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Abstract: This paper proposes a deep learning-based mmWave radar and RGB camera sensor early
fusion method for object detection and tracking and its embedded system realization for ADAS
applications. The proposed system can be used not only in ADAS systems but also to be applied to
smart Road Side Units (RSU) in transportation systems to monitor real-time traffic flow and warn
road users of probable dangerous situations. As the signals of mmWave radar are less affected by bad
weather and lighting such as cloudy, sunny, snowy, night-light, and rainy days, it can work efficiently
in both normal and adverse conditions. Compared to using an RGB camera alone for object detection
and tracking, the early fusion of the mmWave radar and RGB camera technology can make up for the
poor performance of the RGB camera when it fails due to bad weather and/or lighting conditions.
The proposed method combines the features of radar and RGB cameras and directly outputs the
results from an end-to-end trained deep neural network. Additionally, the complexity of the overall
system is also reduced such that the proposed method can be implemented on PCs as well as on
embedded systems like NVIDIA Jetson Xavier at 17.39 fps.

Keywords: millimeter-wave radar; depth sensor; sensor fusion; object detection and tracking; early
fusion; deep learning

1. Introduction

In recent years, the Advanced Driving Assistance System (ADAS) greatly promotes
safe driving and might avoid dangerous driving events saving lives and damages to the
infrastructure. Considering safety in autonomous system applications, it is crucial to accu-
rately understand the surrounding environment under all circumstances and conditions. In
general, autonomous systems need to estimate the positions and the velocities of probable
obstacles and make decisions ensuring safety. The input data of the ADAS system is com-
posed of various sensors, such as millimeter-wave (mmWave) radars, cameras, controller
area networks (CAN) bus, light detection and ranging (LiDAR) and so on are utilized to
help the road users perceive the surrounding environment and make correct decisions for
safe driving. Figure 1 shows various equipment essential in an ADAS system.

Vision sensors are the most common sensors around us and their applications are
everywhere. They have many advantages, such as high resolution, high frame rate, and low
hardware cost. As deep learning (DL) has become extremely popular [1,2], the importance
of vision sensors has gradually peaked. Since the visual sensors can preserve the appearance
information of the targets, they are best suited for DL technology. As aforementioned, it can
be noted that camera-only object detection is widely utilized in a lot of fields for numerous
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applications, such as smart roadside units (RSU), self-driving vehicles, smart surveillance,
etc. However, the results of object detection by the camera are severely affected by the
ambient light and adverse weather conditions. Although the camera can distinguish the
type of objects well, it cannot accurately obtain the physical characteristics such as the
actual distance and velocity of the detected objects. In the ADAS industry, many companies
with relevant research such as Tesla, Google, and Mobileye, use other sensors to design
their self-driving cars to make up for the lack of camera failures in bad weather and lighting
conditions such as nightlight, foggy, dusky, and rainy conditions as shown in Figure 2.
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In contrast to the camera, the mmWave radars provide the actual distance and velocity
of the detected object relative to the radar, and they can also provide the intensity of the
object as a reference for identification, such that it convinces that the mmWave radar is a
good choice to be employed together with camera for sensor fusion applications to yield
better detection and tracking efficiency in all weather and lighting conditions. Compared
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to LiDAR, the mmWave radar has better penetration and is cheaper. Although mmWave
radar has fewer point clouds than LiDAR, it is easy to use in the clustering algorithm to
find the objects. When we can put the advantages of mmWave radar and camera to good
use, these two sensors complement each other and provide a better perception capability
compared to expensive 3-D LiDARs.

Basically, the three main fusion schemes have been proposed to use mmWave radar
and camera together namely, (i) decision-level fusion, (ii) data-level fusion, and (iii) feature-
level fusion, respectively [3]. For autonomous systems, different sensors can make up for
the shortcomings of the others and overcome the worse situation through sensor fusion
methods. Hence, we think that the radar and camera sensor fusion is better and more
reliable for drivers than utilizing a single sensor like the radar-only sensor, or the camera-
only sensor.

The following sections of the paper discuss the related works comprising of three
existing mmWave radar and camera sensors fusion methods followed by the steps involved
in the proposed early fusion technology of mmWave radar and camera sensors fusion,
experimental results, and the conclusion.

Motivation

This paper focuses on the early fusion of the mmWave radar and camera sensors for
object detection and tracking as the late fusion of the mmWave radar and camera sensors
belongs to decision-level fusion [4–6]. First, the mmWave radar sensor and camera sensor
detect obstacles individually. Then, the prediction results from them are fused together to
obtain the final output results. However, different kinds of detection noises are involved in
the predictions of these two heterogeneous sensors. Therefore, how to fuse the prediction
results of these two kinds of sensors is a great challenge encountered in the late fusion of
the mmWave radar and camera sensors.

To solve the above problem, this paper proposes the early fusion of the mmWave radar
and camera sensors which is also known as feature-level fusion. To begin with, we need
to transform the radar point cloud from the radar coordinates to that of an image. In the
process, we add information like the distance, velocity, and intensity of the detected objects
from the radar points cloud to the radar image channels corresponding to different physical
characteristics of the detected objects. Finally, we fuse the visual image and the radar image
to a multi-channel array and utilize a DL object detection model to extract the information
from both sensors. Through the object detection model, the early fusion on the mmWave
radar and camera sensors learns the relationship between the data from the mmWave radar
and camera sensors, which can not only solve the problem of decision-level fusion but also
solve the problem of detection in harsh environments when using the camera only.

This paper is organized as follows. Section 2 reviews the related works, which include
the three existing mmWave radar and camera sensor fusion methods, related deep learning
object detection models, some radar signal processing algorithms, and adopted image
processing methods followed by the introduction of the proposed early fusion technology
on the mmWave radar and camera sensors in detail in Section 3. Section 4 depicts our
experiments and results along with the conclusion and future works in Section 5.

