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Abstract: The concentration of an electrolyte is an optical characteristic of drinking water. We propose
a method based on the multiple self-mixing interference with absorption for detecting the Fe2+

indicator as the electrolyte sample at a micromolar concentration. The theoretical expressions were
derived based on the lasing amplitude condition in the presence of the reflected lights considering
the concentration of the Fe2+ indicator via the absorption decay according to Beer’s law. The
experimental setup was built to observe MSMI waveform using a green laser whose wavelength was
located in the extent of the Fe2+ indicator’s absorption spectrum. The waveforms of the multiple
self-mixing interference were simulated and observed at different concentrations. The simulated and
experimental waveforms both contained the main and parasitic fringes whose amplitudes varied
at different concentrations with different degrees, as the reflected lights participated in the lasing
gain after absorption decay by the Fe2+ indicator. The experimental results and the simulated results
showed a nonlinear logarithmic distribution of the amplitude ratio, the defined parameter estimating
the waveform variations, versus the concentration of the Fe2+ indicator via numerical fitting.

Keywords: laser self-mixing interference; absorption decay; micromolar concentration; external cavity

1. Introduction

Laser self-mixing interference (SMI), a remarkably universal phenomenon [1–3], has
been popular in recent years [4–7]; it occurs when the emitting light is re-injected into the
laser cavity after reflecting or back-scattering caused by the external reflector [8–12]. As a
result, the re-injected beam modulates the laser characteristics, such as the laser intensity.
Therefore, modulated laser intensity appears as a periodical cosine function consisting
of several fringes in the time domain at a weak feedback regime [2,3]. Laser self-mixing
interference (also as known as the laser feedback effect) has been widely applied to measure
physical parameters, such as velocity [13–16]., displacement [17–19], vibration [20–22],
distance [23–26], flow [27–30], angle [31–34], and refractive index [35,36].

The multiple reflections in an external cavity can often be ignored if there is a rough
reflector, such as white paper, that makes it difficult to generate multiple reflections in such
an external cavity. This is because only part of the light is able to re-enter the laser cavity
with a finite facet while the diffusive effect causes that to be much larger than the laser facet
as the rays of the diffusive light propagate in different directions. Provided that the surface
of the external reflector is smooth (e.g., a plane mirror), the reflector is able to generate
multiple reflections in the external cavity since specular reflection makes the rays of the
reflected light propagate in the same direction. With multiple reflections of the light in the
external cavity within the laser output facet and the smooth reflector, the reflected lights
will be able to re-enter the laser cavity, with every reflection causing multiple laser self-
mixing interference (MSMI) [37–41], whose fringe numbers will be folded corresponding
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to the reflection orders. Every reflected beam re-injected in the laser cavity will result in the
superposition of the fringes in the time domain.

In this work, it was observed that the absorption decay by absorbent solutions in the
external cavity could noticeably affect the MSMI waveform in the time domain via the
reflected lights. The intensities of the reflected light would decrease to various degrees,
and the decrement degree could be related to both the reflection orders and the material
concentration for a specific electrolyte, such as Fe2+. The MSMI waveform contained the
main fringes and parasitic fringes that captured the absorption decay, as every reflected
light’s intensity corresponded to the amplitudes of the fringes. The main fringe and
parasitic fringe usually experienced different decrements, and the difference was related to
the material concentration.

We propose a novel method for detecting Fe2+ at a micromolar concentration based
on multiple self-mixing interference using a fiber laser. The laser intensity equations were
derived considering the multiple reflected lights absorbed by the absorption material in the
external cavity based on lasing conditions, and the waveforms were simulated according
to the derived equation at different concentrations of the Fe2+ indicator. The experimental
setup was constructed to observe the MSMI waveform using a green laser whose wave-
length was located in the extent of the Fe2+ indicator’s absorption spectrum. The MSMI
waveforms around the micromolar concentrations of the Fe2+ indicator were obtained in the
time domain experimentally. Both the simulated and experimental waveforms contained
the main and parasitic fringes, and a parameter A2/A1 indicating the amplitude ratio of the
parasitic fringes versus the main fringes was defined to determine the distribution between
the concentration and the MSMI waveforms using the numerical fitting, specifically, by
estimating the R2 of the fitting.

