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Abstract: Public air quality monitoring relies on expensive monitoring stations which are highly
reliable and accurate but require significant maintenance and cannot be used to form a high spatial
resolution measurement grid. Recent technological advances have enabled air quality monitoring that
uses low-cost sensors. Being inexpensive and mobile, with wireless transfer support, such devices
represent a very promising solution for hybrid sensor networks comprising public monitoring stations
supported by many low-cost devices for complementary measurements. However, low-cost sensors
can be influenced by weather and degradation, and considering that a spatially dense network would
include them in large numbers, logistically adept solutions for low-cost device calibration are essential.
In this paper, we investigate the possibility of a data-driven machine learning calibration propagation
in a hybrid sensor network consisting of One public monitoring station and ten low-cost devices
equipped with NO2, PM10, relative humidity, and temperature sensors. Our proposed solution
relies on calibration propagation through a network of low-cost devices where a calibrated low-cost
device is used to calibrate an uncalibrated device. This method has shown an improvement of up to
0.35/0.14 for the Pearson correlation coefficient and a reduction of 6.82 µg/m3/20.56 µg/m3 for the
RMSE, for NO2 and PM10, respectively, showing promise for efficient and inexpensive hybrid sensor
air quality monitoring deployments.

Keywords: air quality; air pollution monitoring; low-cost sensors; hybrid network; machine learning;
sensor calibration; calibration propagation

1. Introduction

It is estimated that about 55% of the global population is currently situated in cities,
with an ever-increasing trend, and there are predictions that in the year 2050 the percentage
will be as high as 68% [1]. In addition to social, infrastructural, traffic, and energy con-
sumption issues that will pose significant challenges, the level of air pollution in cities will
also be affected by the increase in various pollution emitters. As a result, there will be an
increase in the number of urban zones with high levels of air pollution, which could have
a strong influence on the citizens’ health and result in adverse health outcomes (chronic
obstructive pulmonary disease, heart attacks, etc.) [1]. Heavy urban traffic congestion and
air pollution represent key health challenges for cities worldwide.

The main goal of air quality monitoring in urban areas is to detect and understand
pollution sources and trends in areas of interest. In [2], the specific goals of air quality
monitoring are defined as follows: compliance reporting against the Ambient Air Quality
Directives, information for the public, identifying long-term trends in concentrations,
elaboration of air quality plans, and assessment of the effectiveness of abatement measures.
Additionally, the environment-type classification of measuring sites is provided in [2]
as follows: urban, suburban, rural, background, traffic, and industrial. In urban air
quality monitoring, the pollution conditions could be observed at different scales, therefore
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requiring an adequate definition of monitoring use cases. In one of the urban monitoring
categorizations [3,4], monitoring locations are categorized as micro-scale locations (to
0.1 km), middle-scale locations (0.1–0.5 km), neighborhood scale locations (0.5–4 km), and
urban scale locations (4–50 km), while types of monitoring sites are categorized as curbside
monitoring, roadside monitoring, and urban background monitoring.

When taking into consideration the need to monitor specific city areas, the urban
environment suffers from an insufficient number of public monitoring stations. This is due
to their size, price and the fact that their locations are fixed. The most promising solution to
overcome this issue is the additional deployment of a number of low-cost devices (thus
making a low-cost sensor network) which will improve the detection of the sources of
pollution and personal exposure. They are easy to deploy (small size) and mount (for
example: a solid object, pillar, or wall), have wireless communication modules for real-time
data transmission, and can be installed in practically any needed location. The devices
should be placed at a height ranging from 1.5 to 4 m (in the human breathing zone). These
low-cost devices could be used to collect complementary measurements and to support
public monitoring stations by increasing spatial and temporal measurement resolution [3,4].

The selection of locations should be made in such a way as to avoid measurements
being taken in the immediate vicinity of the source of pollution. Devices should be placed
at least ten meters from the edge of main traffic intersections, and one hundred meters from
any possible pollution source. When deploying monitoring set-ups, several factors should
be considered, including the topography of the monitored area, distance from the expected
sources of pollution, available mounting locations, existing obstacles, etc.

Additionally, this provides an excellent benchmark for the creation of city pollution
maps. Pollution maps are dynamic maps that should be updated on an hourly/bi-hourly
basis since terrain structure, buildings’ environment, traffic data, and other meteorological
data (such as wind) also influence their characteristics. In order to create accurate enough
measurements for pollution maps and identify pollution hot spots, it is necessary to create
a dense enough network of monitoring devices but still consider the cost-effectiveness in
order to ensure accessibility to a large number of cities.

Devices with low-cost sensors have their drawbacks, particularly with measurement
accuracy and sensor calibration. The most intuitive way to overcome the shortcomings
of both public monitoring stations and low-cost devices, is their combined deployment,
thus creating a “hybrid sensor network” where public monitoring stations are expanded by
the usage of multiple low-cost devices. This kind of deployment allows for a much easier
process of periodic sensor recalibration without the need to physically collect the low-cost
devices and bring them into the laboratory or collocate them with a public monitoring
station for the purposes of the recalibration process. In this hybrid sensor network, the
recalibration will be achieved by correlating the low-cost device with the closest public
reference monitoring station, or by cross-calibration with the nearest recalibrated devices
in the hybrid sensor network area. Furthermore, public monitoring stations will gain the
support of complementary measurements, which are obtained by using spatially distributed
low-cost devices.

