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Abstract: Motor Imagery (MI) refers to imagining the mental representation of motor movements
without overt motor activity, enhancing physical action execution and neural plasticity with potential
applications in medical and professional fields like rehabilitation and education. Currently, the
most promising approach for implementing the MI paradigm is the Brain-Computer Interface (BCI),
which uses Electroencephalogram (EEG) sensors to detect brain activity. However, MI-BCI control
depends on a synergy between user skills and EEG signal analysis. Thus, decoding brain neural
responses recorded by scalp electrodes poses still challenging due to substantial limitations, such
as non-stationarity and poor spatial resolution. Also, an estimated third of people need more skills
to accurately perform MI tasks, leading to underperforming MI-BCI systems. As a strategy to
deal with BCI-Inefficiency, this study identifies subjects with poor motor performance at the early
stages of BCI training by assessing and interpreting the neural responses elicited by MI across
the evaluated subject set. Using connectivity features extracted from class activation maps, we
propose a Convolutional Neural Network-based framework for learning relevant information from
high-dimensional dynamical data to distinguish between MI tasks while preserving the post-hoc
interpretability of neural responses. Two approaches deal with inter/intra-subject variability of MI
EEG data: (a) Extracting functional connectivity from spatiotemporal class activation maps through
a novel kernel-based cross-spectral distribution estimator, (b) Clustering the subjects according to
their achieved classifier accuracy, aiming to find common and discriminative patterns of motor skills.
According to the validation results obtained on a bi-class database, an average accuracy enhancement
of 10% is achieved compared to the baseline EEGNet approach, reducing the number of “poor skill”
subjects from 40% to 20%. Overall, the proposed method can be used to help explain brain neural
responses even in subjects with deficient MI skills, who have neural responses with high variability
and poor EEG-BCI performance.

Keywords: EEG Network; motor imagery; motor skills; functional connectivity; class activation maps

1. Introduction

As an exercise in dynamic simulation, Motor Imagery (MI) involves practicing the
representation of a given motor movement in working memory without any overt motor
activity. Simulation of MI mechanisms supervised and supported by cognitive systems acti-
vate brain neural systems that improve motor learning ability and neural plasticity, having
a high potential for numerous medical and professional applications [1–5]. It has been iden-
tified as a promising method for enhancing motor proficiency, with significant educational
implications. Furthermore, it has also demonstrated potential for rehabilitating children
with neurological disorders. disorders [3,6]. Due to the fact that the Media and Information
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Literacy methodology proposed by UNESCO covers several cognitive competencies, this
aspect becomes essential, as highlighted in [7]. Nevertheless, accurate decoding of brain
neural responses elicited by MI tasks poses a challenge since spectral/spatial/temporal
features reflect the ease/difficulty subjects (MI ability) face when adhering to the men-
tal imagery paradigm. In this scenario, individual motor skills seriously impact the MI
system’s execution.

In practice, MI systems have become the most common application in Brain-Computer
Interface (BCI) research to enable communication and control over computer applications
and external devices directly from brain activity [8]. BCI systems are typically designed
to use Electroencephalogram (EEG) sensors due to their non-invasiveness, high time
resolution, and relatively low cost [9]. However, despite these advantages, EEG recordings
from electrodes have several limitations, including non-stationarity, a low signal-to-noise
ratio (SNR), and poor spatial resolution, among other reported challenges [10]. Thus,
effective control of MI-BCI depends on a careful balance between user skills and EEG-
montage constraints [11]. Unfortunately, only a small number of individuals possess the
necessary skills to control their BCIs effectively. Moreover, an estimated 15–30% of people
lack the skills needed to complete MI tasks accurately, resulting in poor performance
(known as BCI-Inefficiency) [12]. As a result, the application of the imagery paradigm is
often limited to laboratory settings, as the EEG-based signal analysis and implementation
of BCIs with acceptable reliability have become increasingly complex procedures.

A growing body of research has focused on developing strategies to address BCI-
Inefficiency, with several promising approaches emerging. One such approach is to adapt
the MI BCI system to specific frameworks of application, as demonstrated by recent stud-
ies [13–16]. In addition, these studies have explored various ways to optimize the perfor-
mance of MI, including by customizing the system’s parameters to suit the user’s needs
and abilities. Another promising strategy involves developing personalized systems that
account for individual cognitive variability [17,18]. Considering factors such as attentional
capacity, memory, and learning styles, these personalized systems can help improve the
effectiveness of MI-BCI control, even for those with limited motor skills. Likewise, identify-
ing subjects with a poor motor performance at the early stages of BCI training is another
essential strategy for improving MI efficiency [19]. By identifying those who may struggle
with BCI control early on, interventions can be implemented to help these individuals
develop the necessary skills and optimize their performance.