2. Materials and Methods

As shown in Figure 1, the experimental system consisted of a laser (L: 532 nm), an
iris aperture (IA), a cuvette with the Fe2+ indicator sample (FE), an optical splitter (OS), a
photoelectric detector (D), a loudspeaker (LS), and a signal generator (SG). A cuvette, a
type of highly transparent container that guaranteed the laser can pass through without
decay, was employed to change the absorption decay in the external cavity by diluting the
Fe2+ indicator. The loudspeaker with a high-level reflector was employed to continuously
generate low-frequency displacement to modulate the laser wave phase carrying the
concentration of the Fe2+ indicator sample in the time domain. The high-reflecting plane
mirror was employed to act as one side of the external cavity. Furthermore, the plane mirror
could guarantee the homocentricity of the reflected wave, and the rays of the laser could be
considered in the same direction, with the reflected rays persisting collinear to the optical
axis of the laser propagation direction. Although the sample was diluted with water, there
is only the absorption of Fe2+ since the absorption spectrum of Fe2+ lay in the green band,
within which there was nearly no absorption of the water [42].

The Fe2+ indicator, a chemical complex Fe(C12H8N2)3
2+ that can be obtained from the

ferrous ion and the phenanthroline, served as a type of absorption sample in the experiment.
The standard concentration of the solution was 0.02 mol/L and was diluted with pure
water, and we determined the concentration with a photometer until the Fe2+ in the dilution
reached the micromolar concentration.

The single longitudinal mode laser coupled with a fiber end of armor without isolators
(SMI could not occur since an isolator might prevent the reflected light back into the laser
cavity) acted as the light source of 4 mm diameter with 20 mW output at 532 nm, whose
wavelength was located within the Fe2+ absorption spectrum. The loudspeaker was driven
by a continuous sine function generated by a signal generator, whose amplitude and fre-
quency were selected as 400 mVpp (in terms of µm magnitude) and 2 KHz, respectively.
The absorption decay varied with the Fe2+ concentration of the indicator sample in the
rectangular cuvette with a width of 1 cm, which was equal to the optical depth of the
diluting sample. The laser was split into two beams by the optical splitter. One forward
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beam irradiated the mirror on the loudspeaker surface perpendicularly, and the backward
reflected E1 and E2 waves after one round trip and two round trips turned back into the
laser through the original path to generate the multiple self-mixing interference signal.
Meanwhile, the alternating current (AC) photoelectric detector was used to monitor the
other beam after magnification to obtain the multiple self-mixing interference signal. Be-
cause the laser wave phase was modulated versus time, the detected multiple self-mixing
interference was also a time-domain signal, which could be obtained via an oscilloscope.
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Figure 1. Scheme of the experimental setup (L: laser, IA: iris aperture, FE: a cuvette of Fe2+ indicator,
OS: optical splitter, D: detector, SC: oscilloscope, LS: loudspeaker with a reflector, and SG: signal generator).

In order to analyze the experimental results, we derived the theoretical equations
based on the three-mirror model [43–45] considering the absorption decay of the multiple
reflected lights in the external cavity. To derive the lasing conditions in multiple self-mixing
interference, including amplitude and phase conditions, the laser amplitude had to be
considered with the forward and backward traveling waves after one round trip and
two round trips in the external cavity [46]. The backward traveling waves injected lights
back into the laser cavity, changing the laser amplitude by the gain coefficient g. If E0(t)
accounts for the laser free amplitude without multiple self-mixing interference, the wave
amplitude EL in the laser cavity after one round trip can be expressed as

EL = r1r2·exp[−j·4πL/λ) + gL]·E0, (1)

where the amplitude reflectivity r1 and r2 of the laser cavity consist of the input and output
facets, v denotes the light frequency, ϕ0 is the initial phase, L is the laser cavity length, and
λ is the light wavelength.