Obviously, massive use of low-cost sensors/devices along with a low number of
expensive public monitoring stations is a promising approach toward the expansion of air
quality measurement coverage and pollution map creation. Thus, in Section 1.1 the work
related to air quality monitoring solutions that are based on low-cost devices is presented.
In Section 1.2, the goals and contributions of the research study proposed in this paper are
presented.

1.1. Related Work

In the literature, there are various proposals and scenarios regarding the deployment
of a sensor network for air quality monitoring and for conducting a calibration and recal-
ibration process. First, we will discuss solutions based on low-cost devices that do not
consider calibration and recalibration aspects. Then, we will discuss solutions that consider
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calibration and recalibration aspects. Most of existing proposals are based on mobility:
either a calibrated device is moving and used in calibration/recalibration of non-moving
devices, or non-calibrated devices are moving and are calibrated when in vicinity of a
calibrated station. The large number of recent papers that address these topics indicate the
importance of an economic approach to air-quality measurement solutions. Finally, we will
present our previous research that is relevant to the study results presented in this paper.

In [5], an analysis of the network with six low-cost PM sensors deployed in Southamp-
ton, in two schools and a referent station, (which is 1 km and 2 km distant from the devices)
was performed. The collected results during a seven-month campaign were compared
with the reference data, and promising results were obtained (in the sense of result trends
and correlation with the reference results), but recalibration is not considered (although
correlation degradation is obvious after some time). In [6], the authors deployed 24 low-
cost air quality devices across Oslo, Norway to monitor NO2 pollution for three months
with the goal of creating air quality maps. The data fusion method was proposed and
evaluated, and it showed that data collected from low-cost devices together with refer-
ence monitoring stations could extract valuable information for the development of urban
air quality maps. However, sensor recalibration was not taken into consideration. The
authors in [7] deployed 40 sensor devices at London Heathrow Airport with the goal
of monitoring and distinguishing airport emissions from long transport emissions. The
sensors were first validated by comparing them with the reference monitoring station at
the airport. The analytical approach was defined and used during a five-week campaign
to calculate ratios of the airport activities in different locations of the airport. However,
the sensors’ recalibration process was not considered. In [8], the authors obtained data
from a sensor network consisting of 126 low-cost sensor devices deployed in Nanjing,
China. Data obtained from 13 existing reference stations from the same area were used
for the validation of the performance of low-cost devices. The devices were divided into
clusters based on the respective reference stations, and validation methods were proposed
for accuracy, reliability, and failure detection. By verifying performance, they concluded
that low-cost sensor networks could be a valuable solution for air quality monitoring,
but that in-field calibration and recalibration models should be applied to improve the
accuracy of the measurement. In the paper [9], the authors proposed and described a new
rapid deployment method for low-cost sensor deployment (in Taiwan) that consisted of
the following phases: preparation, implementation, and modification. First, basic input
data were defined (objectives, spatial data locations, elimination rules). Then in the next
phase, information about the desired deployment density and algorithm settings were
inserted. Finally, in the modification phase, the user could redefine the deployment density
and again evaluate the results. The obtained result was the recommended number of
sensor and deployment locations. Depending on the use case, they proposed a predefined
sensor density; for example, for industry and traffic areas, a radius of 300 m per sensor is
recommended (a sensor is placed at every 300 m), while for areas without heavy sources
of pollution, the radius is assumed to be 500–1000 m (the user could change these default
values). However, calibration and recalibration issues were not considered.

Most of the proposed recalibration schemes are based on mobile deployments, where
calibrated (in this case, reference), low-cost devices are mounted on vehicles, thus providing
virtual references when these sensors enter the vicinity of low-cost target devices. In [10],
the authors deployed a network of ten low-cost devices in fixed locations in Bari, Italy,
and one mobile device (installed on a public bus) was used to expand the measurement
coverage. Data analysis covered a period of 30 months. Results were compared to public
reference monitoring stations, and it was concluded that the usage of low-cost sensors
provided promising results for achieving the data quality objective of the indicative mea-
surements [2]. On the other hand, they concluded that for long-term sensor operation,
recalibration is of crucial importance. In [11], the authors used devices installed on vehicles
and wearable devices to calibrate static sensors (in Zurich, Switzerland) which will, later on,
calibrate sensors in their vicinity, thus creating a multi-hop calibration where calibration is
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propagated through an array of sensors. However, this kind of calibration is only effective
in preserving data consistency if the calibration error is not accumulated at each hop. In
order to reduce this error accumulation, the authors proposed a sensor array network
calibration using a multi-dimensional linear regression technique. In [12], the authors
proposed a novel algorithm to reduce error propagation in multi-hop calibration systems
(deployed in Zurich, Switzerland) which showed better performance than the ordinary least
squares method. In [13], the authors elaborated on a massive-scale air quality monitoring
network by deploying tens of thousands of sensors for air quality monitoring with fine
spatial resolution on the testbed deployment case in Helsinki. The authors proposed the
usage of vehicles with mounted low-cost devices with recently calibrated sensors to pass by
other devices in order to propagate air quality and calibration information. Experimental
results showed performance improvements, but it was concluded that in order to ensure
that recalibration would capture reference patterns as much as possible from the limited
dataset, machine learning techniques would be necessary. In [14], the authors observed a
mobile air quality monitoring system (Mosaic project, devices are mounted on buses [15] in
Hangzhou and Ningbo, China) and proposed a two-phase data calibration method that
consisted of a linear and a nonlinear part. For the linear part MLS (multiple least square)
training was used, while for the nonlinear part, random forest (RF) training was used. The
method was verified on PM2.5 measurements and claimed an improvement of accuracy by
16.4% in comparison to linear models. In [16], a hybrid sensor network architecture was
proposed that consisted of mobile and stationary devices for indoor air quality monitoring
to measure inter-zone air flow, since pollutant concentrations can vary notably even within
the same monitoring building. Mobile sensors were carried by people in order to measure
personal exposure data. For sensor accuracy correction and improvement, the Bayesian
analysis-based solution was proposed. They have developed a model for predicting the
pollutant level and have defined algorithms for hybrid network deployment in a building.
In general, approaches with mobile deployments of devices show promising results, how-
ever, due to the way data were collected, these solutions were generally lacking from the
perspective of data quantity, since for reliable calibration it is necessary to correlate data
over a longer period of time with a higher temporal resolution.

