
Citation: Wang, Z.; Li, H.; Ma, L.

Modern Synergetic Neural Network

for Synthetic Aperture Radar Target

Recognition. Sensors 2023, 23, 2820.

https://doi.org/10.3390/s23052820

Academic Editors: Ganggang Dong,

Yinghua Wang and Jia Duan

Received: 12 December 2022

Revised: 2 March 2023

Accepted: 3 March 2023

Published: 4 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modern Synergetic Neural Network for Synthetic Aperture
Radar Target Recognition
Zihao Wang , Haifeng Li * and Lin Ma

Faculty of Computing, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District,
Harbin 150001, China
* Correspondence: lihaifeng@hit.edu.cn; Tel.: +86-137-0480-4525

Abstract: Feature extraction is an important process for the automatic recognition of synthetic
aperture radar targets, but the rising complexity of the recognition network means that the features
are abstractly implied in the network parameters and the performances are difficult to attribute. We
propose the modern synergetic neural network (MSNN), which transforms the feature extraction
process into the prototype self-learning process by the deep fusion of an autoencoder (AE) and
a synergetic neural network. We prove that nonlinear AEs (e.g., stacked and convolutional AE)
with ReLU activation functions reach the global minimum when their weights can be divided into
tuples of M-P inverses. Therefore, MSNN can use the AE training process as a novel and effective
nonlinear prototypes self-learning module. In addition, MSNN improves learning efficiency and
performance stability by making the codes spontaneously converge to one-hots with the dynamics
of Synergetics instead of loss function manipulation. Experiments on the MSTAR dataset show
that MSNN achieves state-of-the-art recognition accuracy. The feature visualization results show
that the excellent performance of MSNN stems from the prototype learning to capture features that
are not covered in the dataset. These representative prototypes ensure the accurate recognition of
new samples.

Keywords: SAR target recognition; feature extraction; fusion model; synergetic neural network;
autoencoder; prototype learning

1. Introduction

With the development of synthetic aperture radar (SAR) technology, the explosive
growth of SAR images has presented new challenges for highly accurate target recogni-
tion. Compared with manual feature extraction methods [1–4], deep learning techniques
represented by the autoencoder (AE) enable the automatic extraction of target features [5],
achieving a better performance with improvements in efficiency, and are therefore widely
used in SAR image recognition tasks. With the development of deep learning, the basis
model evolved from stacked AE [6–8] and sparse AE [9–11] to convolutional AE [12–14].
The evolution of the model enhances its accuracy. However, with the rising complexity
of the network structure, the extracted features are implicitly and increasingly abstracted
inside the network, making it difficult to determine whether the features are effectively
extracted and to explain the excellent performance of the network.

During the application of AE to SAR, a fusion model of AE and the synergetic neural
network (SNN) is proposed [15]. AE-extracted features are transmitted to SNN to improve
the robustness of classification. However, many outstanding SNN characteristics are
not fully utilized. SNN handles non-binary data [16–18] with an excellent theoretical
performance [19], and all its attractors in the dynamic system correspond to valid memories.
These characteristics mean that the SNN’s classification is actually an association between
the features and the extracted prototypes [20–22]. SNN’s simulation of associative memory
achieves remarkable results in image retrieval [23], face recognition [24], and semantic

Sensors 2023, 23, 2820. https://doi.org/10.3390/s23052820 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9404-8627
https://orcid.org/0000-0002-2534-2299
https://orcid.org/0000-0002-8172-5788
https://doi.org/10.3390/s23052820
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052820?type=check_update&version=2


Sensors 2023, 23, 2820 2 of 13

role annotation [25,26]. Its synergetics-based dynamics [27] can improve the recognition
performance of the network and optimize the pattern extraction process by constructing an
attractor–prototype correspondence. Therefore, significant breakthroughs can be obtained
from the SNN-optimized AE feature extraction for recognition performance enhancement.

In this paper, we investigate the fusion method of AE and SNN and propose the
modern SNN (MSNN) model. More than a decade before the formal introduction of AE,
researchers showed that the weight matrices of the encoder and the decoder from single-
layer linear AE are mutual M-P inverse if the loss function reaches a stationary point,
including one global minimum and multiple saddle points [28], which are precisely in
line with the requirements of the SNN prototype and adjoint matrix. Inspired by this
study, we extended this conclusion to multilayer nonlinear AE and prove that its weight
matrices can be regarded as multiple sets of M-P inverses during convergence. Next, we
proposed MSNN. We treated the encoder and decoder as the generalized adjoint and
prototype features of SNN and used the pattern extraction of the AE to realize nonlinear
prototype self-learning. The synergetic dynamics allow for the codes of MSNN to converge
to one-hot in a more stable and controllable manner than sparse or adversarial AEs. The
binarized codes can be efficiently visualized through associative memory. Experimental
results on the MSTAR dataset [29] show that MSNN outperforms sparse AEs, marginally
outperforms convolutional AE without coding restrictions, and effectively visualizes the
extracted features. Visualization results show that the self-learned prototypes reconstruct
the sample features not contained in the dataset, and the reconstructed images are noise-free,
which proves that the MSNN can successfully learn unobserved representative features for
target recognition.