2. Related Work
2.1. Types of Sensor Fusion

As discussed in the previous section, the methods of sensor fusion [7,8] are broadly cat-
egorized into three types viz, (a) decision-level fusion, (b) data-level fusion, and (c) feature-
level fusion as shown in the respective flowcharts in Figure 3.

For the decision-level fusion [9], there are two heterogeneous types of prediction results
from mmWave radar and camera that are fused to obtain the final results. Considering
that the data types from the mmWave and camera sensors are heterogeneous, there are
no good methods to fuse their respective prediction results, which are involved in their
detection noises.
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The second sensor fusion method is a data-level fusion [10–12], in which we first need
to cluster the radar point cloud. Then, find the positions of the clustering points to generate
the regions of interest (ROIs) where there may be objects to be detected. Finally, through
the ROIs, we need to extract the corresponding image patches from the input image and
utilize objection detection models to obtain the final predicted results. This fusion method
requires a lot of valid radar points, so some objects cannot be detected if there are no valid
radar points on them. Although the data-level fusion method can reduce the operational
complexity and solve the decision problem in decision-level fusion, it is not suitable for the
autonomous system from safety considerations.

The final sensor fusion method is a feature-level fusion [13–15]. Usually, in the feature-
level fusion method, the radar point cloud is transformed from the radar coordinates to the
image coordinates, namely the radar image, as shown in Figure 3. Then, the radar image
and the corresponding vision image are fused and extracted based on the features of the
DL models. The feature-level fusion can not only solve the decision-making problem in
the decision-level fusion but also learns the relationship between the mmWave radar and
vision image using the DL models.

The contributions of the early sensor fusion method proposed in this paper are: (i) It
employs the fusion of the mmWave radar and the RGB camera sensor for more precise
object detection and tracking compared to either camera-only or sensor-only methods. (ii) It
can be used in an ADAS system for object detection and tracking as well as be applied to a
smart Road Side Unit (RSU) in smart transportation to monitor real-time traffic flow for
warning dangerous situations for all road users.

2.2. YOLO v3 Model

For YOLO v3 [1], it has some good characteristics like bounding box prediction, no
softmax, feature pyramid networks (FPN), etc. The authors have used logistic regression
to predict the confidence score of each object in the bounding box. The purpose is to
distinguish the targets and the background. The IOU value of the bounding boxes and the
ground truth are used as the criterion to evaluate the detection efficiency. One of the impor-
tant features of YOLO v3 is that it does not use the softmax to classify each box, because
the softmax imposes an assumption that each box contains only one category whereas,
in practice, different objects possess overlapping labels. For example, it is predicted that
boys belong to the category of people. For the autonomous system field, there are many
multi-label scenarios, so the softmax is not suitable for multi-label classification. In addition,
YOLO v3 makes predictions on three different scales, namely 13 × 13, 26 × 26, and 52 × 52,
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in which there are three bounding boxes predicted on each scale. This approach helps
YOLO v3 to better detect small objects, and the up-sampling technology helps the network
learn subtle features for detecting small objects. As autonomous systems require real-time
and accurate judgment, the YOLO v3 model becomes an ideal choice.

2.3. YOLO v4 Model

YOLO v4 [2] is an improvement of YOLO v3, which improves the input terminal
during the training phase so that training can yield good results on a single GPU. For
instance, the mosaic used in YOLO v4 refers to the CutMix data augmentation method [16]
proposed in 2019, but CutMix only uses two images for stitching. While mosaic data
augmentation [17] uses four images to achieve random scaling, random cropping, and
random arrangement for stitching. In the normal training processes, the average precision
of small targets is generally much lower than that of medium and large targets. The COCO
dataset [18] also contains a large number of small targets, but the crucial challenge is that
the distribution of small targets is not uniform. Therefore, mosaic data augmentation can
balance the proportion of small, medium, and large targets. Thus, the backbone of YOLO v4
uses Cross Stage Partial Network (CSPNet) [19] reduces repetitive gradient learning greatly
enhancing the learning ability of the network. Although the model architecture of YOLO
v4 is more complicated than that of YOLO v3, YOLO v4 uses a lot of 1 × 1 convolutions to
reduce the number of calculations and increase the processing speed. Therefore, the YOLO
v4 model is also suitable for the autonomous field.

2.4. Clustering

Based on our proposed system, the radar that we use is the Frequency Modulated
Continuous Wave (FMCW) radar [20]. The FMCW radar emits continuous waves with
varying frequencies during the frequency sweep period. The echo reflected by the object
has a certain frequency difference from the transmitted signal. The distance information be-
tween the target and the radar can be obtained by measuring the frequency difference. The
frequency of the difference frequency signal is relatively low, so the hardware processing is
relatively simple. Therefore, the FMCW radar is suitable for data acquisition and digital
signal processing.

K-means clustering [21] is the most common and well-known clustering method.
K-means clustering is similar to the concept of finding the center of gravity. First, it divides
the radar point cloud into k groups, and randomly selects k points to be the center of the
cluster. Second, it classifies each point to its nearest cluster center. Third, it recalculates
the cluster centers of each group. Finally, steps two and three are repeated until a stable k
cluster is found. However, the problem of K-means clustering is that we cannot know the
number of clusters and the number of repetitions prior. The data distribution and the initial
location of the cluster centers affect the number of repetitions. Therefore, for autonomous
applications, we think that K-means clustering is not the most suitable clustering algorithm.

Density-based spatial clustering of applications with noise (DBSCAN) [22] clustering
algorithm is one of the most commonly used clustering analysis algorithms. In DBSCAN,
there are two main parameters, distance (ε) and the minimum number of points (minPts),
as shown in Figure 4. In step 1, it first decides the parameters and determines the ε and
minPts. In step 2, it selects a random sample as the center point and draws a circle with the
ε set from step 1. If the number of samples in the circle is greater than minPts, this sample
is the core point and the marker can reach any point in the circle. If the number of samples
in the circle is less than minPts, then this sample is a non-core point and cannot reach any
point. In step 3, we repeat step 2 for each sample until all samples are over the center point.
In step 4, we divide the connected sample points into a group, and other outlier points can
be divided into different groups by examining whether they can be reached individually.
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Compared to K-means clustering, DBSCAN does not require a pre-declared number
of clusters. It is possible to find clusters of any shape and even find a cluster that encloses
but does not connect to another cluster. DBSCAN can also distinguish noise with only two
parameters and is almost insensitive to the order of the points in the database. Therefore,
for applications in the autonomous domain, we believe that DBSCAN is more suitable than
the K-means for clustering in the proposed method.

