.K., Piuri, V., Ganzha, M., Paprzycki, M., Eds.; Springer Singapore: Singapore, 2021; pp. 87–94. [CrossRef]

37. Kumar, K.; Kumar, A.; Kumar, N.; Mohammed, M.A.; Al-Waisy, A.S.; Jaber, M.M.; Shah, R.; Al-Andoli, M.N. Dimensions
of Internet of Things: Technological Taxonomy Architecture Applications and Open Challenges-A Systematic Review. Wirel.
Commun. Mob. Comput. 2022, 2022, 9148373. [CrossRef]

http://dx.doi.org/10.3390/s22239148
http://dx.doi.org/10.1016/j.jnca.2022.103540
http://dx.doi.org/10.1016/j.procs.2022.07.117
http://dx.doi.org/10.1007/s43926-021-00006-7
http://dx.doi.org/10.1109/JIOT.2014.2337336
http://dx.doi.org/10.1109/FTC.2016.7821686
http://dx.doi.org/10.1109/ICTUS.2017.8286004
http://dx.doi.org/10.1007/978-981-19-3575-6_25
http://dx.doi.org/10.14445/22315381/IJETT-V70I6P217
http://dx.doi.org/10.3390/s22239271
http://www.ncbi.nlm.nih.gov/pubmed/36501973
http://dx.doi.org/10.1016/j.dss.2018.02.005
http://dx.doi.org/10.1002/dac.4678
http://dx.doi.org/10.1002/cpe.4946
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.3390/s22155836
http://dx.doi.org/10.3390/app12031607
http://dx.doi.org/10.1109/MCOM.2017.1600528
http://dx.doi.org/10.3390/en13020494
http://dx.doi.org/10.3390/electronics11193223
http://dx.doi.org/10.1109/JIOT.2022.3144400
http://dx.doi.org/10.1145/3231053.3231103
http://dx.doi.org/10.1145/3277593.3277615
http://dx.doi.org/10.1007/s10586-021-03260-0
http://dx.doi.org/10.1007/978-981-15-7234-0_7
http://dx.doi.org/10.1007/978-981-15-9689-6_10
http://dx.doi.org/10.1155/2022/9148373

Sensors 2023, 23, 2714 30 of 32

38. Khaoula, T.; Abdelouahid, R.A.; Ezzahoui, I.; Marzak, A. Architecture design of monitoring and controlling of IoT-based
aquaponics system powered by solar energy. Procedia Comput. Sci. 2021, 191, 493–498 . [CrossRef]

39. Quy, V.K.; Hau, N.V.; Anh, D.V.; Ngoc, L.A. Smart healthcare IoT applications based on fog computing: Architecture, applications
and challenges. Complex Intell. Syst. 2022, 8, 3805–3815. [CrossRef]

40. Aivaliotis, V.; Tsantikidou, K.; Sklavos, N. IoT-Based Multi-Sensor Healthcare Architectures and a Lightweight-Based Privacy
Scheme. Sensors 2022, 22, 4269. [CrossRef]

41. Kniess, J.; Rutke, J.C.; Castañeda, W.A.C. An IoT Transport Architecture for Passenger Counting: A Real Implementation. In
Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 18–20
May 2021, pp. 613–617.

42. Salazar, R.; Pachón, Á. Develop of Mobility Services based on Intelligent Transport System (ITS) Architecture for an Intermediate
City using Internet of Things (IoT). In Proceedings of the IV School on Systems and Networks, SSN 2018, Valdivia, Chile, 29–31
October 2018; Céspedes, S., Bustos-Jiménez, J., Eds.; Volume 2178, pp. 21–23.

43. Coito, T.; Firme, B.; Martins, M.S.; Costigliola, A.; Lucas, R.; Figueiredo, J.; Vieira, S.M.; Sousa, J.M. Integration of industrial IoT
architectures for dynamic scheduling. Comput. Ind. Eng. 2022, 171, 108387. [CrossRef]

44. Voicu, V.; Petreus, D.; Cebuc, E.; Etz, R. Industrial IoT (IIOT) Architecture for Remote Solar Plant Monitoring. In Proceedings of
the 2022 21st RoEduNet Conference: Networking in Education and Research (RoEduNet), Sovata, Romania, 15–16 September
2022; pp. 1–4. [CrossRef]

45. Konduru, V.R.; Bharamagoudra, M.R. An architecture for enabling IoT interoperability between cross-platforms. Int. J. Internet
Technol. Secur. Trans. 2021, 11, 545–563. [CrossRef]