The objective of this paper is to propose an SNN-AE fusion model MSNN to learn
nonlinear prototypes as representative features of SAR images to improve recognition
accuracy. The contributions of this paper are (1) proposing the fusion model of SNN and
AE with complementary strengths, (2) proposing the prototype self-learning method to
enhance feature representativeness and visualization, and (3) attributing the recognition
performance of deep learning to the effective learning of unobserved features.

This paper is structured as follows. Section 2 provides the background of the study.
Section 3 introduces the fusion model MSNN. The first two sections provide the theoretical
basis. Section 3 describes MSNN’s working process and learning method. Section 4
demonstrates the experiment configurations, results, and analysis. Section 5 summarizes
the whole paper and offers the limitations, unexplored perspectives, and future directions
of our study. This paper proposes a novel artificial neural network model to solve the
feature recognition problem of SAR images, which may be of great interest to radar and
artificial intelligence scientists, researchers, and trainees and may provide assistance in
their research.

2. Background
2.1. SNN Overview

Synergetics use dynamic systems to study the dynamic process of multiple subsystems
from disordered states to ordered states [27]. SNN, as an application of synergetics for
associative memory tasks in computer science, considers the dynamic query pattern x as a
disordered state and the static memory v as an ordered state and uses the dynamical system
to form the variation from the query pattern to a stored memory in order to simulate the
human associative memory process. For the query pattern x and the matrix of the static
prototypes V = [v1, . . . , vN ] representing memories, the updated formula of SNN [19] with
the default hyperparameter setting is as follows:

ξ = V+x (1)

ξnew = Syn(ξ) = γ

(
ξ3 + ξ

2‖ξ‖2
2
+

(
1
γ
− 1
)

ξ

)
(2)



Sensors 2023, 23, 2820 3 of 13

xnew = Vξnew (3)

where V+ is the Moore–Penrose inverse of V [30,31], Syn can be interpreted as a synergetics-
based activation function, and γ is the learning rate. Equation (3) is derived from the
enslaving principle of synergetics, representing the dynamics of v, which are dominated
by ξ. The variation in x is derived through the dynamic update to the ξ. Equation (1)
transforms x to ξ, and Equation (2) updates ξ. The network repeatedly takes xnew as the
new input until it no longer changes, at which point the network converges. As shown in
Figure 1, SNN converges to three kinds of stationary points: the target stable point, the
saddle point, and the local maxima point. The target stable point is ξ, which reaches the
positive or negative one-hot encoding, which is the general case. The network outputs a
single prototype ±v, reflecting the association from x to v. The saddle point is ξ, reaching
multiple identical non-zero values encodings that stem from multiple equal extremes in
the initial value of ξ. The local maximum point is that all elements of ξ are initialized
with 0; the network cannot be updated due to the division by 0 steps. SNN restricts
the independence of all v and their number to less than its dimension, such that V+V
is the identity matrix. Two consecutive iterations of the network were examined and
substituted (3) into (1), ξ = V+xnew = ξnew. Thus, the update formula can be simplified to
the repeated application of Syn to ξ.

0 10 20 30
iterations

0.0

0.5

1.0

ξ  

(a) Onehot

0 10 20 30
iterations

−1

0

1

ξ  

(b) Negative onehot

0 10 20 30
iterations

0.0

0.5

1.0

ξ  overlapped ↓

(c) Saddle point

0 10 20 30
iterations

0.0

0.5

1.0

ξ  

overlapped ↓

(d) Local maximum

Figure 1. SNN’s convergence to stationary points. Curves with different colors represent different
order parameters. In the figure, (a,b) converge to the target stable point, and the positive or negative
one-hot, i.e., one-order parameter converges to ±1, while others converge to 0; (c) converges to
the saddle point that stems from multiple identical extreme values in ξ; (d) converges to the local
maximum point that stems from the zero-vector initialization of ξ. Note that this chart is only for
representation. The divide-by-0 error terminates the iteration in the update formula.

2.2. Relation of Linear AE Weights

For a single-layer, linear, unbiased, activation-free AE, the single global minimum of
the loss function corresponds to the encoder–decoder weights, which are mutually M-P
inverse. Suppose the covariance matrix of the trainset is full rank and the loss function
contains a global minimum and multiple saddle points; when the global minimum is
reached, the network output is an orthogonal projection to the span of eigenvectors of the
covariance matrix, and the network is equivalent to an orthogonal projection matrix [28].
By Moore’s definition of the M-P inverse, the weight matrix of the encoder and the decoder
are mutually M-P inverse [30], the decoder matrix is composed of eigenvectors, and the
codes are the linear combination weights.

3. MSNN

We propose an AE-SNN deep fusion model MSNN by proving that the global mini-
mum converged stacked or convolutional AE weights can be divided into tuples of M-P
inverses and are suitable for the generalized prototype and adjoint matrices. MSNN
replaces the adjoint and prototype matrices with the AE’s multilayer structure, so the
prototype learning method is upgraded to nonlinear.