3. The Proposed Method
3.1. Overview

Figure 5 depicts the overall architecture of the proposed early sensor fusion method.
The x and y positions and velocity indicate the relative 2-D distance (x, y) and velocity
between the proposed system and the detected object. First, we will get the mmWave radar
point cloud and the corresponding image. Then, the radar point cloud will be clustered
and the radar and camera calibration is performed. The purpose of clustering is to find the
areas where objects are really present and to filter out the noise of radar. The RGB image
is represented as three channels, R, G, and B, while the radar image is represented as D,
V, and I. All six channels are concatenated into a multi-channel array in the early fusion
process. In Section 3.2, the clustering process and the related parameter adjustment are
described in detail. The obtained clustering points are then clustered again to find out
where most of the objects are present so that we can determine the ROIs of our multi-scale
object detection. In Section 3.3, the radar and camera calibration is implemented to get the
radar image that corresponds to the input image. In Sections 3.4–3.6, a detailed description
of how to perform early fusion on the radar and camera sensors and how to determine our
ROIs for multi-scale object detection are given, respectively. Then, in Section 3.7, we will
explain how the Kalman filter is used for object tracking.
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3.2. Radar Clustering

We have to set two parameters first before using DBSCAN. One is the minimum point
that forms the range of each clustering point. The other one is the minimum distance to
form each cluster point range. We have experimentally set 4 as the minimum point and
40 cm as the minimum distance. Figure 6 shows the effect after using DBSCAN. In Figure 6,
the green dot is the mmWave radar point cloud and the yellow dot is the clustering point
after DBSCAN. The red rectangular box is the ROI of multi-scale object detection, which
will be introduced in detail in the later section.

Furthermore, we need to find out the area where most of the objects appear in each
frame. Therefore, DBSCAN is performed again after radar and camera calibration for
the above clustering points. Since the number of points in the cluster is fewer, we have
experimentally set 1 as the minimum point and 400 pixels as the minimum distance.

3.3. Radar and Camera Calibration

To make the proposed system easier to set up and calculate the angle faster, we have
derived the camera/radar calibration formula based on [23]. Figure 7 shows the early
fusion device of mmWave and camera sensors. The following is a detailed description of
the entire radar and camera calibration process.

For the calibration, we have three angles to be calculated, namely yaw angle, hor-
izontal angle, and pitch angle as shown in the schematics of Figure 8. For the conve-
nience of installation and more convenient to calculate the other angles, we have set the
horizontal angle to zero. Figure 9 shows the relationship between mmWave radar, cam-
era, and image coordinates. First, we need to transform the radar world (r coordinate
Orw-xrwyrwzrw to the camera world coordinate Ocw-xcwycwzcw. Then, the camera world
coordinate Ocw-xcwycwzcw is transformed into the camera coordinate Oc-xcyczc. Finally,
we transform the camera coordinate Oc-xcyczc to the image coordinate Op-xpyp.
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First, we must transform the radar coordinate Or-xryr to radar world coordinate
Orw-xrwyrwzrw. Since the radar only has 2-D coordinates and no z-axis information, we
can only get the relevant 2-D distance (x, y) between the radar and the object. Therefore, to
get the radar world coordinates, we need to calculate the radar yaw angle and the height
difference between the radar and the object. In the case of the height difference, since the
radar does not have z-axis information, we need to consider the height difference between
the radar and the object to calculate the projected depth distance “yr_new” correctly. In
Figure 10, we show the height relationship of mmWave radar and the object. The parameter
“yr” is the depth distance from mmWave radar and the “Heightradar_object” is the height
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difference between the mmWave radar and the object. The function shows how we obtain
the projected depth distance “yr_new” using Equation (1).

yr_new =
√

y2
r −Height2

radar_object (1)
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When we get the projected depth distance “yr_new”, we also need to go through the
yaw angle “β” to transform from the radar coordinate Or-xryr to the radar world coordinate
Orw-xrwyrwzrw. Figure 11 and Equation (2) show the relationship between radar coordinate,
radar world coordinate, and yaw angle.

xrw = xr × cosβ+ yr_new × sinβ
yrw = (−xr × sinβ) + yr_new × cosβ

(2)
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The above steps help us to convert from the radar coordinate system to the radar world
coordinate system. Then we need to transform from the radar world coordinate system to
the camera coordinate system Ocw-xcwycwzcw, as shown in Equation (3). In Equation (3),
“Lx” and “Ly” are the horizontal and vertical distances between the mmWave radar sensor
and camera sensor, respectively. Thus, “Lx” and “Ly” are preset to zero.

xcw = xrw − Lx
ycw = yrw + Ly

(3)

After transferring to the camera world coordinate Ocw-xcwycwzcw, we need to trans-
form the camera world coordinate to the camera coordinate Oc-xcyczc. The function
shown in Equation (4) is used for transferring the camera world coordinate to the camera
coordinate. The parameters “H” and “θ” are the height and pitch angle of the camera
sensor, respectively.xc

yc
zc

 =

1 0 0
0 −sin θ − cos θ
0 cos θ sin θ

xcw
ycw
zcw

+

 0
H cosθ
H sin θ

 (4)

Then, similar to the above conversion of radar coordinate to radar world coordinate,
we also regard the yaw angle “β” effect of the camera coordinate. Figure 12 shows the
relationship between the camera coordinate, the new camera coordinate, and the yaw angle.
Thus, the function shows the equation to transfer the original camera coordinate to the new
camera coordinate influenced by “β” as in Equation (5).