In [13], the authors proposed a so-called opportunistic and collaborative recalibra-
tion method, wherein a device with a low-cost sensor collected calibration information
whenever an opportunity arose, i.e., when the device is located close enough to a reference
station. This concept is taken further in [17], where the authors proposed an In-field Cali-
bration Transfer (ICT), i.e., a calibration method that transfers the calibration parameters
of reference sensors to target field stations in Beijing, China. The authors adopted a cali-
bration transfer approach proposed in [18,19] where calibration transfer was defined as a
calibration paradigm for sensors that did not have access to reference measurements (target
sensors) by using sensors with reference values (source sensors). In [18,19], calibration
transfer was conducted on electronic nose instruments, i.e., sensor arrays for hazardous
odor detection, while in [20], sensor measurements of concentration levels of ethanol,
ethylene, carbon monoxide, or methane were observed. In [18–20], calibrations of target
sensors were performed by transferring calibration parameters from the source sensors.
The method was proposed and proven with the idea to reduce the initial calibration over-
head and calibration costs in mass production and development, i.e., to avoid collocation
of sensors for initial calibration, while the authors [17] proposed an improvement of this
method for the recalibration (in-field calibration) process. Namely, they used an RF algo-
rithm to correct the measurements of devices that are collocated with reference stations
and considered a calibration transformation function that was obtained by optimizing the
Kullback-Leibler (KL) divergence between the probability distributions of calibrated and
uncalibrated sensor measurements. This effectively removed the need for collocation or
temporal synchronization, stating that when the probability distributions of measurements
are similar between two sensors, the calibration can be transferred between them using
a linear transformation function. They conducted experiments and concluded that ICT
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method was able to accurately calibrate the target sensors, by comparing the results of the
calibration with available true reference stations.

Authors [21] analyzed the PM2.5 monitoring network deployed in Denver to evaluate
different calibration models across the network. First, they evaluated 21 calibration models
that included temperature (T), relative humidity (RH), and dew point (D) data; 16 models
were multivariate regression calibration models (adapted from [22]) and 5 models relied
on machine learning techniques. Root mean square error (RMSE) and Pearson coefficient
r were used for evaluation. A detailed comparison was provided, and suggestions were
given regarding which calibration model could be most useful for usage in a specific use
case. As the next step, they evaluated calibration transfer possibilities from co-located
referent device sites (five) to the rest of the network and statistically compared the errors
in predictions for each device. Different corrections were applied based on an entire
dataset correction, an on-the-fly correction, a two-week winter correction and a two week
winter + two-week spring correction (for the first two proposed corrections, more complex
calibration models showed better prediction performances). In conclusion, the authors
claimed that some calibration models performed well but also could result in large errors
at specific sites and that metrics developed in this paper could be used for the evaluation
of transfer metrics.

In our previous work, we focused on the development of a methodology for the
calibration of off-the-shelf air quality sensors [23]. The conducted calibration process was
based on the use of statistical algorithms and offset values obtained from the reference
measurement stations. The obtained results have shown that low-cost sensors could be
used with a relatively high reliability as a complementary network to reference monitoring
stations, however, it was also concluded that every sensor has its own sensitivity to temper-
ature and relative humidity that influence the measurement accuracy. In [24], we explored
methods to additionally improve the calibration algorithms with the aim to increase the
measurement accuracy by considering the impact of temperature and humidity on the
readings by using machine learning. A detailed comparative analysis of linear regression,
artificial neural network, and random forest algorithms were presented, analyzing their
performance on the calibration of measurements of CO, NO2, and PM10 particles, with
promising results measured by achieved increase of correlation coefficient between the
reference monitoring station and the low-cost device. Furthermore, the concept of a Hybrid
Sensors Network Approach was proposed.