In turn, determining the lack of motor skills at an early stage of EEG BCI system
training implies assessing and interpreting the neural responses elicited by MI across the
considered subject set. Yet, MI responses may depend on factors like brain structure vari-
ability, diversity of cognitive strategy, and earned individual expertise [12]. A widely-used
approach to deal with EEG variability is developing BCI processing pipelines with opti-
mized spatial pattern transformations that may account for conventional approaches [20,21].
Deep learning (DL) methods, especially Convolutional Neural Networks (CNN), have
been investigated to optimize signal analysis since they automatically extract dynamic data
streams from neural responses to address the complexity of EEG data associated with MI
tasks and the variability of users [22–24]. Nevertheless, DL models generate high-level
abstract features processed by black boxes with meaningless neuro-physiological explain-
ability, resulting in a severe disadvantage in ensuring adequate reliability compared to
their high performance [25].

Compared to other deep learning models, CNN-based classifiers offer several key
advantages, including the ability to learn end-to-end from raw data and requiring fewer
tuning parameters. Besides, end-to-end learning allows for a more streamlined and au-
tomated process, reducing the need for manual feature engineering and enabling the
model to learn features directly from the data [26–29]. Moreover, visualization of feature
maps from convolutional layers or class-discriminative features computed by the Class
Activation Maps (CAM) is among the most used technique for a post-hoc explanation of
well-trained CNN learning models [30–32]. Generally, different approaches to visualizing
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the learned CNN filters fall into two classes: extracting trained weights at a selected layer
and from reduced low-dimensional representations weighted across the layers, like devel-
oped for Motor Imagery in [33,34]. To better encode the diversity of stochastic behaviors,
the reduced feature representations are clustered, separating the individuals into groups
according to selected metrics of MI BCI performance, like developed in [35]. Despite this,
the widespread use of DL models is prevented in functional neuroimaging because of the
difficulty of training on high-dimensional low-sample-size datasets and the unclear rele-
vance of the resulting predictive markers [36]. Therefore, CNN-based EEG decoding should
be improved by verifying the learned weights’ discriminating capability and relationship
to neurophysiological features, as stated in [37].

This work presents a CNN framework to learn MI patterns from high-dimensional
EEG dynamical data. The latter is achieved while ensuring that the interpretability of the
neural responses is maintained through the use of connectivity features extracted from
class activation maps. Also, to address the issue of inter/intra-subject variability in MI-
EEG data, our work adopts two different approaches. The first approach involves the
extraction of functional connectivity from spatiotemporal CAMs. Notably, we coupled
the well-known EEGnet architecture and a novel kernel-based cross-spectral distribution
estimator founded on a Gaussian Functional Connectivity (GFC) measure. This approach
helps to overcome the limitations of traditional connectivity measures by capturing both the
linear and non-linear relationships between the different brain regions. The second strategy
involves clustering the subjects based on their achieved classifier accuracy and relevant
channel-based connectivities. This clustering aims to identify common and discriminative
patterns of motor skills. By doing so, the proposed approach can better account for
the inter-subject variability often encountered in MI-EEG data. The validation results
from a bi-class database demonstrate that the proposed approach effectively enhances the
physiological explanation of brain neural responses. This is particularly true for subjects
with poor MI skills and those with high variability and deficient EEG BCI performance.
Overall, the proposed method represents a significant contribution to the field of neural
response interpretation, and it has the potential to facilitate the development of more
effective and accurate BCI systems. Of note, the present work continues our framework
in [38] by eliminating the characterization stage to make the developed deep model take
advantage of big data. A more complex database with more subjects is then used to evaluate
the resulting end-to-end model. Furthermore, we introduce a CNN framework to learn
from high-dimensional dynamical data while maintaining post-hoc interpretability using
connectivity features extracted from class activation maps.

The agenda is as follows: Section 2 defines the used EEG-Net-based Classification
framework of MI tasks, the Score-Weighted Visual Class Activation Maps estimated from
EEG-Net, the GFC fundamentals, and the two-sample Kolmogorov-Smirnov test used to
ensure the significance of extracted functional connectivity measures. Section 3 describes
the validated EEG data set and the parameter setting of the CNN training framework.
Section 4 explains the classification results of CAM-based EEGnet Mask, clustering of
Motor Imagery Neural Responses using Individual GFC measures, and the Enhanced
Interpretability from GFC patterns according to the clusterized motor skills. Lastly, Section 5
gives critical insights into their supplied performance and addresses some limitations and
possibilities of the presented approach.