xc_new = xc × cos β + zc × sinβ
yc_new = yc

zc_new = (−xc × sin β) + zc × cosβ
(5)
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Finally, we can get Equation (6) by the new camera coordinate. The function helps
us to transfer the new camera coordinate to the image coordinate as in Equation (6). The
parameters “fx” and “fy” are the focal length, and the “cx” and “cy” are the principal points
of the camera sensor. We can then calculate the four parameters using the MATLAB camera
calibration toolbox. {

xp = xc_new
zc_new

× fx + cx

yp =
yc_new
zc_new

× fy + cy
(6)

Figure 13 shows the experiments conducted to measure the accuracy of the radar
and camera calibration. First, we measure the latitude and longitude of the system with a
GPS meter and then use the center point position behind the vehicle as the ground truth
measurement point. These two points are used to obtain the ground truth distance by
using the haversine formula [24]. To estimate the radar distance, we take the radar point
cloud information and calibrate it with the camera, and then use the clustering and data
association algorithm [25] to find out which radar points belong to the vehicle. Finally, the
radar points belonging to the vehicle are averaged to obtain the radar estimated distance.
Table 1 shows the results of the radar and camera calibration, which indicates that the
distance error of the calibration is at most 2% ranging from 5 m to 45 m.

Table 1. The distance error of radar and camera calibration from 5 m to 45 m.

Angle
(Deg)

Ground Truth
(m)

Radar Estimation
(m)

Radar
(Error)

Point 1
0

5.10 5.20 1.96%
Point 2 9.58 9.5 −0.84%
Point 3 13.92 13.90 −0.14%

Point 4

25

5.00 4.90 −2.00%
Point 5 19.26 18.90 −1.87%
Point 6 34.04 33.90 −0.41%
Point 7 45.42 46.00 1.28%
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our system.

3.4. Radar and Camera Data Fusion

As mmWave radar and camera sensors are heterogeneous and are used by the deep
learning models for object detection, it is essential to transform the radar point cloud
information to the image coordinate system for the early fusion of the radar and camera
sensors using the radar and camera calibration method discussed in Section 3.3. In this
way, we can not only make the models learn the sizes and shapes of the objects but also let
them learn the physical characteristics of the objects resulting in better detection results.

In our experiments, we use the distance “D”, velocity “V” and intensity “I” of the
mmWave radar as individual channels, and the DVI pairs are arranged and combined
with the camera images. Since the pixel values of the image range from 0 to 255, we
need to experimentally set the maximum value of DVI. We want to make the difference in
physical characteristics bigger, so we have a conversion equation for DVI design as shown
in Equation (7) where the parameter “d” means the distance of mmWave radar, and the
maximum value is set to 90 m. The parameter “v” is the velocity of mmWave radar and the
maximum value is set to 33.3 m/s. As there is no negative pixel value, we use the absolute
value of the velocity in Equation (7). As for the parameter “I” is considered, TI IWR6843
mmWave radar only provides the signal-to-noise ratio (SNR) and noise, hence we need
to convert them into the intensity “I” whose maximum value is set to 100 dBw. Figure 14
shows the RGB image from the vision sensor and the radar image from the mmWave radar
sensor. For the radar image, if the pixel values exceed the value 255, we consider them to
be equal to 255. In addition, we set all pixels where there are no radar points equal to zero.
When we have the camera image and the radar image, we combine the two images to get
multi-channel arrays.

D = d ∗ 2.83

V = |v| ∗ 7.65

I = (10 log10(10SNR∗0.01 ∗ (PNoise ∗ 0.1))) ∗ 2.55

(7)
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explicitly in advance. Therefore, we propose to use the mmWave radar sensor to find the 
area with the most objects and set it as the new ROI. As discussed in Section 3.2, we use 
the clustering algorithm to cluster the radar point cloud and find the presence of objects. 
Then, we cluster the clustering points again to find out which area has the most objects. 
This region is set as the new ROI that we have to find using the mmWave radar point 
cloud. Figure 15 shows the advantages of dynamic ROI. When there is no object in the 
default ROI, the dynamic ROI we proposed can find the area where objects may appear 
followed by the successful detection of objects. 

Figure 14. (a) Camera image; (b) radar image.

3.5. Dynamic ROI for Multi-Scale Object Detection

This section proposes the method of employing mmWave radar to dynamically find
ROI and apply it to multi-scale object detection. Thus, we also compare the difference
between fixed ROI and dynamic ROI as shown in Figure 15.
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We found that in the original multi-scale object detection method, we could only set
the default ROI at the beginning because we could not know the position of the objects
explicitly in advance. Therefore, we propose to use the mmWave radar sensor to find the
area with the most objects and set it as the new ROI. As discussed in Section 3.2, we use
the clustering algorithm to cluster the radar point cloud and find the presence of objects.
Then, we cluster the clustering points again to find out which area has the most objects.
This region is set as the new ROI that we have to find using the mmWave radar point cloud.
Figure 15 shows the advantages of dynamic ROI. When there is no object in the default
ROI, the dynamic ROI we proposed can find the area where objects may appear followed
by the successful detection of objects.
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3.6. Object Detection Model

For the ADAS applications, the object detection models must be capable of operating
in real-time and detect various objects ranging from small objects at a distance to near,
bigger objects. Therefore, we selected the YOLOv3 and YOLOv4 as our desired object
detection convolutional neural network (CNN) models. As the inputs must be the fusion of
mmWave radar sensors and camera sensors and the available open datasets are comprised
of only image data, we recorded our own dataset including both radar data and image data.
Additionally, we need to label the dataset thus collected by ourselves, the available open
datasets are unsuitable for training the proposed model.