Sensors 2023, 23, 2820 4 of 13

3.1. Stacked AE for Prototype Learning

The weights of the global minimum-converged AE can be divided into tuples of M-P
inverses. The working process of the nonlinear AE layer is

z = WTx + b (4)

y = σ(z) (5)

Let x′ = (x, 1)T, construct

W ′ =
[

W 0
bT 1

]
(6)

Thus,
z′ = (z, 1)T =

(
W ′
)Tx′ (7)

The activation function σ scales the elements of z to a specific interval, which is equivalent
to applying a z′-related scaling factor to the corresponding column of W ′. Let the dimension
of x be N; for 1 ≤ n ≤ N, we construct the scaling parameter

in =

{ yn
zn

, zn 6= 0
0, zn = 0

(8)

Thus, all kinds of σ except Sigmoid can be substituted by i (0 cannot be scaled to 0.5 by i).
Construct i = (i1, . . . , iN , 1)T,

y′ = (y, 1)T =
(

iT ◦W ′
)T

x′ (9)

where “◦” is the Hadamard product. A different x′ relates to different i, which yields differ-
ent equivalent matrices. All possible constructions of the equivalent matrices substitute
multiple linear AEs for the nonlinear AE. For instance, when σ is ReLU, in = 1 for zn > 0
and in = 0 for zn ≤ 0. For different x, each i has two possible values, so i has a total of 2N

possible values. When σ is tanh, in has a different value for a different zn. Therefore, it is
almost impossible to find different x corresponding to the same i. The possible values of
i will depend on the number of samples. The linear AEs have an identical loss function
to the nonlinear AE, and the added dimension of x and y does not generate additional
gradients during the error backpropagation process, so these linear AEs converge to the
global minima when the nonlinear AE reach the global minima. According to Section 2.2,
the encoder and decoder weights are tuples of mutual M-P inverse.

The above conclusion also applies to stacked AE. The stacked AE can be regarded as
applying multiple equivalent matrices iT ◦W ′ to x′. The product of these matrices can be
regarded as the single equivalent matrix, so the weights of the global minimum converged
stacked AE weights can also be divided into tuples of M-P inverses.

3.2. Convolutional AE for Prototype Learning

The convolutional and transposed convolutional layer can be transformed into equiv-
alent fully connected layers, so the above conclusion can be generalized to convolutional
AE. By inputting a feature map X of size (H,W) into a convolutional layer with kernel size
K and stride 1, the following output can be obtained:

zij =
H−K+1

∑
i=1

W−K+1

∑
j=1

(
bij +

K

∑
k1=1

K

∑
k2=1

wk1k2 x(i+k1)(j+k2)

)
(10)

This process can be implemented by constructing an equivalent matrix. Construct wk =

(wk1, . . . , wkK, 0, . . . , 0)T, k = 1, 2, . . . , K− 1 of dimensionW and wK = (wK1, wK2, . . . , wKK)
T



Sensors 2023, 23, 2820 5 of 13

of dimension K, and put them together as w = (w1, . . . , wK)
T. Stack w along the principle

diagonal to obtain

A =

 w . . . 0
...

. . .
...

0 . . . w

 (11)

of size (KW ,W − K + 1). By stacking A along the principle diagonal and filling the rest
with zero matrix O of size (W ,W − K + 1), we obtain

W =


A O . . . O

O A . . .
...

...
...

. . . O
O O . . . A

 (12)

of size (HW + 1, (W − K + 1)(H− K + 1)). Construct x′ with elements of X and 1 as the
last dimension; the convolution is equivalent to

z′ = (z, 1)T =
(
W ′
)Tx′ (13)

Figure 2 visualizes the above process. The equivalent matrix of the transposed convolu-
tional layer can be obtained by removing the transpose on W ′.

b

O

O

A

A
w

Figure 2. The equivalent matrix construction for the convolutional layer. The left side shows how
the convolutional layer works, and the output is summed by bitwise multiplication between the
convolution kernel and the input that it covers. The right side shows the construction method of the
equivalent matrix W ′. The elements of z have the same operation procedure as the left side.

3.3. MSNN Model

The structure of MSNN is shown in Figure 3. For the input x, decoder output xnew,
code h, and classifier output y, the working process of network modules is as follows:

h = Encoder(x) (14)

hnew
i = SynN(hi), i = 1, 2, . . . , M (15)

xnew = Decoder(hnew) (16)

y = Classifier(h) (17)



Sensors 2023, 23, 2820 6 of 13

We use convolutional layers as the main body of the coders and add a fully connected layer
adjacent to h to integrate or recover features of the feature maps. h is equally partitioned
into M subcodes h1 to hM and input in M SNNs for N iterations.