46. Trakadas, P.; Masip-Bruin, X.; Facca, F.M.; Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Martins, R.; Bosani, E.; Ramon, J.;
Prats, R.G.; et al. A Reference Architecture for Cloud–Edge Meta-Operating Systems Enabling Cross-Domain, Data-Intensive,
ML-Assisted Applications: Architectural Overview and Key Concepts. Sensors 2022, 22, 9003. [CrossRef]

47. Sun, Y.; Chen, S.; Fang, Y.; Xu, W.; Luo, Q.; Rui, L. A Trusted IoT Communication Architecture Based on Blockchain and Named
Data Network. J. Phys. Conf. Ser. 2022, 2224, 012091. [CrossRef]

48. Neto, R.J.; Merindol, P.; Theoleyre, F. A Multi-Domain Framework to Enable Privacy for Aggregated IoT Streams. In Proceedings
of the 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney, NSW, Australia, 16–19 November 2020; IEEE
Computer Society: Los Alamitos, CA, USA, 2020; pp. 401–404. [CrossRef]

49. Yelamarthi, K.; Aman, M.S.; Abdelgawad, A. An application-driven modular IoT architecture. Wirel. Commun. Mob. Comput.
2017, 2017, 1350929. [CrossRef]

50. Piadyk, Y.; Steers, B.; Mydlarz, C.; Salman, M.; Fuentes, M.; Khan, J.; Jiang, H.; Ozbay, K.; Bello, J.P.; Silva, C. REIP: A
Reconfigurable Environmental Intelligence Platform and Software Framework for Fast Sensor Network Prototyping. Sensors
2022, 22, 3809. [CrossRef] [PubMed]

51. Adkins, J.; Ghena, B.; Jackson, N.; Pannuto, P.; Rohrer, S.; Campbell, B.; Dutta, P. The Signpost Platform for City-Scale Sensing. In
Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto,
Portugal, 11–13 April 2018; pp. 188–199. [CrossRef]

52. Rafferty, J.; Synnott, J.; Ennis, A.; Nugent, C.; McChesney, I.; Cleland, I. SensorCentral: A Research Oriented, Device Agnostic,
Sensor Data Platform. In Ubiquitous Computing and Ambient Intelligence; Ochoa, S.F., Singh, P., Bravo, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2017; pp. 97–108. [CrossRef]

53. Cloete, A.H.; Booysen, M.J.; Sandell, R.C.; van der Merwe, A.B. Smart Electric Water Heaters: A System Architecture Proposal
for Scalable IoT. In Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing,
Cambridge, UK, 22–23 March 2017; Association for Computing Machinery: New York, NY, USA, 2017. [CrossRef]

54. CREATE-IoT. Cross Fertilisation through Alignment, Synchronisation and Exchanges for IoT. Available online: https://european-
iot-pilots.eu/create-iot/ (accessed on 20 December 2022).

55. oneM2M. oneM2M: The IoT Standard. Available online: https://www.onem2m.org/ (accessed on 20 December 2022).
56. IoT-A. Internet of Things-Architecture. Available online: https://www.iot-a.eu/ (accessed on 20 December 2022).
57. Foundation, F. FIWARE: The Open Source Platform for Our Smart Digital Future. Available online: https://www.fiware.org/

about-us/ (accessed on 20 December 2022).
58. Kutseva, M. Adaptation of Seven-Layered IoT Architecture for Energy Efficiency Management in Smart House. In Proceedings

of the 2022 10th International Scientific Conference on Computer Science (COMSCI), Sofia, Bulgaria, 30 May–2 June 2022; pp. 1–5.
[CrossRef]

59. Bahashwan, A.A.; Anbar, M.; Abdullah, N.; Al-Hadhrami, T.; Hanshi, S.M. Review on Common IoT Communication Technologies
for Both Long-Range Network (LPWAN) and Short-Range Network. In Advances on Smart and Soft Computing; Saeed, F., Al-
Hadhrami, T., Mohammed, F., Mohammed, E., Eds.; Springer Singapore: Singapore, 2021; pp. 341–353. [CrossRef]

60. Shilpa, B.; Radha, R.; Movva, P. Comparative Analysis of Wireless Communication Technologies for IoT Applications. In
Artificial Intelligence and Technologies; Raje, R.R., Hussain, F., Kannan, R.J., Eds.; Springer Singapore: Singapore, 2022; pp. 383–394.
[CrossRef]