2. Materials and Methods

We present the fundamentals of EEGnet-based discrimination and the approach of
CAM using a GFC-based EEG representation to improve the posthoc DL interpretability of
elicited neural responses. In addition, we present a two-sample Kolmogorov-Smirnov test
used to prune the GFC-based channel relationships matrix that is performed to enhance
individuals’ grouping according to their MI skills.
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2.1. EEGnet-Based Classification of Motor Imagery Tasks

This convolutional neural network architecture includes a stack of spatial and temporal
layers, {Wl ∈ RPl−1×Pl , bl ∈ RPl :l∈L}, fed by the input-output set, {Xn∈RC×T , λλλn ∈
{0, 1}K :n∈N}. Here, Pl∈N denotes the l-th layer unit set, L∈N is the network depth, C∈N
is the number of EEG channels, T∈N is the recording length, N∈N is the number of trials
captured for each of K ∈ N MI classes of MI tasks.

The EEGnet model, noted asM(X) : RC×T→[0, 1]K, performs prediction λ̂λλ ∈ [0, 1]K

of each one-hot class membership, λλλ, as below:

M(X) =
(
X̃L ◦ · · · ◦ X̃1

)
(X)→ λ̂λλ (1)

where X̃l = φl
(
X̃l−1 ⊗Wl + bl

)
∈RPl is a feature map holding Pl∈N elements at l-th layer,

ξl :RPl−1→RPl is a representation learning function, bl ∈ RPl is a bias term, and φl(·) is
a non-linear activation that is fixed as a sigmoid and softmax function for the bi-class
and multiclass scenarios, respectively. Notations ◦ and ⊗ stand for function composition
and proper tensor operation (i.e., 1D/2D convolution or fully connected-based product),
respectively. Of note, we set X̃0 = X, X̃L = λ̂λλ in the iterative computation of feature maps.

The solution in (1) implies the parameter set computation of Θ = {Wl , bl :l∈L}, per-
formed within the following minimizing framework:

Θ∗ = arg min
Θ

E{L(λλλn, λ̂λλn|Θ) + γΩ(Θ) : ∀n ∈ N}, (2)

where L : {0, 1}K × [0, 1]K → R is a given loss function, Ω(·) is a regularization function,
γ ∈ R+ is a trade-off, while E{·} stands for the expectation operator.

In order to support EEG classification, the compact EEGNet convolutional network
minimizes (2), providing convolutional kernel connectivity between inputs and output
feature maps that can apply to different MI paradigms. As seen in Figure 1, the EEGNet
pipeline begins with a temporal convolution to learn frequency filters, followed by a depth-
wise convolution connected to each feature map to learn frequency-specific spatial filters.
Further, the separable convolution combines a depthwise convolution, which learns a
temporal summary for each feature map individually, followed by a point-wise convolution,
which learns how to mix the feature maps optimally for class-membership prediction.

Conv2D DepthWise 

Conv2D

Average 

Pool2D
Separable 

Conv2D

Average 

Pool2D

Flatten Dense

Score
EEG 

data

Figure 1. EEGnet main sketch. First column: input EEG. Second column: temporal convolution (filter
bank). Third and fourth columns: spatial filtering convolution. Fifth and sixth columns: temporal
summary. Last column: output label prediction.

2.2. Score-Weighted Visual Class Activation Maps from EEG-Net

To highlight the most relevant input features, we conduct a CAM-based relevance
analysis over the EEG-Net pipeline to favor the post-hoc interpretability of those relevant
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spatio-temporal brain patterns that contribute the most to discriminating the elicited MI
neural responses. To this end, we employ the Score-Weighted Visual Explanation approach,
termed Score-CAM, that eliminates the dependence on gradient-based interpretability
methods through the EEGNet network forward passing score on target class and a further
linear combination of relevance weights. Thus, we extract the upsampled class-specific
CAM matrix, Al(λ̂k) ∈ RC×T , that regards k-th estimated label, λ̂k ∈ [0, 1], as follows [39]:

Al(λ̂k) = µ̄

(
∑
∀d∈Dl

αd
l (λ̂k)X̃d

l

)
, ∀k ∈ K (3)

where µ̄(·) is the resulting function composition between the upsampling function µ(·)
and the activation function in the form ReLU{η} = max(0, η) ∀η∈R, the matrix X̃d

l ∈R
Pl

computed on the trial basis, sizing Pl = Cl × Tl , holds d-th feature map at l layer, Dl ∈ N
is the number of filters implementing the 1D/2D convolutional operations by theM(·)
architecture, and αd

l (λ̂k) ∈ [0, 1] is a combination weight that is computed as follows:

αd
l (λ̂k) =

α̃d
l (λ̂k)

∑Dl
d=1 α̃d

l (λ̂k)
, (4)

where the estimate α̃d
l (λ̂k) ∈ R+ is computed in a post-hoc way (namely, after the EEG-Net

training) by k-th class predictionM(·|k) as α̃d
l (λ̂k) = M(X�µ(X̃d

l )|k)−M(X|k), where
notation � stands for the Hadamard product. Note that the Score-CAM representation
is constrained by ReLU-based thresholding in (3) to assemble positive definite values of
relevance into Al(λ̂k), implying discriminant EEG inputs that increase the output neuron’s
activation rather than suppressing behaviors [40].