1.2. Objective and Contributions of the Study

In this paper, we will present a method for calibration transfer and evaluate it on
a network of 10 low-cost sensors and a single reference station. We observed NO2 and
PM10 measurements during two different months and evaluated a concept of calibration
propagation through the sensor network. As previously described, there are many pa-
pers that consider hybrid sensor networks and that discuss the possibilities of sensor
calibration transfer. Most of these solutions use mobility to achieve collocation between a
non-calibrated device and a reference station. However, in many cases, vehicles used can
be pollution sources (for example, buses) which affects the measurements, and thus, the
calibration/recalibration process. The method proposed in this paper, however, focuses on
a different manner of calibration transfer. The proposed calibration focuses on the density
of a sensor network and machine learning algorithms. The devices are stationary (not
mobile) and can be placed in proper locations that are not in the immediate vicinity of
pollution sources. With this method, there is no need for laboratory usage, which could
be expensive, or mobile monitoring stations and occasional collocation periods with a
reference station, which could suffer from insufficient collocation data. Thus, our solution
is very economic and does not suffer from occasional collocation, but the collocation is
permanent. The study proposes a “multi-hop” calibration concept where calibration is
transferred through a chain of low-cost devices from a single reference station. Since there
is no mobility of low-cost devices and collocation is permanent, our solution is able to use
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acquired data for continuous recalibration. The proposed “multi-hop” calibration concept
represents the main contribution of this paper. The method relies on the proximity of
devices which makes them “collocated” just enough that the machine learning algorithms
could use one as a reference for the other for general calibration purposes, but would
still have subtle differences because of the raw uncalibrated measurements of each device
that are used as input to the trained machine learning algorithms. This method would
enable a network of devices that could continuously calibrate each other while still having
the ability to be sensitive to their local pollutant occurrences. The observed pollutants
(NO2 and PM10) are measured with different sensor types (chemical and optical), and to
the best of the authors knowledge, are not present in current hybrid network calibration
transfer research. This also represents an important contribution of the paper. We show
that the proposed “multi-hop” calibration concept is successful, thus, representing a very
promising solution that could be used as the basis of a highly economic, in both installation
and maintenance aspects, air quality monitoring platform that would be attractive to the
governments of many cities.

The paper is organized as follows: In Section 2, the used measurement devices and
initial calibration are presented. The hybrid sensor network concept is described, as well
as the calibration transfer concept. In Section 3, the performance evaluation results are
presented, including a discussion about the achieved results and paper contribution. Finally,
Section 4 concludes the paper and provides future work directions.

2. Materials and Methods
2.1. Measurement Devices

Currently, there are many low-cost devices available on the market, with different
performances, depending on which sensors (measurement range, accuracy, precision)
and transmission technology (GPRS, 3G, LTE, NB-IoT, WiFi, LoRa, BLE) they use. Based
on the manufacturer’s available data, these devices are, on average, 25 times cheaper
than public monitoring reference stations equipped with a set of sensors that measure
the same pollutants. In this study, 10 DunavNET ekoNET devices AQ10x (DunavNet,
Novi Sad, Serbia) [25] for outdoor air quality monitoring were used for measurements
and data collection in Novi Sad, Serbia. Each device contained the following sensors:
Alphasense NO2-B43F gas sensor (Alphasense. New York, NY, USA) (measurement range:
0–20 ppm, unit µg/m3, accuracy ± 2% FS), Plantower PMS7003 optical counters PM10
(Plantower, Beijing, China) (measurement range: 0~1000 µg/m3, accuracy ± 2% FS), and
Bosch BME 280 (Bosch, Gerlingen, Germany) air temperature (T) and relative humidity
(RH) sensors. Measurements were collected with a 1 min time resolution and transferred
via GPRS to a cloud database—Microsoft Azure (Microsoft, Redmond, WA, USA), where
the measurements were processed and stored. Additionally, data were also collected from
a single public air quality Automatic Monitoring Station run by the Serbian Environmental
Protection Agency (SEPA) located in the city of Novi Sad, which was used as a reference
monitoring station in this paper. Devices were deployed at a height of about 2 m.

2.2. Hybrid Sensor Network

Observed hybrid sensor network for air quality monitoring consisted of 10 AQ10x
devices with the same configuration (NO2, PM10, T and RH sensors) and one SEPA moni-
toring reference station (Novi Sad, Rumenacka, urban traffic) equipped with the same set
of sensors as the low-cost sensor network with AQ10x devices. In the reference station,
PM10 was monitored by using Tapered Element Oscillating Microbalance (TEOM) tech-
nology. The network was installed in the city of Novi Sad, and Figure 1 shows the spatial
arrangement of the installed devices with the low-cost sensors (marked ID1-ID10) and the
reference monitoring station. The low-cost devices were installed and governed by PUC
(Public Utility Company) Informatika, Novi Sad, Serbia. The devices were mounted in
the courtyards of available public institutions, at least ten meters away from main roads
(urban background). In the observed monitoring urban area, there are no specific sources of
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pollution, and the air quality is mostly affected by traffic and transport, dust, and domestic
heating-related pollution.
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The area covered by the hybrid sensor network was marked with a black circle with a
half-diameter of 2.4 km. The public monitoring station was slightly dislocated in relation
to the center of the imaginary circle, which did not significantly affect the analysis and
general conclusions.