As shown in Figure 2, the reflected lights E1 and E2 were treated as a part of the laser
cavity after multiple reflections. Therefore, the space between the output facet and the
external reflector was treated as an external cavity according to the lasing condition. The
absorption dilution in the external cavity would decrease the first and second reflected
lights if the wave expression was multiplied by the amplitude parameter, indicating that
the wave amplitude would be scaled up and down according to the value of this parameter.
The wave amplitude E1 of the first reflected light after one round trip in the external cavity
can be expressed as

E1 = r1(t2)2r3f 2·exp[−j·4π(L + l)/λ) + gL]·E0, (2)

where l is the effective optical length of the external cavity, r3 is the amplitude reflectance
of the external reflector, t2 is the amplitude transmittance of the output facet, and f is the
amplitude transmittance of the absorption dilution in the external cavity.
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The wave amplitude E2 of the second reflected light can be expressed by

E2 = r1r2(t2)2(r3)2f 4·exp[−j·4π(L + 2l)/λ + gL]·E0, (3)

after two round trips in the external cavity. The varying laser amplitude E, considering
multiple self-mixing interference, can therefore be expressed by

E = EL + E1 + E2 = r1r2·exp[−j·4πL/λ) + gL]·E0 +
r1(t2)2r3f 2·exp[−j·4π(L + l)/λ) + gL]·E0 + r1r2(t2)2(r3)2f 4·exp[−j·4π(L + 2l)/λ + gL]·E0.

(4)

Once the laser output is steady, the laser with multiple feedbacks from the external
cavity must satisfy the condition E = E0, yielding

exp[−j·4πL/λ) + gL]{r1r2 + r1(t2)2r3f 2·exp[−j·4πl/λ) + r1r2(t2)2(r3)2f 4·exp[−j·4π(2l)/λ]} = 1. (5)

We can define the phase shifting of one round trip in the external cavity as ϕ = 4πl/λ,
with the amplitude coefficients of the first and second reflected lights as α = r1(t2)2r3f 2 and
β = r1r2(t2)2(r3)2f 4 and obtain the amplitude condition

r1r2·exp[−j(4πL/λ) + gL][1 + α/r1r2·exp(−jϕ1) + β/r1r2·exp(−jϕ2)] = 1, (6)

where ϕ1 = ϕ0 + ϕ and ϕ2 = ϕ0 + 2ϕ denote the phases of E1 and E2, respectively. Because
the external cavity will usually be tilted in the experiment to generate the MSMI waveform,
ϕ2 will not be precisely equal to ϕ1. Therefore, the parameter ϕ0 was introduced to denote
the phase resulting from the tilted external cavity, whose value would be assigned in the
simulation to satisfy the experiment results.

The left term of Equation (6) above was complex while the right term was real, so the
imaginary part of the left term had to be zero to satisfy the equation. To separate the real
and imaginary parts of the left term, we assumed a complex parameter

z = Re(z) + j·Im(z) ={1 + α/r1r2·exp(−jϕ1) + β/r1r2·exp(−jϕ2)}, (7)

to account for the amplitude and optical path of the feedback wave with the real part Re(z)
and imaginary part Im(z). The exponent terms in the equation corresponded to part of
the wave phase in the exponential form, so we transferred the complex parameter into its
triangular format. After the real and imaginary parts were separated, two expressions of
gL and θ were obtained:

gL = −ln|r1r2(1 + α·exp(−jϕ1) + β·exp(−jϕ2))|/2. (8)
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The real and imaginary parts were both defined to introduce the argument θ of
z, to analyze the optical phase condition. The argument θ had to satisfy the following
phase condition:

θ = arg(z) = arg[1 + α·exp(−jϕ1) + β·exp(−jϕ2)] = 2π−2πL/λ, (9)

to ensure exp[-j(4πL/λ + θ)] = 1. Thus, the complex parameter z was obtained precisely
after the transformation of the exponent terms to triangle forms, and the equation was just
derived on the condition of the imaginary part inside the exponent term and the real part
outside the exponent term. In the logarithm of the equation, the expression of the gain
coefficient g was obtained after derivation:

r1r2|z|·exp(gL)·exp{−j(4πL/λ + θ)} = 1. (10)

The argument θ of z depended on the real part Re(z) and imaginary part Im(z)

tanθ = Im(z)/Re(z) ≈ α·sin(−ϕ1) + β·sin(−ϕ2)/(r1r2), (11)

with the approximate conditions of r1r2 ≈ 1, α << 1, and β << 1, as the output facet was a
high-level reflection mirror.