We introduce multiple SNNs to ensure the reconstruction quality of the decoder by
extending the possible values of hnew. The convergence target of SNN is one-hot, i.e., one
code equals one, and other codes equal zero. Let the dimension of the code be H. When
a single SNN is used to receive h, there are only H different positions for the value one,
and thus the total number of possible codes is also H. The limited code number means
that many samples correspond to one code; however, only one code can be reconstructed
to one output. Such an output is usually composed of the common features among those
samples, which makes it difficult to cover the representative information. Features lacking
representation will damage both the visualization and the recognition performances. When
multiple SNNs receive h, each SNN has H/M positions for the value one. Therefore, the
total number of hnew obtained by M SNNs increases to (H/M)M. The total number of
codes is exponential to M, so the one-to-one correspondence between the input and hnew

can be achieved by expanding the value of M.
The previous sections only prove that the stacked AE and convolutional AE weights

are tuples of M-P inverses when the global minimum is reached, yet the actual convergence
state requires additional verification. From Section 2.2, the weights of the decoder consist of
the eigenvectors of the covariance matrix. Since the covariance matrix is symmetric and full
rank, the eigenvectors are orthogonal to each other. From the property of the M-P inverse,
if a matrix V has linearly independent columns, VV+ is the identity matrix. Extending this
conclusion, the product of the decoder’s equivalence matrix and the encoder’s equivalence
matrix is also the identity matrix when the stacked or convolutional AE reaches the global
minimum. Therefore, the code remains unchanged after recoding:

hnew = SynN(Encoder(Decoder(hnew))) = SynN(Encoder(xnew)) (18)

We introduce the verification term from the equation above to quantify the convergence
state.

P = MSE
(

hnew , SynN(Encoder(xnew))
)

(19)

MSE is the mean squared error. The closer the P is to zero, the better the parameters
are trained. Note that the loss function of the coder is still MSE(x, xnew). P is only for
convergence verification; it is not involved in any parameter tuning process.

For error backpropagation, Syn repeatedly imposes a polynomial function onto the
input, which may lead to the gradient exploding or vanishing. The gradient problem
is so severe that conventional means such as gradient clipping can barely circumvent
the non-convergence. Therefore, we used the gradient bypass technique [32,33] from the
incomputable partial solution (Figure 3 red arrow). This technique passes the gradient
of the certain network layer and outputs directly to the input during backpropagation in
order to circumvent the inappropriate activation functions causing the gradient to explode
or vanish and even the gradient intransmissible caused by discontinuity.

The visualization of extracted features can be easily achieved using the recall of MSNN.
Although the MSNN prototypes can be derived theoretically by calculating the decoder’s
equivalent matrices, the number of equivalence matrices is enormous and difficult to filter.
From Section 3.1, the number of equivalent matrices depends on i. i is exponential to
the number of neurons with ReLU activation, and even infinite with other activations,
so the calculation of equivalence matrices is time-consuming or even non-traversable. In
addition, most of these matrices will not occur in the application due to the limited number
of training samples and the intrinsic connection among codes; therefore, it is inefficient
and difficult to discover the core prototypes by this approach. Alternatively, we derived
the visualization results by inputting a specific code to the decoder. For example, one-hot
codes were input to observe individual prototypes, and clustering centers of inner-class
codes were input to observe their common features.



Sensors 2023, 23, 2820 7 of 13

C
o

n
v
2

d
 ×

 N

L
in

e
a

r

SNN

SNN

L
in

e
a

r

C
o

n
v
T

2
d

 ×
 N

ENCODER DECODER

Linear

CLASSIFIER

Figure 3. The network structure of MSNN. The encoder inputs x and outputs code h. h is divided
into M subcodes before inputting to M SNNs and obtaining the updated code hnew. The decoder
inputs hnew and outputs xnew. Meanwhile, h is input to the classifier to obtain the label y. Parameters
are trained using the error backpropagation. The loss function of the coders is MSE(x, xnew) (MSE is
mean squared error), and the loss function of the classifier is CrossEntropy(y, label). The gradient
of hnew from error backpropagation bypasses SNN and directly transmits to h. The training of the
coders is monitored by the value of P. P approaching zero means good training.

4. Experiments
4.1. MSTAR Dataset Configuration

We designed experiments using SAR images of 10 different military carriers from
the MSTAR dataset [29]. The carriers included 2S1, BMP2, BRDM2, BTR60, BTR70, D7,
T62, T72, ZIL131, and ZSU234. X-band SAR generates these images with a resolution of
0.3 m × 0.3 m. The images acquired from 17° and 15° were used as the training and test
sets, respectively, and there were 2747 and 2426 samples with a near-uniform distribution;
details are shown in Table 1. Since the images of different classes varied in size, although
the pivotal features were located in the center of the image, we normalized all image sizes
to 256 × 256 and used the 64 × 64 pixels in the center as the network input. To minimize
the differences in data distribution between the training and test sets, we applied affine
transformations to train samples, including random rotation (−15°,15°) and random shear
(−15°,15°) in the horizontal and vertical directions. The batch size was 256.

Table 1. The number of MSTAR train and test set samples.

Class Type Train Num. Test Num.