2.3. The Initial Calibration

As the first step in building a hybrid sensor network, initial calibration of all low-cost
devices was conducted by using the data from a reference monitoring station. All devices
were collocated for seven consecutive days in November. In this initial calibration phase,
the most common method of linear regression calibration was used [26]. The calibration
was performed for each individual low-cost sensor and for each pollutant separately, using
the low-cost sensor measurements as inputs and the reference pollutant measurements as
outputs. A simple algorithm was used in this step as the goal was to make the devices
have a similar output value range so that recalibration could later be performed and would
provide more accurate calibration models since a greater variety and quantity of data
would be available. The coefficients obtained in each individual calibration were applied to
the raw measurements of the corresponding low-cost device, and all further analysis was
performed on these calibrated values. The commonly used and widely accepted metrics,
RMSE (Root Mean Square Error) and Pearson correlation coefficient (r) [27] were later used
to evaluate the recalibration performance.

Since the measurement accuracy of every single low-cost sensor highly depends on the
sensor’s chemical and physical characteristics, and having in mind that every sensor could
have different measurements, it was of high interest to mutually compare the measurement
correlation of observed devices. Although the measurement correction applied through the
linear regression algorithm does correct the overall range of output values for the sensors,
it does not influence the Pearson correlation coefficient. For this reason, the comparison
was performed to see if the sensors followed similar trends. For data from the collocation
period, correlation coefficients between measurements of different low-cost devices are
shown in Figure 2 for NO2 and Figure 3 for PM10.
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The agreement between the measuring devices for NO2 can be considered high, with
the lowest correlation coefficient being 0.63. It is interesting to note, however, that the
variation between measurement agreement does exist and that certain devices had a nearly
perfect correlation (e.g., ID9 and ID10), while others do correlate, but to a lower degree.
This indicates that to create a perfect correspondence between two low-cost sensors or a
low-cost sensor and reference measurement for NO2, and non-linear correction would be
necessary.

Unfortunately, after the initial sensor calibration, the NO2 sensor of the device ID8
malfunctioned, resulting in the lack of NO2 measurements from this device, which is why
ID8 is omitted in the following section: Results and Discussion of the Calibration Transfer
Evaluation.

A slightly different situation can be observed for PM10 measurements as compared
to NO2. Although there were variations in the correlation, all stations except ID6 had a
correlation coefficient of 0.99 or higher, which indicates a very high degree of conformity.
Furthermore, the ID6 station, although it had the lowest correlation coefficients with other
stations, still reached values of 0.89, which indicated a high degree of agreement. The
agreement between relative humidity and temperature measurements of low-cost devices
and the reference device was sufficiently high, which indicated good usability of the
weather estimation capabilities of the low-cost devices without any need for corrections.

For the purposes of evaluating sensor degradation over time, we would suggest a
short collocation period with a reference monitoring station on a yearly basis to ensure that
the sensor sensitivity is sufficiently high.
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2.4. The Concept of Calibration Propagation

After the initial collocation period, during which the initial calibration was performed
using linear regression, the sensors were placed in real conditions, with a distance from
the reference station ranging from 0.7 to 3 km of the reference station, with the spatial
arrangement shown in Figure 1.

The concept of calibration propagation was based on placing low-cost stations in a
“row”, where each station was calibrated based on the previous one, while the first low-cost
station was chosen to be the closest to the reference one. In the context of a larger and
more complex sensor network, the implementation would imply a matrix of the distance
of each “low-cost” device to each, where the first would be determined as the closest to
the reference station, and then every other low-cost device would be selected based on
availability and distance from the available “reference” (i.e., calibrated station). In the order
that was set for the validation of the solution, the ID of the station also indicated its order in
the described list, and two “directions” of calibration were investigated. Direction 1 implied
that station IDi was calibrated based on station IDi−1, for i greater than 1, and station ID1
was calibrated on the basis of reference. Direction 2 implied that ID10 was calibrated by the
reference, while IDi was calibrated based on IDi+1 for i ranging from 9 to 1.

The calibration involved training a selected machine learning algorithm (ML) that
solved the regression problem, i.e., mapping the input data of the ML algorithm (“low-cost”
measurements and meteorological parameters–temperature and relative humidity) to the
output data (measurements from the reference station). As part of the validation of the
developed concept, the algorithm random forest (RF) was implemented and used for the
stated calibration. Multiple ML algorithms could have been used at this step, but for the
sake of the calibration propagation process, only RF was selected, based on the results of
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the authors’ previous work [24], and to make the analysis performed in this paper easier to
interpret.

We will now give the explanation for the calibration propagation for direction 1,
with direction 2 having the exact same principle, just the opposite order of calibration
propagation.

Within the calibration propagation in direction 1, the algorithm RF1, which corre-
sponds to station ID1, was first trained. This algorithm took low-cost measurements of
the specific pollutant as input data, relative humidity and temperature, and it took the
values of the observed pollutant measured from the reference measuring station as output
data. Through the training process, the algorithm changed its parameters and “learned”
to predict the output values based on the input values. In the next step of calibration
propagation, the algorithm RF2 corresponding to station ID2 was trained, with the fact that
the reference measurements were not taken from the reference measuring station but from
station ID1 after calibration (output of algorithm RF1). This process continued until all
low-cost stations were calibrated. The steps for calibration propagation performed for a
single month for NO2, are illustrated for devices ID1 and ID2 in Figure 4.
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As part of the performed algorithm validation, all “low-cost” stations were in the
vicinity to the real reference station, so the results for each station in the evaluation period
were obtained by comparison with the real reference station, but the idea was to show that,
after calibration, low-cost stations can be used as a reference for other low-cost stations. The
results obtained during the evaluation period included an increase in the r and a decrease
in the RMSE parameter.