θ ≈ α·sin(−ϕ1) + β·sin(−ϕ2)/(r1r2). (12)

The argument θ was inserted into the expression

gL= −ln(r1r2 + r1r2α·exp(−jϕ1) + r1r2β·exp(−jϕ2))/2. (13)

thus,
gL= −ln(r1r2|z|)/2= −ln(r1r2) /2 −ln|z|/2, (14)

yielding
gL= −ln(r1r2)/2 − ln|z|/2= −ln(r1r2) /2 − [Re(z)]/2, (15)

with the approximate relation of {[Im(z)]2 + [Re(z)]2}1/2 ≈Re(z) if Re(z) >> Im(z) under the
condition of α << 1 and β << 1, as mentioned above. Thus,

gL= −ln(r1r2)/2 − ln[Re(z)]/2= −ln(r1r2) /2 − [α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2)]/2,
(16)

with the approximate relation of

g= −ln[1 + α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2)] = α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2). (17)

Thus, we could obtain the cavity gain g with the multiple self-mixing interference

g = −ln(r1r2)/2L − [α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2)]/2L. (18)

The free gain coefficient g0 could be obtained as g0 = −ln(r1r2)/2L without cosine
feedback terms. Therefore, the influence of multiple self-mixing interference on the gain
coefficient was estimated by ∆g, according to

∆g= g − g0 = −[α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2)]/2L. (19)

Finally, the varying lasing intensity I versus the free lasing intensity I0 with ∆g in the
laser cavity could be expressed as

I/I0 = 1 − ∆g·2L = 1 + α·cosϕ1/(r1r2) + β·cosϕ2/(r1r2). (20)

The expression of I denoted the laser output intensity modulated by the feedback
beams, which were related to the transmittance f of the Fe2+ indicator sample in the external
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cavity once the experimental setup was complete. Since the feedback beams passed through
the Fe2+ indicator sample at different times during their round trips in the external cavity,
the amplitude coefficients in the front of E1 and E2 had to depend on the absorption decay
and the reflection decay in the external cavity. Therefore,

α = r1(t2)2r3 f 2, (21)

and
β = r1r2(t2)2(r3)2f 4, (22)

and the transmittance of the sample followed

f = 10−εbc, (23)

according to Beer’s law, where ε is the molar absorption coefficient, and b and c are the
optical depth and the concentration of the Fe2+ indicator sample, respectively.

In the expression, the phase ϕ of the beam that underwent one round trip could be
expressed as

ϕ = 4π[l + Asin(wt)]/λ, (24)

where λ is the laser wavelength, and the initial phase of the wave was set to ϕ0 = −π/2 to
make the simulated waveform close to the experimental waveform. Because the external
cavity length varied slightly following the sine function Asin(wt) versus time t with ampli-
tude A = 2 µm and frequency w = 2 kHz, the length of the external cavity l = 1.8 m for the
phase ϕ was also modulated periodically by a sine-like signal in the time domain carrying
the concentration c of the Fe2+ indicator sample.

3. Results
3.1. Simulated Results

To study the absorption decay in an external cavity, the waveforms of the varying
lasing intensities I versus I0 at different Fe2+ concentrations c were simulated with the
assigned parameters of r1 = 1.0, r2 = 0.97 [43], r3 = 0.99, b = 1 cm, and ε = 7955 L/(mol·cm).
These parameters were assigned according to both the theoretical model and the experi-
mental setup. The molar absorption coefficient of the diluent at the laser wavelength was
estimated by measuring the diluent absorbance at different concentrations. For the laser
cavity consisting of the input and output facets with reflectivity values of r1 and r2, we
considered the input facet as a totally reflective mirror (r1 = 1) corresponding to the theoret-
ical model without intensity loss in the inner cavity, while the output facet was a partially
reflective mirror with a specific value of 0.97. The external reflector was a highly reflective
mirror with a reflectivity of 0.99. If the absorption sample in the external cavity was the
Fe2+ indicator whose concentration c ranged from 4.8 × 10−6 mol/L to 1.4 × 10−5 mol/L,
the absorption decay depended on its molar absorption coefficient ε = 7955 L/(mol·cm)
at the experimental laser wavelength and effective optical depth b = 1 cm, neglecting the
intensity decay of the highly transparent container.