To solve this problem, we used camera-only datasets, such as the COCO dataset [16]
and the VisDrone dataset [26] to increase the amount of training data. The Chinese charac-
ters in Figure 16a is the traffic rule craved on the road and in Figure 16b is the name of a
business unit. Since these open datasets are only camera data, we set all pixel values in
the radar channels to zero. Figure 16 shows examples of the datasets. Considering our
applications also require RSU perspectives, we used VisDrone and the blind-spot datasets
to fit our real-life traffic scenario requirements.
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3.7. Tracking

Using the object detection model, we obtain the bounding box and detect the type
of object, such as a person, car, motorcycle, or truck. We select the bounding boxes as the
input of the trackers. Unlike the late fusion on the radar and camera sensors, we do not do
tracking of radar data and the bounding boxes of the camera individually. We only need to
track the bounding boxes generated by the object detection model [27,28].

However, we still need to carry out certain pre-processing steps before feeding the
bounding boxes to the trackers. The function given in Equation (8) shows the definition
of the intersection of union (IoU) which is the overlapped area divided by the total area.
Figure 17 shows the schematic diagram of IoU. The IoU input includes the bounding
boxes of the tracker and object detection model. When the IoU value is higher than the
set threshold, we can treat both as the same object. Based on the RSU application field
characteristics, we adopt the Kalman filter to implement the tracking ensuring the trackers
keep their motion information to solve the ID switch issue.{

IoU =
overlap area

total area
(8)
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4. Experimental Evaluation
4.1. Sensor Fusion Equipment

In the proposed work, the TI IWR6843 is chosen as the mmWave radar. The IWR6843
mmWave radar has four receive antennas (RX) and three transmit antennas (TX). As this
radar sensor has its own DSP core to process the radar signal, we can directly obtain the
radar point cloud for experiments. Figure 18a shows the TI IWR6843 mmWave radar sensor
employed in this paper. Since our application is set up at a certain height above the vehicle
overlooking the ground, we choose this radar sensor with a large vertical field of view of
44◦ that facilitates this application.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 18. (a)TI IWR6843 mmWave radar [29]; (b) IP-2CD2625F-1ZS IP camera. 

We choose NVIDIA Jetson AGX Xavier [30] as the embedded platform to demon-
strate the portability of the proposed early fusion system on the radar and camera sensors. 
NVIDIA Jetson AGX Xavier comes with a pre-installed Linux environment. With the 
NVIDIA Jetson AGX Xavier, as shown in Figure 19, we can easily create and deploy end-
to-end deep learning applications. We can think of it as an AI computer for autonomous 
machines, offering the GPU workstation in an embedded module under 30 W. Therefore, 
NVIDIA Jetson AGX Xavier enables our proposed algorithm to be conveniently imple-
mented for low-power applications. 

 
Figure 19. NVIDIA Jetson AGX Xavier [30]. 

4.2. Implementation Details 
We have collected 8285 frames of training data as radar/camera datasets by using a 

multi-threading approach to capture the latest radar and camera data in each loop and 
used 78,720 frames of camera-only datasets to make up for the lack of data. For testing 
purposes, we have collected 896 images for each of the four conditions namely, morning, 
noon, evening, and night. Figure 20 shows the ROI for the multi-scale object detection 
which has a big ROI covering the entire image, and the small ROI is used for the distant 
region. As the mmWave radar used in this work only detects around 50 m in a given field, 
we set the accuracy measurement in the 50-m range, as shown in Figure 21. 

The accuracies of YOLOv3 and YOLOv4 models with and without the camera-only 
datasets and the comparison of the effects with and without multi-scale object detection 

Figure 18. (a) TI IWR6843 mmWave radar [29]; (b) IP-2CD2625F-1ZS IP camera.

The IP-2CD2625F-1ZS IP camera shown in Figure 18b is employed in the proposed
work. It offers 30 fps with a high image resolution of 1920 × 1080. The waterproof,
dustproof, and clear imaging against strong backlight characteristics of the camera aids to
overcome the impact of the harsh environment in the ADAS scenarios.

We choose NVIDIA Jetson AGX Xavier [30] as the embedded platform to demon-
strate the portability of the proposed early fusion system on the radar and camera sensors.



Sensors 2023, 23, 2746 16 of 22

NVIDIA Jetson AGX Xavier comes with a pre-installed Linux environment. With the
NVIDIA Jetson AGX Xavier, as shown in Figure 19, we can easily create and deploy end-
to-end deep learning applications. We can think of it as an AI computer for autonomous
machines, offering the GPU workstation in an embedded module under 30 W. Therefore,
NVIDIA Jetson AGX Xavier enables our proposed algorithm to be conveniently imple-
mented for low-power applications.
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4.2. Implementation Details

We have collected 8285 frames of training data as radar/camera datasets by using a
multi-threading approach to capture the latest radar and camera data in each loop and
used 78,720 frames of camera-only datasets to make up for the lack of data. For testing
purposes, we have collected 896 images for each of the four conditions namely, morning,
noon, evening, and night. Figure 20 shows the ROI for the multi-scale object detection
which has a big ROI covering the entire image, and the small ROI is used for the distant
region. As the mmWave radar used in this work only detects around 50 m in a given field,
we set the accuracy measurement in the 50-m range, as shown in Figure 21.
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The accuracies of YOLOv3 and YOLOv4 models with and without the camera-only
datasets and the comparison of the effects with and without multi-scale object detection
are tabulated in Section 4.3. The input sizes are set to be 416 × 416 × N, where “N” is the
channels of input arrays. The confidence thresholds are set at 0.2 for pedestrians, 0.2 for
bicycles, 0.2 for motorcycles, 0.4 for cars, and 0.4 for full-size vehicles. The IoU threshold is
set to 0.5.
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4.3. Evaluation on YOLOv3

Table 2 shows the accuracy of the YOLOv3 model with camera-only datasets and
multi-scale object detection.

Table 2. Evaluation on YOLOv3 with camera-only datasets and multi-scale object detection where
the readings in red highlight the highest value in each row.