The concept of calibration propagation involved a chain transfer of calibration during
the first three weeks of each month and an evaluation of the transferred calibration during
the last week of the given month. Therefore, based on the data from the first 3 weeks
during the observed month, a random forest algorithm was trained, which, based on
the data from the first low-cost station (ID1), tried to predict the values measured at the
reference measuring station. This procedure was performed separately for NO2 and PM10
measurements, but in both cases data on relative humidity and air temperature from low-
cost devices were used. From this moment, for the further training of a separate algorithm
for the second low-cost measuring station (ID2), the data from the measuring station ID1,
corrected by the previously developed RF algorithm, were considered as reference values.
In this way, using data from the first three weeks of the month, 19 RF algorithms were
developed (one each for NO2 and PM10, for each low-cost station) where each station relied



Sensors 2023, 23, 2815 11 of 19

on corrected data from the previous one (in the order shown in Figure 1.), except for the
first measuring station that relied directly on the reference one.

For the purposes of further analysis, the methodology was applied to data from two
different months: February and May. These months were chosen as representatives of
different seasons, and hourly measurements during these months were used to analyze
the possibility of propagating calibration from device to device. For the analysis, only data
points that contained valid measurement data from all sensors (low-cost pollutant, relative
humidity, temperature and reference measurements) were included.

The processing of the data, as well as the ML algorithm implementation and data
visualization, were completed in the Python programming language, using the sklearn and
matplotlib libraries [28–30].

3. Results and Discussion of the Calibration Propagation Evaluation

Testing of the developed algorithms was performed on the data of the last week for
evaluation that would be similar to a real application. The measurements from each low-
cost measuring station, corrected by the appropriate RF algorithm, were compared with the
measurements from the real reference station. The results obtained during the evaluation
were presented through the increase of the r and a decrease in the RMSE parameter after
calibration.

This process tests the effectiveness of chain calibration propagation from device to
device, assuming that all stations are close enough to the reference for the purposes of
this comparison. The ranges of measured variables for the reference station and low-cost
stations (before calibration propagation) are given in Table 1.

Table 1. Measurement ranges in µg/m3 (average ± standard deviation) for NO2 and PM10.

Device ID
February May

NO2 PM10 NO2 PM10

Ref. 31.5 ± 18.1 37.7 ± 31.0 21.3 ± 12.5 21.6 ± 11.3
ID1 28.7 ± 1.0 49.4 ± 12.4 28.5 ± 0.8 40.7 ± 4.8
ID2 29.3 ± 1.5 55.5 ± 19.2 28.1 ± 2.0 41.6 ± 5.8
ID3 23.9 ± 4.4 47.1 ± 11.2 22.5 ± 4.6 39.5 ± 3.4
ID4 18.9 ± 0.7 47.3 ± 4.8 19.6 ± 0.8 43.4 ± 2.1
ID5 21.8 ± 0.8 42.8 ± 6.8 21.2 ± 1.2 35.8 ± 1.7
ID6 28.1 ± 2.7 49.8 ± 12.5 28.1 ± 3.2 41.2 ± 5.1
ID7 27.5 ± 3.3 52.2 ± 15.7 27.1 ± 4.8 42.1 ± 5.8
ID8 / 47.7 ± 4.3 / 44.7 ± 1.9
ID9 26.2 ± 3.1 46.9 ± 11.1 22 ± 3.3 39.3 ± 3.6

ID10 26.0 ± 4.5 49.9 ± 13.4 24.5 ± 4.8 39.0 ± 3.7

3.1. February Results

The results of the calibration propagation evaluation performed in February are shown
in Table 2 and in Figure 5.

The results shown in Table 2 indicate a clear improvement in the NO2 calibration prop-
agation for both directions and for both the correlation coefficient and the RMSE. On the
other hand, there is quite a prominent variability between the measurement improvements
between the stations. The direction of calibration is also shown to influence the improve-
ment of parameters, indicating that the order in which the calibration transfer is performed
can indeed influence the results for individual stations, but the overall improvement was
still present. The visual presentation of the calibrated data given in Figure 5 also illustrates
the improvements quite well. Notably, the device ID1, ID2, ID4 and ID5 had quite a narrow
output of values prior to the calibration, but is shown to have considerably improved for
both directions of the calibration propagation.
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Table 2. Results of the NO2 calibration propagation in February, improvements in comparison to the
parameters before calibration.

Device ID
r Increase RMSE

[
µg/m3 ]

Decrease

Direction 1 Direction 2 Direction 1 Direction 2

ID1 0.01 0.01 3.27 2.54
ID2 0.15 0.20 1.90 1.84
ID3 0.12 0.21 1.96 2.77
ID4 0.18 0.17 6.82 6.58
ID5 0.11 0.06 4.16 3.69
ID6 0.06 0.03 2.47 1.95
ID7 0.24 0.22 1.34 1.14
ID9 0.17 0.16 1.22 0.45
ID10 0.17 0.13 1.97 0.96
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The results obtained for the PM10 measurement calibration are shown in Table 3 and
Figure 6.