2S1 b01 299 274
BMP2 9563 233 195
BRDM2 E-71 298 274
BTR60 k10yt7532 256 195
BTR70 C71 233 196
D7 92v13015 299 274
T62 A51 299 273
T72 132 232 196
ZIL131 E12 299 274
ZSU234 d08 299 274

4.2. MSNN Configuration

The encoder of the MSNN contained 4 convolutional layers and 1 fully connected
layer with the channel configuration 32–64–64–64. This channel configuration ensures that
the code dimension is not larger than the input and avoids overparameterization of AE.
The kernel size was 4, the stride was 1, and the padding was 1. Due to the limitation of



Sensors 2023, 23, 2820 8 of 13

the transpose convolutional layer, having an identical configuration to the convolutional
layer is not enough to obtain an output with an equal size to the input. Therefore, we
used the common structure to ensure identical data size. Each convolutional layer was
followed by a dropout of Dconv. The neuron number of the fully connected layer equals
its input dimension. The encoder’s output h was divided into M parts, input to the SNN,
and iterated I times. The hyperparameter γ = 1. SNN works properly when γ is no
greater than 1 [19], so this configuration allows for the fastest convergence. To improve the
efficiency of the SNN and avoid the error from the all-zero input, we normalized the input
before each iteration and directly output the all-zero code. The decoder and encoder were
configured symmetrically. All network layers use the ReLU activation function except the
activation-free output layer of the decoder. The classifier inputs h and outputs the category
label prediction. To show that the feature extraction of SNN substantially reduces the
recognition difficulty, the classifier contains only 1 fully connected layer with a pre-layer
dropout of Dclass. The weights of all network layers were initialized using Xavier uniform
distribution to match the ReLU activation. The MSE loss function was used for the feature
reconstruction task, and the cross-entropy loss function was used for the feature recognition
task. The network iterated 120 epochs. Since the feature reconstruction task is simpler
than recognition, the recognition task is ignored by MSNN when the training ratio of the
two is 1:1. We determined the training ratio of reconstruction to recognition to be 1:10
after pre-experiments. The optimizer was AdamW [34] for faster training, and the learning
rate was adjusted using the OneCycle [35] approach to escape the local minimum with
the defaulted maximum 1 × 10−3. Gradients were cropped to a defaulted upper limit of 1
under Euclidean length to avoid accidental network divergence. The optimal value of the
letter-denoted hyperparameters is discussed in the next section.

4.3. Recognition Results Analysis

The feature recognition results of MSNN were optimized with a hyperparameter grid
search with ablation test, as shown in Table 2, and compared with other methods in Table 3,
and the confusion matrix is shown in Table 4. The validation term P reduced from the
order of 1× 10−7 to 1× 10−8, which satisfies the application premise. The optimal result
of MSNN was obtained at epoch 71 by the early stopping technique. From Table 2, SNN
improves the AE recognition performance for all dropout rate configurations. A larger
dropout rate needs to correspond to a larger code segment number with fewer iterations
to obtain a better performance. Since deep learning is highly dependent on the amount
of data and is sensitive to noise, data augmentation and denoising are widely used in
these methods to reduce the application difficulty and obtain an accuracy close to 100%.
To maintain a uniform task difficulty compared to other studies, we only compared the
results with studies that did not use data manipulation. As a result, MSNN outperformed
other methods and achieved results with data augmentation. In addition, the recognition
result of MSNN achieved 100% recognition accuracy in five classes, which is also a new
state-of-the-art result.

For the MSNN training speed, the network contains 4 convolutional layers, 4 trans-
posed convolutional layers, 1 fully connected layer, and a set of SNN with 16 iterations.
SNNs work in parallel and can be approximated as 16 network layers. Therefore, the train-
ing speed of the MSNN is roughly equivalent to that of a 25-layer deep network. We used
an RTX 3070 graphics card and CUDA 11.6 + pytorch 1.12 environment to compare the time
required for one epoch of MSNN with several other methods, and the results are shown
in Table 5. The training speed of MSNN is moderate. Although the recurrent architecture
prolongs the training time to some extent, it still takes less time than DeepMemory, which
has more layers to train.



Sensors 2023, 23, 2820 9 of 13

Table 2. The grid search results of code segmentation number M, SNN iteration I, and two dropout
rates Dconv and Dclass. SNN is ablated when I is zero, and the dropout layer is ablated when the
corresponding D is zero. Results, ordered from largest to smallest, are labeled on a red–white–
blue scale.

(a) Dconv = 0.0, Dclass = 0.0

M
I 0 8 16 32 64

32 96.99 97.66 97.63 98.26
64 96.80 97.02 98.29 96.50

128 96.51 96.99 96.67 96.94
256 98.11 98.13 96.70 98.21
512

97.51

97.53 97.39 97.41 97.87
(b) Dconv = 0.1, Dclass = 0.0

M
I 0 8 16 32 64

32 96.37 97.18 97.74 98.18
64 98.70 96.68 97.50 97.69

128 96.99 97.09 96.78 98.35
256 97.33 98.44 97.99 98.09
512

97.66

98.08 97.67 96.69 97.61
(c) Dconv = 0.0, Dclass = 0.75

M
I 0 8 16 32 64

32 97.63 98.45 97.20 98.27
64 97.94 97.68 98.57 97.15

128 98.20 98.33 97.52 98.31
256 98.49 97.94 97.10 98.02
512

97.80

97.34 98.06 97.81 98.11
(d) Dconv = 0.1, Dclass = 0.75

M
I 0 8 16 32 64

32 98.35 98.47 98.15 98.43
64 98.72 97.98 98.60 98.43

128 98.43 98.52 98.60 98.64
256 98.52 98.93 98.52 98.27
512

98.00

98.35 98.15 98.56 98.64

Table 3. Recognition results comparison. The results in the upper part of the table do not use data
manipulation methods, and the lower methods are labeled with specific approaches.