Class RGB RGB + D RGB + V RGB + I RGB + DV RGB + DI RGB + VI RGB + DVI

Precision
(%)

All 68.7 71.2 69.4 67.4 77.5 71.1 65.7 74.4
Person 42.0 44.0 35.1 39.6 50.6 39.5 46.3 44.7
Bicycle 56.3 65.2 62.5 62.0 76.7 65.0 62.9 64.7

Car 95.0 95.2 95.0 94.7 96.2 95.2 94.8 95.2
Motorcycle 74.5 78.5 76.3 78.6 78.6 72.3 74.0 79.0
F-S vehicle 75.6 73.0 78.1 62.0 86.5 83.6 50.7 88.4

Recall
(%)

All 59.4 59.4 57.5 60.7 61.5 59.3 60.1 61.1
Person 52.0 50.0 40.0 50.4 51.0 49.6 53.9 47.9
Bicycle 9.0 11.8 7.5 12.0 12.1 10.9 10.4 8.0

Car 93.4 93.7 93.1 91.9 94.9 94.1 89.8 94.6
Motorcycle 66.2 69.8 69.2 69.9 68.6 65.9 66.7 75.3
F-S vehicle 76.5 71.8 77.7 79.5 81.2 75.7 79.5 79.5

mAP
(%)

All 49.8 51.5 50.2 51.3 54.3 50.3 50.4 52.6
Person 26.5 31.0 20.8 50.2 51.3 54.3 50.3 52.6
Bicycle 7.7 10.0 6.7 10.6 11.4 8.9 8.7 7.3

Car 91.4 91.0 91.7 89.3 92.8 92.9 87.3 92.9
Motorcycle 51.4 57.3 59.0 57.7 56.8 50.8 51.7 61.9
F-S vehicle 72.0 68.2 72.7 72.0 78.1 70.6 72.5 73.8

4.4. Evaluation on YOLOv4

Table 3 shows the accuracies of the proposed method on the YOLOv4 model with
camera-only datasets and multi-scale object detection.

4.5. Comparison between YOLOv3 and YOLOv4

Table 4 shows a comparison of the best fusion of radar and camera between the
YOLOv3 and YOLOv4 models. The left-hand side represents the training data of the
models without the camera-only data, and the right-hand side represents the training data
of the models with the camera-only data. From Table 4, we can know that the YOLOv3
model yields the best results when the input type is RGB + DV and multi-scale object
detection is used.
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Table 3. Evaluation on YOLOv4 with camera-only datasets and multi-scale object detection where
the values in red are the highest value in each row.

Class RGB RGB + D RGB + V RGB + I RGB + DV RGB + DI RGB + VI RGB + DVI

Precision
(%)

All 72.0 73.8 68.6 69.2 68.6 65.3 63.8 64.0
Person 44.3 37.3 39.6 36.9 37.1 41.7 44.1 36.3
Bicycle 76.9 78.3 67.5 73.4 68.5 72.3 64.2 64.4

Car 95.8 95.0 95.7 95.9 96.0 96.0 95.0 95.5
Motorcycle 78.9 72.4 75.2 73.8 70.3 74.0 76.7 76.1
F-S vehicle 64.1 86.1 65.0 66.0 71.3 42.8 38.8 47.4

Recall
(%)

All 57.4 56.0 58.8 57.7 57.2 58.8 57.3 56.9
Person 42.2 43.9 50.5 46.0 47.2 49.9 45.2 41.2
Bicycle 8.4 10.3 8.1 9.1 8.8 7.5 8.2 6.8

Car 91.0 94.3 91.9 91.9 92.2 85.8 85.2 87.5
Motorcycle 63.9 54.7 60.9 58.6 54.6 66.4 65.8 64.2
F-S vehicle 81.4 77.0 82.7 83.2 83.2 84.2 82.7 84.7

mAP
(%)

All 48.9 47.5 48.8 50.2 47.9 46.6 44.9 45.0
Person 24.9 20.8 25.7 23.6 22.9 25.1 24.7 21.3
Bicycle 7.8 9.9 7.2 8.5 7.5 6.7 7.2 5.0

Car 90.2 92.7 90.0 89.8 90.8 84.3 83.8 86.2
Motorcycle 52.8 42.1 49.4 50.4 44.0 53.3 55.2 53.4
F-S vehicle 69.0 71.9 71.6 78.5 74.1 63.8 53.6 59.4

Table 4. Evaluation between YOLOv3 and YOLOv4 with highest values highlighted in red.

Class
RGB + VI
(YOLOv3,

1ROI)

RGB +
DVI

(YOLOv3,
2ROI)

RGB + V
(YOLOv4,

1ROI)

RGB VI
(YOLOv4,

2ROI)

RGB +
DVI

(YOLOv3,
1ROI)

RGB + DV
(YOLOv3,

2ROI)

RGB + I
(YOLOv4,

1ROI)

RGB + I
(YOLOv4,

2ROI)

Precision
(%)

All 79.5 61.7 82.9 62.1 77.2 77.5 81.1 69.2
Person 56.2 36.8 59.8 36.7 56.5 50.6 55.0 36.9
Bicycle 72.0 73.5 93.8 55.0 81.1 75.7 73.4 73.4

Car 94.5 81.9 94.2 86.3 92.8 96.2 95.7 95.9
Motorcycle 85.6 68.7 81.6 74.5 84.0 78.6 84.1 73.8
F-S vehicle 88.9 47.3 85.1 57.8 71.6 86.5 97.1 66.0

Recall
(%)

All 54.4 57.9 47.8 53.5 49.8 61.5 46.6 57.7
Person 40.0 40.2 33.5 36.2 37.6 51.0 32.5 46.0
Bicycle 4.0 6.6 2.7 1.3 4.4 12.1 5.4 9.1

Car 92.9 90.0 89.8 87.9 93.0 94.9 93.4 91.9
Motorcycle 63.7 75.1 49.4 65.2 67.7 68.6 51.4 58.6
F-S vehicle 71.3 77.2 63.6 77.0 46.3 81.2 50.5 83.2

mAP
(%)