61. Feng, X.; Yan, F.; Liu, X. Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture. Wirel.
Pers. Commun. 2019, 108, 1785–1802. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2021.07.063
http://dx.doi.org/10.1007/s40747-021-00582-9
http://dx.doi.org/10.3390/s22114269
http://dx.doi.org/10.1016/j.cie.2022.108387
http://dx.doi.org/10.1109/RoEduNet57163.2022.9921045
http://dx.doi.org/10.1504/IJITST.2021.117422
http://dx.doi.org/10.3390/s22229003
http://dx.doi.org/10.1088/1742-6596/2224/1/012091
http://dx.doi.org/10.1109/LCN48667.2020.9314825
http://dx.doi.org/10.1155/2017/1350929
http://dx.doi.org/10.3390/s22103809
http://www.ncbi.nlm.nih.gov/pubmed/35632217
http://dx.doi.org/10.1109/IPSN.2018.00047
http://dx.doi.org/10.1007/978-3-319-67585-5_11
http://dx.doi.org/10.1145/3018896.3025168
https://european-iot-pilots.eu/create-iot/
https://european-iot-pilots.eu/create-iot/
https://www.onem2m.org/
https://www.iot-a.eu/
https://www.fiware.org/about-us/
https://www.fiware.org/about-us/
http://dx.doi.org/10.1109/COMSCI55378.2022.9912604
http://dx.doi.org/10.1007/978-981-15-6048-4_30
http://dx.doi.org/10.1007/978-981-16-6448-9_39
http://dx.doi.org/10.1007/s11277-019-06496-7

Sensors 2023, 23, 2714 31 of 32

62. Souri, A.; Hussien, A.; Hoseyninezhad, M.; Norouzi, M. A systematic review of IoT communication strategies for an efficient
smart environment. Trans. Emerg. Telecommun. Technol. 2022, 33, e3736. [CrossRef]

63. Parri, L.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Low Power Wide Area Networks (LPWAN) at Sea: Performance Analysis of
Offshore Data Transmission by Means of LoRaWAN Connectivity for Marine Monitoring Applications. Sensors 2019, 19, 3239.
[CrossRef]

64. Aref, M.; Sikora, A. Free space range measurements with Semtech Lora™ technology. In Proceedings of the 2014 2nd International
Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems,
Odessa, Ukraine, 11–12 September 2014; pp. 19–23. [CrossRef]

65. Rautmare, S.; Bhalerao, D.M. MySQL and NoSQL database comparison for IoT application. In Proceedings of the 2016 IEEE
International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 235–238.
[CrossRef]

66. Reetishwaree, S.; Hurbungs, V. Evaluating the performance of SQL and NoSQL databases in an IoT environment. In Proceedings of
the 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM),
Balaclava, Mauritius, 25–27 November 2020; pp. 229–234. [CrossRef]

67. Amghar, S.; Cherdal, S.; Mouline, S. Which NoSQL database for IoT Applications? In Proceedings of the 2018 International
Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), Tangier, Morocco, 20–22 June 2018; pp. 131–137.
[CrossRef]

68. Ansari, D.B.; Rehman, A.-U.; Mughal, R.A. Internet of Things (IoT) Protocols: A Brief Exploration of MQTT and CoAP. Int. J.
Comput. Appl. 2018, 179, 9–14. [CrossRef]

69. Chandnani, N.; Khairnar, C.N. An analysis of architecture, framework, security and challenging aspects for data aggregation and
routing techniques in IoT WSNs. Theor. Comput. Sci. 2022, 929, 95–113. [CrossRef]

70. Sen, S.; Song, L. An IIoT-Based Networked Industrial Control System Architecture to Secure Industrial Applications. In
Proceedings of the 2021 IEEE Industrial Electronics and Applications Conference (IEACon), Penang, Malaysia, 22–23 November
2021; pp. 280–285. [CrossRef]

71. Kazdaridis, G.; Sidiropoulos, N.; Zografopoulos, I.; Symeonidis, P.; Korakis, T. Nano-Things: Pushing Sleep Current Consumption
to the Limits in IoT Platforms. In Proceedings of the 10th International Conference on the Internet of Things, Malmö, Sweden,
6–9 October; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

72. Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M.; Abu-AlShaeer, M.J. Power Reduction with Sleep/Wake on
Redundant Data (SWORD) in a Wireless Sensor Network for Energy-Efficient Precision Agriculture. Sensors 2018, 18, 3450.
[CrossRef]

73. Shandong Renke Control Technology Co., Ltd. Soil NPK Sensor. Available online: https://www.renkeer.com/product/soil-npk-
sensor/ (accessed on 2 January 2023).

74. Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review,
Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [CrossRef]

75. Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-Based Smart Agriculture:
Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [CrossRef]

76. Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review.
Electronics 2020, 9, 3450. [CrossRef]

77. Habibzadeh, H.; Dinesh, K.; Rajabi Shishvan, O.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A Survey of Healthcare Internet of
Things (HIoT): A Clinical Perspective. IEEE Internet Things J. 2020, 7, 53–71. [CrossRef] [PubMed]

78. Preethi, S.; Akshaya, A.; Seshadri, H.; Kumar, V.; Devi, R.S.; Rengarajan, A.; Thenmozhi, K.; Praveenkumar, P. IoT based
Healthcare Monitoring and Intravenous Flow Control. In Proceedings of the 2020 International Conference on Computer
Communication and Informatics (ICCCI), Coimbatore, India, 22–24 January 2020; pp. 1–6. [CrossRef]

79. Binti Wan Abdullah, W.A.N.; Yaakob, N.; Badlishah, R.; Amir, A.; binti Yah, S.A. On the effectiveness of congestion control mechanisms
for remote healthcare monitoring system in IoT environment — A review. In Proceedings of the 2016 3rd International Conference on
Electronic Design (ICED), Phuket, Thailand, 11–12 August 2016; pp. 348–353. . [CrossRef]

80. Rohokale, V.M.; Prasad, N.R.; Prasad, R. A cooperative Internet of Things (IoT) for rural healthcare monitoring and control. In
Proceedings of the 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory
and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India, 28 February–3 March 2011; pp. 1–6. [CrossRef]

81. Jayaraman.; Hema. Industrial monitoring and control system using IoT. AIP Conf. Proc. 2022, 2519, 030080. [CrossRef]
82. Mali, P.S.; Dankan Gowda, V.; Tirmare, H.A.; Suryawanshi, V.A.; Chaturvedi, A. Novel Predictive Control and Monitoring System

based on IoT for Evaluating Industrial Safety Measures. Int. J. Electr. Electron. Res. 2022, 10, 1050–1057. [CrossRef]
83. González, H.; Diaz, A.; Jaimes, L.; Meza, C. Design of IoT Platform for Monitoring and Control of Variables of Industrial Processes.

In Computer Networks, Big Data and IoT; Pandian, A.P., Fernando, X., Haoxiang, W., Eds.; Springer Nature Singapore: Singapore,
2022; pp. 451–462. [CrossRef]

84. Ramalingam, S.; Baskaran, K.; Kalaiarasan, D. IoT Enabled Smart Industrial Pollution Monitoring and Control System Using
Raspberry Pi with BLYNK Server. In Proceedings of the 2019 International Conference on Communication and Electronics
Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 2030–2034. [CrossRef]

http://dx.doi.org/10.1002/ett.3736
http://dx.doi.org/10.3390/s19143239
http://dx.doi.org/10.1109/IDAACS-SWS.2014.6954616
http://dx.doi.org/10.1109/ICACA.2016.7887957
http://dx.doi.org/10.1109/ELECOM49001.2020.9297028
http://dx.doi.org/10.1109/MoWNet.2018.8428922
http://dx.doi.org/10.5120/ijca2018916438
http://dx.doi.org/10.1016/j.tcs.2022.06.032
http://dx.doi.org/10.1109/IEACon51066.2021.9654520
http://dx.doi.org/10.1145/3410992.3410998
http://dx.doi.org/10.3390/s18103450
https://www.renkeer.com/product/soil-npk-sensor/
https://www.renkeer.com/product/soil-npk-sensor/
http://dx.doi.org/10.1109/ACCESS.2022.3152544
http://dx.doi.org/10.1109/ACCESS.2019.2932609
http://dx.doi.org/10.3390/electronics9020319
http://dx.doi.org/10.1109/JIOT.2019.2946359
http://www.ncbi.nlm.nih.gov/pubmed/33748312
http://dx.doi.org/10.1109/ICCCI48352.2020.9104119
http://dx.doi.org/10.1109/ICED.2016.7804665
http://dx.doi.org/10.1109/WIRELESSVITAE.2011.5940920
http://dx.doi.org/10.1063/5.0109717
http://dx.doi.org/10.37391/ijeer.100448
http://dx.doi.org/10.1007/978-981-19-0898-9_35
http://dx.doi.org/10.1109/ICCES45898.2019.9002430

Sensors 2023, 23, 2714 32 of 32

85. Karthikeyan, D.; Singh, M.; Dewangan, G.; Veer, J. Industrial monitoring and control using raspberry PI with IoT. J. Adv. Res.
Dyn. Control Syst. 2018, 10, 1188–1196.