Because the phase ϕwas modulated periodically by the external reflector, the multiple
self-mixing interference signals were in the time domain, but the amplitudes of the fringes
were related to the concentration c, as shown in Figure 3. Meanwhile, ∆g was related
to the sum of feedback waves E1 and E2, which were decayed by the absorption in the
external cavity. Thus, the feedback wave E1 caused some main fringes, while E2 caused
some low parasitic fringes. Moreover, if the Fe2+ indicator was used as the absorption
sample; it enabled the absorption decay for both E1 and E2 when the waves passed through
the sample with different round trips. The peak values A1,p and A2,p and valley values A1,v
and A2,v of the main and parasitic fringes were selected to obtain the amplitudes A1 and
A2. The main and parasitic fringes were both decayed by the absorption of Fe2+ according
to Beer’s law, and the parasitic fringe amplitude A2,s = (A2,p − A2,v)/2 decayed much
more dramatically than the main fringe amplitude A1,s = (A1,p − A1,v)/2 with increasing
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concentration c of Fe2+ due to the difference in absorption decay between E1 and E2 in the
external cavity.
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3.2. Experimental Results

The multiple self-mixing interference signal was generated by the first and second
reflected lights E1 and E2 from the external cavity. The reflected lights after one and
two round trips entered back into the laser cavity and mixed with the wave field in the
inner laser cavity. The waveform of the output laser consisted of the superposition of
the two-fold signals, as the optical phase of E2 was approximately twice that of E1 after
two round trips in the external cavity. As mentioned in Section 3.1, the self-mixing inter-
ference signal was affected by the Fe2+ indicator of the external cavity via the first and
second reflected lights. Thus, the experimental signal at different absorption decays could
be obtained by varying the Fe2+ concentration.

We obtained experimental waveforms at different Fe2+ concentrations from
4.8 × 10−6 mol/L to 1.4 × 10−5 mol/L, as shown in Figure 4. When the concentration
was quite low, such as approximately 10−7 mol/L, a change in A2,e/A1,e could barely be
obtained from the waveform. However, when the concentration reached a high value of
more than 10−5 mol/L, the parasitic fringes became very imperceptible, and A2,e/A1,e was
nearly zero.

As shown in Figure 4, the specific self-mixing interference signal in the time domain
showed that the waveform line of lasing intensity contained the main fringes and parasitic
fringes, like the simulated waveforms. The numerical points of the experimental waveforms
were obtained using the digital oscilloscope and selected the peak and valley values of the
main and parasitic fringes to calculate the amplitudes A1,e and A2,e of the main and parasitic
fringes. If the optical decay of the external cavity changed with the Fe2+ concentration, the
amplitudes of the main fringes and parasitic fringes in the waveform line scaled up and
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down at different degrees as E1 and E2 underwent one and two round trips through the
Fe2+ indicator, as the simulation results predicted.
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We noticed that the waveform obtained in the experiment was not equal to the simu-
lated waveform, as the experimental results were obtained after photoelectric conversion.
The experimental results were electronic waveforms, while the simulated results were
optical waveforms. There was a conversion coefficient of the photoelectric detector when
the experimental results were transferred from optical signals to electronic signals, and the
waveforms were scaled down overall. This meant that the amplitudes of the experimental
main and parasitic fringes A1,e and A2,e were the products of the actual intensity and pho-
toelectric conversion coefficient. Therefore, the amplitude ratio A2,e/A1,e was employed to
estimate the relationship between the waveforms and the concentration, as A2,e/A1,e could
eliminate the photoelectric conversion coefficient.