Consequently, the weights estimated in Equation (4) support the CAM-based approach
to boost Spatio-temporal EEG patterns, represented by the element-wise feature maps (or
masks), which are salient in terms of discriminating between MI labels.

2.3. Pruned Gaussian Functional Connectivity from Score-CAM

Consider two Score-CAM-based EEG records a, a′ ∈ A for a given EEGNet layer l and
predicted class λ̂k. Their correlation can be expressed as a generalized, stationary kernel,
κ : RT × RT → R, if their spectral representations meet the following assumption [41]:

κ(a− a′) =
∫

f̃∈Ξ
exp

(
j2π(a− a′)> f̃

)
S̃aa′( f̃ )d f̃ , (5)

where f̃ ∈ Ξ is a vector in the spectral domain and S̃aa′( f̃ ) ∈ C is the cross-spectral
density function with S̃aa′( f̃ ) = dPaa′( f̃ )/d f̃ , and Paa′( f̃ ) ∈ [0, 1] is the cross-spectral
distribution. The cross-spectral distribution between CAM-based records in Equation (5)
can be computed as follows [42]:

Paa′(Ξ) = 2
∫

f̃∈Ξ
F{κ(a− a′)}d f̃ . (6)

F{·} stands for the Fourier transform. Then, nonlinear interactions between CAM-based
boosted EEG channels are coded for a more accurate depiction of neural activity.

Of note, a stationary kernel is employed to preserve temporal dynamics of EEG signals,
essential for MI classification accuracy. Consequently, the Gaussian kernel is favored in
pattern analysis and machine learning for its versatility in approximating functions and its
mathematical tractability [43]. These properties make it a prime candidate for calculating
the Kernel-based Cross-Spectral Functional Connectivity in Equation (6), fixing the pairwise
relationships between a and a′ as:
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κG(a− a′; σ) = exp

(
−‖a− a′‖2

2
2σ2

)
, (7)

where ‖·‖2 is the L2 distance and σ ∈ R+ is a given bandwidth hyperparameter, commonly
fixed based on the median of the input distances.

Finally, to prune the Gaussian Functional Connectivity (GFC), as in Equations (6)
and (7), we need to determine which connections are crucial for class separation. A high
correlation in the functional connectivity matrix does not necessarily lead to higher class
separation, so we use the two-sample Kolmogorov–Smirnov (2KS) test, as in [44], to address
this. The null hypothesis is that both samples come from the same distribution. In turn,
we group trials for each CAM GFC connection for a subject by label to form samples
representing class membership. Each pair is then tested with the 2KS test and connections
with p-values≤ 0.05 are kept, implying the samples are from different distributions and the
classes are separable. Finally, a p-value matrix indicating relevant connections is generated.

2.4. Post-Hoc Grouping of Subject Motor Imagery Skills

We evaluate the proposed approach for improving the post-hoc interpretability of the
Deep Learning-based model using the Class Activation Maps and the pruned Gaussian
Functional Connectivity to characterize the inter/intra-subject variability of the brain
signals. This purpose is addressed within the evaluation pipeline shown in Figure 2,
including the following stages: (i) Preprocessing of raw EEG data to be fed the DL model;
(ii) Bi-class discrimination of motor-evoked tasks within a shallow ConvNets framework
(EEGNet); (iii) In the post-hoc analysis, we compute the CAMs over the Conv2D layer,
followed by a clustering analysis performed on a reduced set of extracted features, using
the well-known t-distributed Stochastic Neighbor Embedding (t-SNE), to enhance the
explainability of produced neural responses regarding motor skills among subjects Also,
pruned GFC is used for visual inspection results and clustering enhancement.

Figure 2. Guideline of the proposed framework for enhanced post-hoc interpretability of MI neu-
ral responses using connectivity measures extracted from EEGNet CAMs and clustering subjects,
according to the EEG MI performance.

2.5. GigaScience Database

In this collection, available at http://gigadb.org/dataset/100295, accessed on 1 Octo-
ber 2022, EEG data from fifty (50) subjects have been assembled according to the experi-
mental paradigm for MI, as shown in Figure 3. The MI task execution starts with a fixation
cross appearing on a black screen within 2 s. Afterward, for 3 s, a cue instruction appeared
on the screen, requesting that each subject imagine the finger movements (initially, with the
forefinger and then the small finger touching their thumb). Then, a blank screen appeared
at the start of the break, lasting randomly for a short period between 4.1 to 4.8 s. These
procedures were repeated 20 times for each MI class in a single testing run, collecting

http://gigadb.org/dataset/100295
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100 trials per individual (each one lasting T = 7 s) for either labeled task (left hand or
right hand). Data were acquired at 512 Hz sampling rate by a 10-10 placement using an
C-electrode montage (C = 64), see Figure 4.