86. Zabasta, A.; Avotins, A.; Porins, R.; Apse-Apsitis, P.; Bicans, J.; Korabicka, D. Development of IoT based Monitoring and Control
System for Small Industrial Greenhouses. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing
(MECO), Budva, Montenegro, 7–10 June 2021; pp. 1–5. [CrossRef]

87. Salhaoui, M.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J.; El Oualkadi, A.; Torregrosa, C.L. Smart Industrial IoT Monitoring
and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant. Sensors 2019, 19, 3316. [CrossRef]

88. Sathish, R.; Kumar, D.V.; Senthilkumar, C. Design and implementation IOT based industrial sub station monitoring and control
system. J. Adv. Res. Dyn. Control Syst. 2020, 12, 1796–1801. [CrossRef]

89. Sukode, S.; Gite, S. Vehicle traffic congestion control & monitoring system in IoT. Int. J. Appl. Eng. Res. 2015, 10, 19513–19524.
90. Mohammadi, F.; Rashidzadeh, R. An Overview of IoT-Enabled Monitoring and Control Systems for Electric Vehicles. IEEE

Instrum. Meas. Mag. 2021, 24, 91–97. [CrossRef]
91. Godwin, J.J.; Krishna, B.V.S.; Rajeshwari, R.; Sushmitha, P.; Yamini, M. IoT Based Intelligent Ambulance Monitoring and Traffic

Control System. Intell. Syst. Ref. Libr. 2021, 193, 269–278. [CrossRef]
92. Afonso, J.A.; Sousa, R.A.; Ferreira, J.C.; Monteiro, V.; Pedrosa, D.; Afonso, J.L. IoT system for anytime/anywhere monitoring and

control of vehicles’ parameters. In Proceedings of the 2017 IEEE International Conference on Service Operations and Logistics,
and Informatics (SOLI), Bari, Italy, 18–20 September 2017; pp. 193–198. [CrossRef]

93. Maraveas, C.; Bartzanas, T. Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering
2021, 3, 954–970. [CrossRef]

94. Singh, D.K.; Sobti, R.; Jain, A.; Malik, P.K.; Le, D.N. LoRa based intelligent soil and weather condition monitoring with internet of
things for precision agriculture in smart cities. IET Commun. 2022, 16, 604–618. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MECO52532.2021.9460230
http://dx.doi.org/10.3390/s19153316
http://dx.doi.org/10.5373/JARDCS/V12SP7/20202291
http://dx.doi.org/10.1109/MIM.2021.9436092
http://dx.doi.org/10.1007/978-3-030-57835-0_20
http://dx.doi.org/10.1109/SOLI.2017.8120993
http://dx.doi.org/10.3390/agriengineering3040060
http://dx.doi.org/10.1049/cmu2.12352

	Introduction
	Background
	Related Work
	Motivation
	Objective and Scope

	MCF Conceptualization
	Perception/Sensing Layer (PSL)
	Error Detection and Correction
	Data Smoothing
	Data Transformation
	Energy Consumption
	Actuators

	Transportation/Network Layer (TNL)
	Communication
	Data Packaging

	Middleware/Processing Layer (MPL)
	Application Layer (APL)
	Business Layer (BSL)

	Monitoring and Control Framework Implementation
	The Monitoring Subsystem
	Monitoring Subsystem Concerns
	MCF Approach of the Monitoring Subsystem

	The Control Subsystem
	Control Subsystem Concerns
	MCF Approach to the Control Subsystem

	Edge Computing Subsystem
	Edge Computing Subsystem Concerns
	MCF Approach to the Edge Computing Subsystem

	Assembling MCF Subsystems

	Case Study of the Framework in Smart Agriculture
	Evaluation Parameters
	Power System Evaluation
	Data Reliability Evaluation
	Communication Robustness Evaluation

	Discussion
	Domain Restriction
	Scalability
	Interoperability
	Security
	Cost Analysis for the Monitoring System

	Conclusions and Future Work
	References