Method Acc. (%)

A-ConvNet [36] 96.49
2-VDCNN [37] 97.81
3-VDCNN [37] 98.17
Pruned-70 [38] 98.39
CCAE [13] 98.59
MSNN (proposed) 98.93 1

A-ConvNet with data augmentation [36] 99.13
DeepMemory with data augmentation [39] 99.71
LADL with data denoising [40] 99.99 1

1 Optimal result.



Sensors 2023, 23, 2820 10 of 13

Table 4. The confusion matrix of the recognition results.

Class 2S1 BMP2 BRD M2 BTR 60 BTR 70 D7 T62 T72 ZIL 131 ZSU 234 Acc. (%)

2S1 263 0 5 0 0 0 5 0 1 0 95.99
BMP2 0 196 0 0 0 0 0 0 0 0 100
BRDM2 2 1 266 1 2 0 0 0 4 0 97.08
BTR60 0 0 4 191 0 0 0 0 0 0 97.95
BTR70 0 0 0 0 196 0 0 0 0 0 100
D7 0 1 1 0 0 272 0 0 0 0 99.27
T62 0 0 0 0 0 0 273 0 0 0 100
T72 0 0 0 0 1 0 0 195 0 0 99.49
ZIL131 0 0 0 0 0 0 0 0 274 0 100
ZSU234 0 0 0 0 0 0 0 0 0 274 100

Total (%) 98.93

Table 5. The training time of different networks in one epoch.

Method Time (s)

LADL 2.7
A-ConvNet 3.1
CCAE 4.3
MSNN (proposed) 4.6
DeepMemory 9.1

4.4. Prototype Analysis

We first evaluated the effectiveness of the prototypes by counting the average per-
centage of one-hot codes and zero vectors of subcodes. One-hot represents one prototype
that learns the feature. The higher the percentage, the better the effectiveness. The total
percentage of the one-hot and zero vectors can characterize the convergence of each SNN.
The higher the percentage, the more networks reach convergence. The statistics of the
training and test sets are shown in Figure 4. Almost all subcodes are one-hot or zero-vector
forms, which means that the MSNN prototype can learn effectively. The proportions of
both codes in the train and test sets are similar, reflecting the consistent representation of
prototypes. The optimal recognition accuracy is achieved at a low one-hot ratio, implying
that reducing the sparsity of the code can improve the recognition performance.

0 60 120
epoch

0.0

0.5

1.0

ra
te

train

0 60 120
epoch

0.0

0.5

1.0

ra
te

test
one-hot
zero
total

Figure 4. The averaged percentage of train and test set subcodes reaching one-hot or zero vectors.
The total percentage rises to nearly 1 at the early stage of the training.

We then visualized the prototype patterns obtained by the MSNN self-learning. Since
the prototypes of each SNN capture partial sample features and their combination is
nonlinear, the visualization of single prototypes is vague and indistinguishable. Therefore,
we clustered similar codes of inner-class training samples by K-means using K = 8 and
visualized the binarized clustering centers. The results are shown in Figure 5. We also
listed the most similar images from the train-set to judge whether the visualization results
are merely the simple reconstruction of the input samples. The comparisons show that



Sensors 2023, 23, 2820 11 of 13

some visualizations significantly differ from the most similar samples, indicating that the
prototypes can learn key angle features that are not covered in the dataset.

2S1

BMP2

BRDM2

BTR60

BTR70

D7

T62

T72

ZIL131

ZSU234

Figure 5. The prototype visualization results (bottom) and their most similar training samples (top).
Some visualizations significantly differ from the most similar samples.

5. Conclusions

In this paper, we proposed the use of an AE-SNN fusion model MSNN for the feature
recognition task of SAR images. AE solves SNN’s lack of prototype nonlinear learning, and
SNN improves the efficiency and stability of AE coding regularization and offers a simple
and effective feature visualization approach. Experiments on the unpreprocessed MSTAR
dataset showed that MSNN obtained the optimal feature recognition performance, and the
feature visualization results show that these excellent results originate from the network’s
effective prototype learning, which spontaneously captures representative features that
are not covered in the training set. It is worth noting that the feature extraction and
visualization of MSNN are based on the premise that the critical information is located at
the center of the SAR image. For data with a more complex distribution, the features learned
by MSNN will be more abstract, so more sophisticated visualization methods need to be
developed to ensure performance. In addition, the recognition performance of MSNN on
partially missing, mislabeled, and new category samples also needs more studies to achieve
a broader application. Target recognition by the fusion of SAR images and high-resolution
range profile (HRRP) is a research hotspot. We plan to apply MSNN to SAR-HRRP feature
matching and feature fusion to further improve the recognition accuracy.