-

0 1 2 3 4 5 6 7 t [s]

τ

Black screen Cue→|
Motor Imagery

Break

Figure 3. GigaScience database timeline of the evaluated motor imagery paradigm.

Figure 4. Topographic map for EEG representation. Besides, it highglights in color the main parts of
the brain (Frontal, Central right, Posterior right, Posterior, Posterior left, Central left).

3. Experimental Set-Up
3.1. Parameter Setting of Trained CNN Framework

In the preprocessing stage, each raw channel is passed through a bandpass filter
within [4–40] Hz using a five-order Butterworth filter, as suggested in [45]. To enhance
the physiological interpretation of implemented experimental paradigm, we analyze the
dynamic at the representative time segment from 2.5 s to 5 s (i.e., motor imagery interval).
Further, the EEG signal set is standardized across the channels with the z-score approach.

Afterward, the resulting preprocessed EEG multi-channel data feeds the EEGNet
framework with a shallow ConvNet architecture. The CNN model is implemented by
downsampling all cropped EEG recordings to 128 for feeding the EEGNet model, fixing the
parameter set to the values as displayed in Table 1. The CNN learner includes a categorical
cross-entropy loss function and the Adam optimizer.

Table 1 brings a detailed description of the employed network architecture for which
the following values are fixed: The number of band-pass feature sets extracted from EEG
data by a set of 2D convolutional filters F1 = 16; 2D CNN filter length is 128 Hz (i.e., half of
the sampling rate); and the number of temporal filters along with their associated spatial
filters is adjusted to F2 = DF1 in SeparableConv2D. Besides, validation is performed by
running 100 training iterations (epochs for performing validation stopping), storing the
model weights that reach the lowest loss. The model validation is conducted on a GPU
device at a Google Collaboratory session, using TensorFlow and the Keras API.
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Table 1. EEGNet architecture. Input shape is (1, C, T), where C is number of channels, T—number
of time points, F1—number of temporal filters, D—depth multiplier (number of spatial filters), F2—
number of point-wise filters, and N—number of classes, respectively. For the Dropout layer, we use
p = 0.5 for within-subject classification. Notations ∗ stand for 16 ∗ D ∗ F1 + F2 ∗ (D ∗ F1) and (∗∗) for
N ∗ (F2 ∗ T//32).

Layer Conv2D Depthwise Separable Flatten Dense
Name Conv2D Conv2D

# filters F1 D ∗ F1 F2
(∗∗)

Size (1, 64) (C, 1) (1, 16)
# params 64 ∗ F1 C ∗ D ∗ F1 (∗)
Output (F1, C, T) (D ∗ F1, 1, T) (F2, 1, T//4) (F2 ∗ (T//32)) N
Options Activation = Linear Activation = Linear Activation = Linear

Mode = same Mode = same Mode = same

Depth = D

max_norm = 1

BatchNorm = True BatchNorm = True BatchNorm = True

Activation = ELU Activation = ELU

AvgPool2D = (1, 4) AvgPool2D = (1, 8)

Dropout* − p = 0.25 Dropout* − p = 0.25

or p = 0.5 or p = 0.5

The final step was to perform a group analysis of individuals using the K-means
approach for clustering the performance metrics and Kolmogorov test values extracted
from connectivity measures. Note that the feature set is z-scored to feed the partition
algorithm. Besides, we apply the well-known t-distributed Stochastic Neighbor Embedding
(t-SNE) for dimensionality reduction [46,47], selecting the first two components.

3.2. Quality Assessment

The proposed methodology is evaluated in terms of the EGGNet binary classification
estimated through the cross-validation strategy, which consists of prearranging two sets
of points: 80% for training and the remaining 20% for hold-out. The following metrics
assess the classifier performance [47]: accuracy, kappa value, f1-score, precision, and recall.
Besides, a Nemenyi post-hoc statistical test is performed at a significance level of 0.05 [48].
The latter aims to compare subject-dependent EEGNet baseline performance vs. our CAM-
based enhancement.

4. Results and Discussion
4.1. Classification Results of CAM-Based EEGnet Masks

Figure 5 displays the classification accuracy results obtained by the EEGnet model
(colored with a blue line) with parameters tuned as described above. In order to better
understand the values, we rank them in decreasing order of mean accuracy to reveal
that more than half of them fall below the 70% level (horizontal red line) and may need
more MI skills. Otherwise, a system with so many poor-performing individuals makes MI
training ineffective.