Table 3. Results of the PM10 calibration propagation in February, improvements in comparison to the
parameters before calibration.

Device ID
r Increase RMSE

[
µg/m3] Decrease

Direction 1 Direction 2 Direction 1 Direction 2

ID1 0.06 0.06 3.33 3.76
ID2 0.07 0.10 3.02 6.52
ID3 0.08 0.09 3.05 3.27
ID4 0.04 0.05 3.91 4.09
ID5 0.05 0.04 2.11 1.72
ID6 0.08 0.11 4.19 4.67
ID7 0.06 0.09 4.10 4.71
ID8 0.05 0.06 5.27 5.05
ID9 0.09 0.14 3.05 3.25
ID10 0.11 0.14 4.20 4.74
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The results obtained for the PM10 measurements in February draw similar conclusions
as the ones for NO2. The improvements for each low-cost station are present, but they
do vary from station to station. The correlation plots that are displayed in Figure 6. also
show improvements, especially in the range of values that come as the output of the
low-cost devices. The correlation between the calibrated sensor measurements and the
reference ones can be observed to be higher for PM10 than for the NO2, which stands in line
with the fact that sensors initially had a higher correlation between themselves for PM10
measurements than for the NO2 measurements.

3.2. May Results

The results obtained in the month of May, for NO2, are shown in Table 4 and in
Figure 7.

Table 4. Results of the NO2 calibration propagation in May, improvements in comparison to the
parameters before calibration.

Device ID
r Increase RMSE

[
µg/m3] Decrease

Direction 1 Direction 2 Direction 1 Direction 2

ID1 0.10 −0.01 1.56 1.09
ID2 0.35 0.23 1.61 1.34
ID3 0.28 0.32 0.52 1.21
ID4 0.27 0.20 1.06 0.45
ID5 0.23 0.16 −0.28 −0.81
ID6 0.33 0.28 2.60 1.93
ID7 0.32 0.26 2.35 1.45
ID9 0.24 0.27 0.25 −0.2
ID10 0.17 0.13 0.72 −1.02

The NO2 measurements in May show overall similar trends to the ones from February,
with a couple of slight differences. The RMSE improvements are not always consistent, with
the negative values indicating an increase in the parameter. The correlation of the sensors is,
on the other hand, improved for all sensors except for sensor ID1 in direction 2. The output
ranges of ID1, ID2, ID4 and ID5 are still quite narrow, and despite varying improvements
in the metrics, it can be observed in the figure that their output range was widened. The
lack of improvement of correlation of ID1, for direction 2, can also be observed in Figure 7,
especially when comparing the results with the ones from direction 1.

Lastly, the results of the PM10 calibration propagation for May are given in Table 5 and
Figure 8.

Table 5. Results of the PM10 calibration propagation in May, improvements in comparison to the
parameters before calibration.

Device ID
r Increase RMSE

[
µg/m3] Decrease

Direction 1 Direction 2 Direction 1 Direction 2

ID1 −0.08 −0.08 14.33 15.76
ID2 0.03 0.03 15.36 16.76
ID3 0.11 0.13 14.90 15.45
ID4 0.00 0.02 18.73 19.25
ID5 −0.03 −0.05 11.47 11.64
ID6 0.10 0.10 16.22 16.16
ID7 0.12 0.10 17.19 16.90
ID8 −0.09 −0.07 20.56 20.25
ID9 0.04 −0.02 14.59 13.39
ID10 0.13 0.01 14.96 12.74
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The results of the PM10 calibration in May show several differences in comparison to
the February results. First, the correlation improvement is not present for all devices, with
devices ID1, ID5 and ID8 having a decrease in the r value for both directions. The values of
the PM10 are also much lower than they were in February, with the maximum values being
around 80 µg/m3 in May, while the maximum values of PM10 in February were around
200 µg/m3. This is to be expected as PM10 emissions are higher in colder months due to the
heating season. This could also be the reason for the differences in correlation performance.
On the other hand, clear offsets for all sensors can be seen visually on the uncalibrated data
in Figure 8., and the offsets are considerably improved after calibration, which is shown
both in the RMSE parameter and on the visual presentation. The cause of this offset before
the calibration propagation is probably the deterioration of sensors, as the PM10 sensors
tend to have increased particle residue over time. The sensors measure the dispersion of
laser light, which is caused by the particles, so the gathered particle residue could cause
more laser dispersion and, therefore, an overestimation of values.
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The presented data indicate several conclusions. First of all, there is a general im-
provement for the RMSE parameter for PM10 measurements, which indicates the successful
operation of the developed algorithms and the successful chain transfer of the calibration.
Additionally, it can be noted that in the month of February, there was a general noticeable
improvement for both the r factor and the RMSE factor for all stations. For the month of
May, improvement is mostly present, but not exactly for every metric and every device. An
important conclusion is that although one of the devices does not benefit from calibration,
it certainly does enable subsequent devices to be calibrated and thus does not break the
chain.