Author Contributions: Conceptualization, H.L. and L.M.; methodology, Z.W.; software, Z.W.; valida-
tion, Z.W., H.L. and L.M.; formal analysis, Z.W.; investigation, Z.W.; resources, Z.W.; data curation,
Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, Z.W.; visualization,
Z.W.; supervision, Z.W.; project administration, Z.W. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.sdms.afrl.af.mil/index.php?collection=mstar, accessed on 1 March 2023.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.sdms.afrl.af.mil/index.php?collection=mstar


Sensors 2023, 23, 2820 12 of 13

References
1. Cong, Y.; Chen, B.; Liu, H.; Jiu, B. Nonparametric Bayesian Attributed Scattering Center Extraction for Synthetic Aperture Radar

Targets. IEEE Trans. Signal Process. 2016, 64, 4723–4736. [CrossRef]
2. Gao, F.; Mei, J.; Sun, J.; Wang, J.; Yang, E.; Hussain, A. Target detection and recognition in SAR imagery based on KFDA. J. Syst.

Eng. Electron. 2015, 26, 720–731.
3. Pei, J.; Huang, Y.; Huo, W.; Wu, J.; Yang, J.; Yang, H. SAR Imagery Feature Extraction Using 2DPCA-Based Two-Dimensional

Neighborhood Virtual Points Discriminant Embedding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2206–2214.
[CrossRef]

4. Song, S.; Xu, B.; Yang, J. SAR target recognition via supervised discriminative dictionary learning and sparse representation of
the SAR-HOG feature. Remote Sens. 2016, 8, 683. [CrossRef]

5. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef]

6. Ni, J.C.; Xu, Y.L. SAR automatic target recognition based on a visual cortical system. In Proceedings of the 2013 6th International
Congress on Image and Signal Processing (CISP 2013), Hangzhou, China, 16–18 December 2013; Volume 2, pp. 778–782. [CrossRef]

7. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

8. Kang, M.; Ji, K.; Leng, X.; Xing, X.; Zou, H. Synthetic aperture radar target recognition with feature fusion based on a stacked
autoencoder. Sensors 2017, 17, 192. [CrossRef]

9. Shao, Z.; Zhang, L.; Wang, L. Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical
and SAR Data to Map Forest Above-Ground Biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5569–5582.
[CrossRef]

10. Chen, X.; Deng, J. A Robust Polarmetric SAR Terrain Classification Based on Sparse Deep Autoencoder Model Combined with
Wavelet Kernel-Based Classifier. IEEE Access 2020, 8, 64810–64819. [CrossRef]

11. Wang, J.; Qin, C.; Yang, K.; Ren, P. A SAR Target Recognition Algorithm Based on Guided Filter Reconstruction and Denoising
Sparse Autoencoder. Binggong Xuebao/Acta Armamentarii 2020, 41, 1861–1870. [CrossRef]

12. Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [CrossRef]

13. Guo, J.; Wang, L.; Zhu, D.; Hu, C. Compact convolutional autoencoder for SAR target recognition. IET Radar Sonar Navig. 2020,
14, 967–972. [CrossRef]

14. Seyfioǧlu, M.S.; Özbayoǧlu, A.M.; Gürbüz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided
and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [CrossRef]

15. Sun, Z.; Xue, L.; Xu, Y. Recognition of SAR target based on multilayer auto-encoder and SNN. Int. J. Innov. Comput. Inf. Control
2013, 9, 4331–4341.

16. Amiri, M.; Davande, H.; Sadeghian, A.; Chartier, S. Feedback associative memory based on a new hybrid model of generalized
regression and self-feedback neural networks. Neural Netw. 2010, 23, 892–904. [CrossRef]

17. Chartier, S.; Proulx, R. NDRAM: Nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated
patterns. IEEE Trans. Neural Netw. 2005, 16, 1393–1400. [CrossRef]

18. Liu, J.; Gong, M.; He, H. Deep associative neural network for associative memory based on unsupervised representation learning.
Neural Netw. 2019, 113, 41–53. [CrossRef]

19. Haken, H. Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets; Springer: Berlin/Heidelberg, Germany, 1991.
20. Wang, H.; Yu, Y.; Wen, G.; Zhang, S.; Yu, J. Global stability analysis of fractional-order Hopfield neural networks with time delay.

Neurocomputing 2015, 154, 15–23. [CrossRef]
21. Wu, A.; Zeng, Z.; Song, X. Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks.

Neurocomputing 2016, 177, 489–496. [CrossRef]
22. Yang, Z.; Zhang, J. Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time

delays via adaptive feedback control. Int. J. Comput. Math. 2020, 97, 2074–2090. [CrossRef]
23. Zhao, T.; Tang, L.H.; Ip, H.H.; Qi, F. On relevance feedback and similarity measure for image retrieval with synergetic neural nets.