Results for individual masks are also displayed (colored with an orange line) and
suggest the improved performance of the classifier. The EEGNet approach enhanced
by CAM-based representations is thus more effective at dealing with hardly discernible
neural responses, reducing the number of subjects labeled as inadequate in MI from 21
(∼40%) to 11 (∼20%). Furthermore, concerning the Nemenyi post-hoc statistical test,
the results demonstrate a significant difference between our CAM-based enhancement
and the benchmark EEGNet discrimination approach. Specifically, this difference was
most pronounced in subjects with lower performance levels. These findings highlight the
potential of our proposed approach to improve the accuracy and reliability of EEG-based
analyses, particularly for individuals with poorer MI skills.
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Figure 5. Subject-dependent MI discrimination results. (Up): Classification accuracy achieved for
Bi-class MI tasks (left-hand and right-hand). Note: the red line at 70% level shows frequently used for
fixing the poor MI coordination skill threshold under the subjects are considered as worse-performing.
(Bottom): Obtained p-value per subject using the Nemenyi post-hoc test (square marker represents a
p-value < 0.05).

A mapping of GFC connectivity based on CAM-based masks is also shown to under-
stand individual neural responses better. For illustration purposes, the topoplot represen-
tations extracted from GFC connectivity maps are contrasted for the most successful and
poorest performing subjects (#43 and #51, respectively). The displayed topoplot of each
subject in Figure 6 shows high response amplitudes distributed evenly over the Frontal and
central areas, as expected for the neural responses elicited by MI paradigms [49]. There are,
however, substantial differences between both subjects in the assessed relevant GFC links.

Sbj 43 Sbj 51

Figure 6. Connectivity maps are estimated for the best-performing (left side) and poorest-performing
(right side) subjects. Stronger correlations between nodes are represented by darker edges linking
two EEG channels. The right plot shows the brain regions (i.e., Temporal, Frontal, Occipital, Parietal,
and Central) colored differently to improve spatial interpretation.

A notable finding is that the neural responses in the best-performing individual
produced much lower discriminant links, primarily concentrated in the Sensory-Motor
region. At the same time, the discriminative links of #43 are more related to the contralateral
hemisphere. There may be an explanation for this effect if the skilled subject is more focused
on performing tasks based on the MI paradigm.

By contrast, neural connections throughout the brain in the subject with poor perfor-
mance are twice as high as in the skilled individual. Furthermore, the relevant links of
#51 include associations between occipital and frontal areas in the cerebral cortex with
channels not primarily related to the imagination of motor activities, suggesting a spu-
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rious electrophysiological mechanism during MI performance. Because of these factors,
poor-performing subjects tend to be less accurate in distinguishing between MI tasks [50].

Based on the above information, we calculate the connectivity matrix after applying a
two-sample Kolmogorov-Smirnov test, as carried out in [51] for the goodness of fit. As can
be observed in Figure 7, the best-performing subject produces most of the statistically
significant connections all above the sensory motor region following the MI paradigm.
In contrast, the poorest-performing subject holds low statistically significant links, making
the activity over the motor cortex barely distinguishable from the remaining brain areas.

1.0

0.5

0.0

Sbj 43 Sbj 51

Figure 7. Connectivity matrix after two-sample Kolmogorov-Smirnov test obtained by the best
(left side) and poorest-performing (right side) subjects. The pictured GFC matrices include both MI
tasks and are computed at 90-percentile of normalized relevance weights.

4.2. Clustering of Motor Imagery Neural Responses Using Individual GFC Measures

As inputs to the partition algorithm, we include several classifier performance metrics
since we assume that the more distinguishable the elicited neural responses between each
labeled task, the better the skills of a subject in performing the MI paradigm. In addition to
the EEG-Net classifier metrics, the Kolmogorov test values are also evaluated and assessed
for the Gaussian FC measures of the individual ScoreCAMs. For encoding the stochastic
behavior of metrics, the clustering algorithm is fed by their reduced space representation
using the t-SNE projection, as described in [42].

As shown in the left scatter plots of Figure 8, we performed the k-means algorithm
on the reduced feature set for each MI task, separating the individuals into three groups
according to their motor skills: The best-performing subjects (termed Group I and colored
in green); The partition with intermediate MI abilities (Group II in yellow); Group III
(red color) with the worst-performing individuals. We separately analyze both Motor
Imagery Tasks due to Hand Dominance influence, as discussed in [52]. The grouping
quality is assessed by the Silhouette coefficient displayed in the center plots, showing
differences in the partition density: the more inadequate the motor skills, the more spread
the partition. A further aspect of evaluation is the effect of CAM masks on enhanced
classifier performance, which increases as the individual’s MI skills decrease (see right-
sidebar plots).
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Figure 8. K−means clustering visualization of the EEG-Net classifier performance metrics and the
Kolmogorov test values extracted from connectivity information. Left-side scatter plots of individuals
(data points) estimated for the three considered groups of motor skills. Note that the point size
represents the subject’s accuracy. The central plot shows the clustering metrics of the Silhouette
coefficient, while the right-side plot displays the classifier performance, averaged across all subjects
of each partition.