The maximum improvement of the r factor, for a single low-cost device, for NO2 was
0.35 and for PM10 was 0.14. For the RMSE, the best results were a decrease of 6.82 µg/m3

for NO2 measurements and 20.56 µg/m3 for PM10 measurements. The summary of the
obtained results in terms of the average values and standard deviations of r and RMSE for
all low-cost devices can be seen in Table 6.
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Table 6. The summary of the obtained results for all low-cost devices before and after calibration
propagation.

Evaluation
Month and
Pollutant

r before
Calibration

(Mean ± std)

r after
Calibration

(Mean ± std)

% of r
Increase

RMSE[
µg/m3]
before

Calibration
(Mean ± std)

RMSE
[
µg/m3]

after
Calibration

(Mean ± std)

% of RMSE
Decrease

NO2 Feb 0.38 ± 0.14 0.51 ± 0.09 34.2 17.64 ± 1.51 15.03 ± 0.90 14.8
PM10 Feb 0.43 ± 0.03 0.50 ± 0.03 16.3 31.39 ± 0.96 27.49 ± 0.94 12.4
NO2 May 0.29 ± 0.08 0.46 ± 0.05 58.6 11.43 ± 0.77 10.55 ± 0.58 7.7
PM10 May 0.38 ± 0.03 0.41 ± 0.06 7.9 23.50 ± 2.25 7.67 ± 0.62 67.4

The results presented in Table 6 show that on average, the increase of r for NO2 was
34.2% and 58.6% for the two observed months, indicating a clear improvement, especially
in May. The reduction of RMSE was not as prominent in terms of percentages as the r for
NO2, but it is still present. For PM10, the improvements in terms of metric percentages are
reversed. The r value has an improvement for both months, but it is smaller than NO2. The
decrease of the average PM10 RMSE value is comparable to the NO2 decrease in February,
but in May the decrease of the RMSE value was quite substantial (67.4%). Considering the
deterioration that can occur in low-cost sensors, a benefit for both electrochemical (NO2)
and optical (PM10) sensor can be obtained, as shown by the data displayed in Table 6.

The concept implemented in this paper relies on the fact that ML algorithms (in this
case, RF) learn to predict data on the train set quite well, but if they are implemented
with enough data and with the appropriate amount of complexity, they will not overfit.
Overfitting implies that the algorithm adapts the parameters to the data on the training
set too much, rendering it useless when obtaining predictions for data points out of the
training set. If the algorithms are implemented properly, the concept proposed in this paper
assumes that with a grid of sensors that is dense enough (approximately one device for
every 2 km2 in this study), two adjacent sensors can be effectively collocated, and one can
be used to calibrate another. By ever so slightly changing the reference values through
the calibration propagation chain (from the initial reference to the RF predictions of the
appropriate sensors), we believe that over time, the spatial differences between the sensors
will be accounted for. The RF algorithms will learn to correct the measurements in terms of
RH and temperature, but will take into account local changes that occur due to them being
present in the RF training process of their predecessor. This offers a method for calibration
that would not require any moving of the devices and is fundamentally a different concept
from the ones present in the literature [17,21]. The drawback of the evaluation of the
proposed method in this paper is that all low-cost stations were in the vicinity of a single
reference station. The test which would test our hypothesis in a way that would be more
similar to real-world applications is having at least two reference stations connected by a
long chain of low-cost devices. However, the initial concept of propagating the calibration
in a circle around the reference station has shown promising results (with two different
directions considered) and could possibly be used in combination with other calibration
transfer methods [17,21] to provide a more stable system.

4. Conclusions

The proposed solution introduces a new method for calibration propagation of low-
cost sensors in a hybrid network consisting of a reference measuring station and a larger
number of devices with low-cost sensors, which has not been sufficiently analyzed in the
available literature, especially for the NO2 and PM10 measurements. After the application
of the proposed calibration propagation method, there was an improvement in the RMSE
parameter for the measurements, which indicates the successful operation of the developed
algorithms and the successful chain transfer of the calibration. Another result of the applied
method was an overall improvement of the r coefficient. An important conclusion is that
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although one of the devices did not benefit from calibration, it certainly successfully enabled
subsequent devices to be calibrated and thus did not break the chain. The proposed method
can be effectively used in a hybrid sensor network in general for sensor calibration and
recalibration, and if one of the sensors begins to show signs of inaccuracy, recalibration
can be performed by correlation with a reference station or cross-calibration compared
to other recently recalibrated devices in that area. By applying this method, significant
savings could be achieved during the sensor recalibration process since it is not necessary to
physically move the devices to the measuring station or to a laboratory in order to perform
the sensor recalibration. In addition, by enabling large-area coverage with low-cost sensors
through the proposed calibration transfer method (propagating through a chain of low-cost
devices), a lower number of expensive reference stations can be used, and a denser network
consisting of only low-cost devices could be implemented with increased reliability.

The directions for future work would include observing other pollutants and analyzing
larger network systems, including the analysis of the necessary sensor grid density for
various pollution monitoring applications. Developing and testing the pollution map
creation potential would also be of interest, as well as implementing calibration algorithms
that do not rely on single point measurements, but rather on sequences of measurements,
focusing particularly on convolutional neural networks.
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