4. Discussion

To describe the simulation results, the amplitude ratio was defined as A2,s/A1,s, which
gradually decreased with the Fe2+ concentration, as shown in Figure 5. Although the points
in the figure show a linear trend, the distribution was not entirely linear. After multiple
attempts of numerical fitting with the linear formula and the nonlinear logarithmic formula,
we determined that a nonlinear formula could better fit the simulated A2,s/A1,s, based on
the R2 of the fitting. The amplitude ratio A2,s/A1,s was employed to fit with a concentration
c, following the fitting logarithmic formula in the 95% confidence band and 95% prediction
band, and the fitting result was A2,s/A1,s = −5.15 − 0.52 ln (c + 3.77 × 10−5) with a
goodness of fit R2 = 0.9998.

To estimate the relationship between the experimental results and the Fe2+ concen-
tration, the points of the amplitude ratio A2,e/A1,e around micromolar Fe2+ concentration
are presented in Figure 6, with the simulated A2,s/A1,s points at the same concentration
also presented for comparison. The distribution was not entirely linear and was not as it
appeared, similar to the fitting result in the simulation section. After the comparison of
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the fitting results using the linear and logarithmic formulas based on the fitting parameter
R2, we determined that a nonlinear logarithmic formula might better fit the simulated
A2,s/A1,s since R2 = 0.9966 for linear fitting and R2 = 0.9979 for logarithmic fitting. The
amplitude ratio A2,s/A1,s was employed to fit with the concentration c following the fitting
logarithmic formula in the 95% confidence band and 95% prediction band, and the fitting
result was A2,e/A1,e = −5.08 − 0.52 ln (c + 4.34 × 10−5) with a goodness of fit R2 = 0.9979.
The goodness of fit indicated that the fitting logarithmic formula was suitable for both sim-
ulated and experimental results. In addition, the simulated results located in the prediction
band calculated from the fitting results of the experimental results are shown in Figure 6.
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Typically, absorbance (A = lg(1/t) = ε·b·c), also known as the optical density, consists
of the quantity of light absorbed by the Fe2+ indicator. We measured the output power to
calculate the absorbance, as shown in Figure 7, before and after the laser passed through
the Fe2+ indicator at different concentrations with the same laser in the experimental
setup and with an optical power meter. Under the condition of b = 1 cm, the slope of the
absorbance versus the Fe2+ concentration was estimated as the molar absorption coefficient
ε = 7955 L/(mol·cm) at the wavelength of the laser. We noticed that the value of the optical
power meter could barely be read when the concentration was less than 10−4 mol/L, as the
meter was not sufficiently sensitive in this concentration regime. Furthermore, this made
observations more difficult around 10−6 mol/L. We considered that the attributes of the
reflected light carrying the absorption decay could be magnified in the laser cavity.
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5. Conclusions

We proposed a novel method for measuring Fe2+ at a micromolar concentration based
on multiple self-mixing interference. The absorption decay by the Fe2+ indicator in multiple
self-mixing interference was observed, and we obtained its experimental waveforms around
a micromolar concentration in an external cavity modulated by a periodic signal carrying
the amplitude decay in the periodic form. The theoretical waveforms were simulated based
on the lasing amplitude condition, considering multiple reflected lights. The experiment
was conducted under the condition of Fe2+ indicator dilution at different concentrations
in the external cavity. The waveform consisted of the main and parasitic fringes in the
time domain and the amplitude decay of the fringes with different degrees, which was due
to the absorption of Fe2+ indicator dilution. The experimental and simulated waveforms
exhibited a similar trend when compared with the Fe2+ indicator concentration. Therefore,
it was the absorption of the Fe2+ indicator that resulted in amplitude decay in multiple
self-mixing interference.

This work assessed the combination of optical interference and the absorption spec-
trum, which could be useful for medical and environmental science or other optical spec-
trum cases. The absorption material corresponds to its spectral line, and nearly every laser
will have a single mode or multiple modes, so a laser chosen according to the material’s
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absorption spectrum will be vital for successful experiments. Furthermore, the work em-
ployed a single longitudinal mode laser with a narrow spectrum band, which might only
be useful for some specific types of electrolytes even if the absorption spectrum of the
electrolyte lies around the laser wavelength. Therefore, we would have to find another
laser with a different wavelength to detect another electrolyte if its absorption spectrum
is not located in the same spectrum band. However, a kind of white laser with a wide
spectrum band has been invented in recent years [47,48]; using this laser, more kinds of
electrolytes will be detected in our future work.
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