By coloring the squares into three clusters, Figure 9 enhances the explanation of the
extracted connectivity measures with statistical significance and shows that the partition
density of best-performing subjects (green square) by both MI tasks is alike and well
clustered, reaching high silhouette values. For GII, three subjects are outliers, making this
fact more evident for the data point labeled as #20, especially in the right-hand task. This
result may be explained since this subject holds very few trials.
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Figure 9. Clustering of motor skills obtained by the CNN-based approach with connectivity features
for each MI task. (Left side): Subject partitions are colored for each subject group: GI (green squares),
GII (yellow), and GIII (red). (Right side): Detailed analysis of the worst-performing GIII by splitting
all the participants into subgroups, fixing k = 6.

Lastly, there is a tendency for the GIII cluster to fragment into smaller partitions.
This issue is clarified by recalculating the clustering algorithm and exploring the number
of subgroups within k = {3, 4, 5, 6}. According to the right-side column, fixing k = 3
provides the highest silhouette value, being more evident in the scatter plot estimated for
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the right-hand task. Apparently, the MI paradigm is performed quite distinctly by each
GIII individual, thus worsening the classifier accuracy.

4.3. Enhanced Interpretability from GFC Patterns According to Clusterized Motor Skills

To bring a physiological foundation to clustered motor skills, we analyzed the brain
neural responses elicited by MI paradigms through the GFC patterns extracted from the
Score-based CAMs and averaged across each subject partition. As explained above, we
compute the pairwise functional connectivity graph that contributes the most to discrimi-
nating between the labeled MI-related tasks, selecting electrode links that fall within the
90-percentile of normalized relevance weight calculations, as shown in Figure 10. However,
two analysis scenarios are considered: The statistically significant connections computed
by the Komolgorov-Smirnov test (see Figure 7) and the connectivity set without passing
under the hypothesis test.
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Figure 10. Graphical representation of the brain Gaussian Functional Connectivity estimated across
each cluster of individual motor skills. Connectograms of each MI task (top and middle rows) are
computed without the Komolgorov-Smirnov test and conducting the hypothesis test (bottom row).
The GFC set is calculated at the 90 percentile of normalized relevance weights.
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The top and middle rows in the former scenario display the connectograms computed
for each MI task, respectively. As can be seen, each Group of individual skills triggers
different sets of connections in terms of nodes and relevant links, which may lead to specific
network integration and segregation changes, affecting the system’s accuracy. Accordingly,
the connectivity graphs estimated for the Group of the best-skilled subjects hold high
evoked response amplitudes densely spread over the Frontal, Central, and Sensory-Motor
areas involved in motor imagery. At the same time, GII yields a connectivity set similar
to GI, with most links spreading over the primary motor cortex. However, several EEG
electrodes generate discriminating links over the temporal and parietal-occipital areas,
which are assumed uncorrelated with MI responses. This situation worsens in the Group of
poor-performing individuals with a link set covering the whole scalp surface, regardless of
the MI task. Moreover, the most robust links are elicited over the parietal-occipital cortical
areas, which are devoted mainly to visuospatial processes. This finding related to relevant
connectivities outside the primary motor cortex may account for the strength of DL models
for improving accuracy at the expense of searching for any discriminant patterns of neural
activity. Patterns may be found even among spurious artifacts in the data acquisition
procedure or related to irregularly elicited activations performed in the MI paradigm.

As shown in the bottom row, the connectivity maps for the second scenario are derived
with Kolmogorov-Smirnov boosting masks, resulting in sets of discriminant links generated
by electrodes just over the primary motor cortex, regardless of the partition of motor skills.
It is worth noting that the connectograms achieved by GI are similar for either considered
analysis scenario. The fact that the best-performing subjects can achieve very high accuracy
even with simple classifiers is widely known. Nonetheless, the more the accuracy of subject
partitions, the more robust links elicited by the MI responses.