Neurocomputing 2003, 51, 105–124. [CrossRef]
24. Wong, W.M.; Loo, C.K.; Tan, A.W. Parameter controlled chaotic synergetic neural network for face recognition. In Proceedings of

the 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2010), Singapore, 28–30 June 2010; pp. 58–63. [CrossRef]
25. Huang, Z.; Chen, Y.; Shi, X. A parallel SRL algorithm based on synergetic neural network. J. Converg. Inf. Technol. 2012, 7, 1–8.

[CrossRef]
26. Huang, Z.; Chen, Y.; Shi, X. A synergetic semantic role labeling model with the introduction of fluctuating force accompanied

with word sense information. Intell. Data Anal. 2017, 21, 5–18. [CrossRef]
27. Haken, H.P. Synergetics. IEEE Circuits Devices Mag. 1988, 4, 3–7. [CrossRef]
28. Baldi, P.; Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural

Netw. 1989, 2, 53–58. [CrossRef]
29. Ross, T.D.; Mossing, J.C. MSTAR evaluation methodology. In Proceedings of the AeroSense’99, Orlando, FL, USA, 5–9 April 1999.

[CrossRef]

http://doi.org/10.1109/TSP.2016.2569463
http://dx.doi.org/10.1109/JSTARS.2016.2555938
http://dx.doi.org/10.3390/rs8080683
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/CISP.2013.6745270
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.3390/s17010192
http://dx.doi.org/10.1109/JSTARS.2017.2748341
http://dx.doi.org/10.1109/ACCESS.2020.2983478
http://dx.doi.org/10.3969/j.issn.1000-1093.2020.09.018
http://dx.doi.org/10.1109/LGRS.2015.2478256
http://dx.doi.org/10.1049/iet-rsn.2019.0447
http://dx.doi.org/10.1109/TAES.2018.2799758
http://dx.doi.org/10.1016/j.neunet.2010.05.005
http://dx.doi.org/10.1109/TNN.2005.852861
http://dx.doi.org/10.1016/j.neunet.2019.01.004
http://dx.doi.org/10.1016/j.neucom.2014.12.031
http://dx.doi.org/10.1016/j.neucom.2015.11.055
http://dx.doi.org/10.1080/00207160.2019.1677897
http://dx.doi.org/10.1016/S0925-2312(02)00604-5
http://dx.doi.org/10.1109/ICCIS.2010.5518581
http://dx.doi.org/10.4156/jcit.vol7.issue8.1
http://dx.doi.org/10.3233/IDA-150323
http://dx.doi.org/10.1109/101.9569
http://dx.doi.org/10.1016/0893-6080(89)90014-2
http://dx.doi.org/10.1117/12.357686


Sensors 2023, 23, 2820 13 of 13

30. Moore, E.H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394–395.
31. Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [CrossRef]
32. Van Den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural discrete representation learning. In Proceedings of the Advances in

Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6307–6316.
33. Razavi, A.; van den Oord, A.; Vinyals, O. Generating diverse high-fidelity images with VQ-VAE-2. In Proceedings of the

Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
34. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. In Proceedings of the 7th International Conference on Learning

Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019.
35. Smith, L.N.; Topin, N. Super-convergence: very fast training of neural networks using large learning rates. In Proceedings of the

SPIE Defense + Commercial Sensing, Baltimore, MD, USA, 14–18 April 2019; p. 36.
36. Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Trans.

Geosci. Remote Sens. 2016, 54, 4806–4817. [CrossRef]
37. Pei, J.; Huang, Y.; Huo, W.; Zhang, Y.; Yang, J.; Yeo, T.S. SAR automatic target recognition based on multiview deep learning

framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196–2210. [CrossRef]
38. Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR Target Image Classification Based on Transfer Learning and Model Compression.

IEEE Geosci. Remote Sens. Lett. 2019, 16. [CrossRef]
39. Shang, R.; Wang, J.; Jiao, L.; Stolkin, R.; Hou, B.; Li, Y. SAR Targets Classification Based on Deep Memory Convolution Neural

Networks and Transfer Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2834–2846. [CrossRef]
40. Zhu, H.; Wang, W.; Leung, R. SAR target classification based on radar image luminance analysis by deep learning. IEEE Sens.

Lett. 2020, 4, 7000804. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0305004100030401
http://dx.doi.org/10.1109/TGRS.2016.2551720
http://dx.doi.org/10.1109/TGRS.2017.2776357
http://dx.doi.org/10.1109/LGRS.2018.2876378
http://dx.doi.org/10.1109/JSTARS.2018.2836909
http://dx.doi.org/10.1109/LSENS.2020.2976836

	Introduction
	Background
	SNN Overview
	Relation of Linear AE Weights

	MSNN
	Stacked AE for Prototype Learning
	Convolutional AE for Prototype Learning
	MSNN Model

	Experiments
	MSTAR Dataset Configuration
	MSNN Configuration
	Recognition Results Analysis
	Prototype Analysis

	Conclusions
	References