All 49.2 44.4 42.7 44.5 43.6 54.3 42.8 50.2
Person 26.5 20.4 21.0 19.2 22.9 32.4 20.3 23.6
Bicycle 3.9 5.9 2.5 1.1 4.4 11.4 5.4 8.5

Car 89.7 86.1 86.0 83.4 90.5 92.8 91.0 89.8
Motorcycle 56.2 61.2 43.4 55.8 57.2 56.8 46.9 50.4
F-S vehicle 70.0 48.4 60.8 63.2 43.0 78.1 50.2 78.5

4.6. Proposed System Performance

Table 5 shows the accuracy comparison of the FP32, the FP16 RGB + DV models, the
proposed system in INT8, and the late fusion method [4]. We can see that the proposed
system has the best recall because of the addition of the Kalman filter. But the precision is
reduced because of the ghost frame.

Compared to the late fusion method, the proposed system is better in the aspects
of precision, recall, and mAP. In addition, the average operational performance of the
proposed system is 17.39 fps which is better than the average operational performance of
the late fusion method which has 12.45 fps when implemented on the NVIDIA Jetson AGX
Xavier. Table 6 shows the comparison of the proposed system and the late fusion method
in rainy conditions. With the early fusion of DV and RGB data from the mmWave sensor
and RGB sensor. It shows that the proposed system is significantly improved in overall
mAP by 10.4% relative to the late fusion method. Figure 22 shows the demonstration of the
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result images for various scenarios that the proposed system can offer in terms of id, type,
x-y coordinate, and velocity of the detected objects.

Table 5. The comparison of the FP32, FP16, the proposed system, and the late fusion method where
the highest values in each row is highlighted in red.

Class RGB + DV (FP32)
(YOLOv3, 2ROI)

RGB + DV (FP16)
(YOLOv3, 2ROI)

RGB + DV (INT8)
(YOLOv3, 2ROI)

RGB + Radar
(Late Fusion)

(YOLOv3, 2ROI)

Precision
(%)

All 77.5 77.5 73.1 48.2
Person 50.6 50.7 44.8 37.5
Bicycle 75.7 74.3 66.4 15.1

Car 96.2 96.3 95.5 94.2
Motorcycle 78.6 78.7 75.7 65.6
F-S vehicle 86.5 87.2 83.3 28.5

Recall
(%)

All 61.5 61.5 62.2 61.8
Person 51.0 50.6 50.6 52.7
Bicycle 12.1 11.9 12.7 6.5

Car 94.9 94.8 95.5 92.9
Motorcycle 68.6 68.8 68.7 71.3
F-S vehicle 81.2 81.2 83.7 85.6

mAP
(%)

All 54.3 54.2 54.1 47.5
Person 32.4 32.1 29.6 28.1
Bicycle 11.4 11.0 11.2 28.1

Car 92.8 92.8 93.5 90.6
Motorcycle 56.8 56.9 57.0 56.8
F-S vehicle 78.1 78.1 79.1 57.3

Table 6. The comparison of the proposed system and late fusion method on rainy days in which the
values in red indicate the highest value in each row.

Class RGB + DV (Proposed)
(YOLOv3, 2ROI)

RGB + Radar (Late Fusion)
(YOLOv3, 2ROI)

Precision
(%)

All 86.4 92.5
Person 77.2 87.2
Bicycle n/a n/a

Car 98.2 96.7
Motorcycle 79.3 91.7
F-S vehicle 91.0 94.6

Recall
(%)

All 87.0 76.5
Person 80.0 51.4
Bicycle n/a n/a

Car 96.9 92.5
Motorcycle 81.4 75.5
F-S vehicle 89.6 86.6

mAP
(%)

All 84.2 73.8
Person 71.4 47.8
Bicycle n/a n/a

Car 95.7 91.0
Motorcycle 79.0 71.9
F-S vehicle 86.9 84.5

n/a = not measurable.
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5. Conclusions

The proposed mmWave radar/camera sensor early fusion algorithm in this paper
is mainly designed to solve the decision-making challenges encountered in late sensor
fusion methods and the proposed method improves the detection and tracking of objects
while attaining real-time operational performance. The proposed system combines the
advantages of mmWave radar and vision sensors. Compared with the camera-only object
detection model, Tables 2 and 3 show a significant improvement in the detection accuracies
of the proposed design.

Compared to the radar/camera sensor late fusion method, the proposed system not
only has better overall accuracy but also has a faster operating performance of about 5 fps.
Unlike the camera-only object detection model, the proposed system offers additional
relative x-y coordinates and the relative velocity of the detected objects. For the RSU
applications, the proposed system can provide accurate relative positions of objects. Table 1
shows the distance errors of the proposed system, which is, at most, a 2% error rate between
the ranges of 5 m to 45 m.

However, there is scope to carry out future work to improve the proposed early sensor
fusion method. That is, the mmWave radar proposed in this paper outputs around 30 to
70 radar points. In complex scenes, this amount of radar points may not be enough. To
overcome this challenge, we can improve the radar equipment in future work to obtain
more radar information about the position and velocity information of the detected objects
which is the future work of the proposed method.
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5. Obrvan, M.; Ćesić, J.; Petrović, I. Appearance based vehicle detection by radar-stereo vision integration. In Advances in Intelligent
Systems and Computing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 437–449.

6. Wu, S.; Decker, S.; Chang, P.; Senior, T.C.; Eledath, J. Collision sensing by stereo vision and radar sensor fusion. IEEE Trans. Intell.
Transp. Syst. 2009, 10, 606–614.

7. Liu, T.; Du, S.; Liang, C.; Zhang, B.; Feng, R. A Novel Multi-Sensor Fusion Based Object Detection and Recognition Algorithm for
Intelligent Assisted Driving. IEEE Access 2021, 9, 81564–81574. [CrossRef]

8. Jha, H.; Lodhi, V.; Chakravarty, D. Object Detection and Identification Using Vision and Radar Data Fusion System for Ground-
Based Navigation. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Net-works (SPIN),
Noida, India, 7–8 March 2019; pp. 590–593.