5. Concluding Remarks

We introduce an approach to improving the post-hoc interpretability of neural re-
sponses using connectivity features extracted from class activation maps. The Spatiotempo-
ral CAMs are computed using a CNN model and employed to deal with the inter/intra-
subject variability for distinguishing between bi-class motor imagery tasks. Specifically, we
extract the functional connectivity between EEG channels through a novel kernel-based
cross-spectral distribution estimator to cluster subjects according to their achieved classifier
accuracy, aiming to find common and discriminative patterns of motor skills. Based on
validation results on a tested bi-class database, the proposed approach proves its use-
fulness for enhancing the physiological explanation of MI responses, even in cases of
inferior performance. Although the approach may facilitate the increased use of neural
response classifiers based on deep learning, the following aspects are to be highlighted for
its implementation:

Deep-Learning based Classifier Performance. The deep model is implemented through
EEGNet, a compact CNN specially developed for EEG-based brain-computer interfaces,
which allows for reaching a bi-class accuracy of 69.7%. The additional use of proposed
connectivity masks extracted from the electrode contribution increases the accuracy to
78.2% (EEGNet+ScoreCam) on average over the whole subject set. Table 2 delivers the
accuracy of a few state-of-the-art approaches with similar discriminative deep learning
models reported recently, indicating that the proposed spatiotemporal CAM approach is
competitive. The works in [53,54] are higher accurate, though no interpretable machine-
learning models are offered. By contrast, the CNN-based approach with a close value to our
accuracy is suggested in [55], which performs data augmentation and employs Cropping
methods for improving machine learning models, allowing plotting topographic heads for
spatial interpretation.
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Table 2. Comparison of bi-class accuracy achieved by state-of-the-art approaches in GigaScience
collection. ∗ The baseline approach (FBCSP+LDA) using conventional pattern recognition methods
is also reported for comparison. The proposed CNN-based approach introducing spatiotemporal
ScoreCAMs is competitive (marked in bold).

Approach Accuracy Interpretability

FBCSP+LDA ∗ 67.7 ± 13.6 –
LSTM+Optical [56] 68.2 ± 9.0 –
EGGnetv4+EA [57] 73.4 X
DC1JNN [58] 76.50 X
MINE+EEGnet [59] 76.6 ± 12.48 X
Cropping+CNN [55] 86.5 X
Pretrained ShuffleNet [53] 87.7 –
CSP+ST+CNN-PIM [54] 97.67 ± 2.0 –

EEGNet 69.7 ± 14.5 X
EEGNet+ScoreCam (ours) 78.2 ± 10.9 X

Therefore, a broader class of training procedures should be considered to improve the
explainability of CNN-based models. To this extent, several strategies have been suggested
recently for raising the classifier performance of CNN in discriminating MI tasks, like
enhancing their convergence in [60,61], or extracting data at different time-resolutions [62];
this latter strategy may be a better choice for interpretation.

Enhanced interpretability using CNN-based Connectivity Features. This proposed
approach uses functional connectivity with kernel-based cross-spectral distribution esti-
mators to improve the computation of joint and discriminative patterns of EEG channel
relationships. These correlations are essential in interpreting patterns of the primary motor
area that become active and are elicited by motor imagery tasks. In this regard, Table 2 illus-
trates the existing balance between desirable high classifier performance and meaningful
explainability of results to be achieved by deep learning models.

CAMs have previously been reported for CNN classifiers to discover shared EEG fea-
tures across subject sets. However, we suggest extracting Functional Connectivity measures
instead of using the trained weights (like in [33,63,64]) to identify brain regions contributing
most to the classification of MI tasks. A convenient trade-off between interpretability and
accuracy is thus achieved.

Clustering of subjects according to their motor skills. This model illustrates a potential
approach to enhancing CNN classifiers to discover shared features related to EEG MI tasks
across subject sets. The use of CNN models is also increasing when screening subjects
with poor skills. In [24], for example, authors aim to detect users who are inefficient in
using BCI systems. However, in addition to identifying poor performers, explaining why
they cannot produce the desired sensorimotor patterns is essential. On the other hand,
the strength of DL models lies in their ability to improve accuracy at the expense of finding
any discriminant patterns of neural activity. As a result, DL models may estimate patterns
unrelated to the primary motor cortex, i.e., they are responses with no physiological
interpretation according to the MI paradigm.

Instead, the proposed method allows for determining the actual spatial locations of
neural responses. Thus, we propose clustering motor skills into three partitions: Group
I with high accuracy (good performing of MI paradigms and not subject to artifacts), GII
with fair accuracy (adequate MI performing but subject to artifacts), and GIII with low
accuracy (very variable MI performance of tasks and also subject to artifacts).

As future work, the authors plan to address the issue of high intra-class variability and
overfitting, specifically in the worst-performing subjects, by incorporating more powerful
functional connectivity estimators, for instance, using regularization techniques based on
Rényi’s entropy [65]. Besides, we plan to test more powerful DL frameworks, including
attention mechanisms for decoding stochastic dynamics, as suggested in [66]. Further
during-training analysis of the inter-class variability should also be conducted, specifically
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focusing on how each subject performs within different experiment runs. Our goal is to
determine if subjects learn MI tasks as they progress through the runs and whether this
leads to better performance in subsequent runs. Validation of other MI EEG data will be
carried out.
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