9. Kim, K.-E.; Lee, C.-J.; Pae, D.-S.; Lim, M.-T. Sensor fusion for vehicle tracking with camera and radar sensor. In Proceedings of the
2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 18–21 October 2017;
pp. 1075–1077.

10. Wang, T.; Zheng, N.; Xin, J.; Ma, Z. Integrating Millimeter Wave Radar with a Monocular Vision Sensor for On-Road Obstacle
Detection Applications. Sensors 2011, 11, 8992–9008. [CrossRef] [PubMed]

11. Guo, X.; Du, J.; Gao, J.; Wang, W. Pedestrian detection based on fusion of millimeter wave radar and vision. In Proceedings of the
2018 International Conference on Artificial Intelligence and Pattern Recognition, Beijing, China, 18–20 August 2018; pp. 38–42.

12. Wang, X.; Xu, L.; Sun, H.; Xin, J.; Zheng, N. On-road vehicle detection and tracking using MMW radar and monovision fusion.
IEEE Trans. Intell. Transp. Syst. 2016, 17, 2075–2084. [CrossRef]

13. Chadwick, S.; Maddern, W.; Newman, P. Distant vehicle detection using radar and vision. In Proceedings of the International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8311–8317.

14. John, V.; Mita, S. Deep sensor fusion of monocular camera and radar for image-based obstacle detection in challenging environ-
ments. In Pacific-Rim Symposium on Image and Video Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 351–364.

15. Geisslinger, M.; Weber, M.; Betz, J.; Lienkamp, M. A deep learning-based radar and camera sensor fusion architecture for object
detection. In Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 15–17 October
2019; pp. 1–7.

16. Yun, S.; Han, D.; Joon Oh, S.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with
Localizable Features. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019; pp. 6023–6032.

17. Hao, W.; Zhili, S. Improved Mosaic: Algorithms for more Complex Images. J. Phys. Conf. Ser. 2020, 1684, 012094. [CrossRef]
18. Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft

COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision (ECCV), Cham, Germany,
6–12 September 2014; pp. 740–755.

19. Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning
Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW), Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

https://cocodataset.org/#home
https://cocodataset.org/#home
https://github.com/VisDrone/VisDrone-Dataset
http://doi.org/10.3390/s20040956
http://www.ncbi.nlm.nih.gov/pubmed/32053909
http://doi.org/10.1109/ACCESS.2021.3083503
http://doi.org/10.3390/s110908992
http://www.ncbi.nlm.nih.gov/pubmed/22164117
http://doi.org/10.1109/TITS.2016.2533542
http://doi.org/10.1088/1742-6596/1684/1/012094


Sensors 2023, 23, 2746 22 of 22

20. Meta, A.; Hoogeboom, P.; Leo, P. Ligthart. Signal processing for FMCW SAR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3519–3532.
[CrossRef]

21. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters. Corrected Proof 2010, 31, 651–666.
22. Ester, M.; Kriegel, H.-P.; Sander, J.; Xiaowei, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4
August 1996; pp. 226–231.

23. Luo, X.; Yao, Y.; Zhang, J. Unified calibration method for millimeter-wave radar and camera. J. Tsinghua Univ. Sci. Technol. 2014,
54, 289–293.

24. Chopde, N.R.; Nichat, M.K. Landmark based shortest path detection by using A* and Haversine formula. Int. J. Innov. Res.
Comput. Commun. Eng. 2013, 1, 298–302.

25. Taguchi, G.; Jugulum, R. The Mahalanobis-Taguchi Strategy: A Pattern Technology System; John Wiley & Sons: Hoboken, NJ,
USA, 2002.

26. Zhu, P.; Wen, L.; Du, D.; Xiao, B.; Fan, H.; Hu, Q.; Ling, L. Detection and Tracking Meet Drones Challenge. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 7380–7399. [CrossRef] [PubMed]

27. Ma, K.; Zhang, H.; Wang, R.; Zhang, Z. Target tracking system for multi-sensor data fusion. In Proceedings of the 2017 IEEE
2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17
December 2017; pp. 1768–1772.

28. Liu, Z.; Cai, Y.; Wang, H.; Chen, L.; Gao, H.; Jia, Y.; Li, Y. Robust Target Recognition and Tracking of Self-Driving Cars With
Radar and Camera Information Fusion Under Severe Weather Conditions. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6640–6653.
[CrossRef]

29. Texas Instruments. IWR6843: Single-Chip 60-GHz to 64-GHz Intelligent mmWave Sensor Integrating Processing Capability.
Available online: https://www.ti.com/product/IWR6843 (accessed on 23 July 2022).

30. NVIDIA. NVIDIA Jetson AGX Xavier: The AI Platform for Autonomous Machines. Available online: https://developer.nvidia.
com/embedded/jetson-agx-xavier-developer-kit (accessed on 24 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TGRS.2007.906140
http://doi.org/10.1109/TPAMI.2021.3119563
http://www.ncbi.nlm.nih.gov/pubmed/34648430
http://doi.org/10.1109/TITS.2021.3059674
https://www.ti.com/product/IWR6843
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

	Introduction 
	Related Work 
	Types of Sensor Fusion 
	YOLO v3 Model 
	YOLO v4 Model 
	Clustering 

	The Proposed Method 
	Overview 
	Radar Clustering 
	Radar and Camera Calibration 
	Radar and Camera Data Fusion 
	Dynamic ROI for Multi-Scale Object Detection 
	Object Detection Model 
	Tracking 

	Experimental Evaluation 
	Sensor Fusion Equipment 
	Implementation Details 
	Evaluation on YOLOv3 
	Evaluation on YOLOv4 
	Comparison between YOLOv3 and YOLOv4 
	Proposed System Performance 

	Conclusions 
	References

