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Abstract: Engineered feature extraction can compromise the ability of Atrial Fibrillation (AFib)
detection algorithms to deliver near real-time results. Autoencoders (AEs) can be used as an automatic
feature extraction tool, tailoring the resulting features to a specific classification task. By coupling an
encoder to a classifier, it is possible to reduce the dimension of the Electrocardiogram (ECG) heartbeat
waveforms and classify them. In this work we show that morphological features extracted using a
Sparse AE are sufficient to distinguish AFib from Normal Sinus Rhythm (NSR) beats. In addition
to the morphological features, rhythm information was included in the model using a proposed
short-term feature called Local Change of Successive Differences (LCSD). Using single-lead ECG
recordings from two referenced public databases, and with features from the AE, the model was
able to achieve an F1-score of 88.8%. These results show that morphological features appear to be
a distinct and sufficient factor for detecting AFib in ECG recordings, especially when designed for
patient-specific applications. This is an advantage over state-of-the-art algorithms that need longer
acquisition times to extract engineered rhythm features, which also requires careful preprocessing
steps. To the best of our knowledge, this is the first work that presents a near real-time morphological
approach for AFib detection under naturalistic ECG acquisition with a mobile device.

Keywords: atrial fibrillation detection; ECG morphological features; supervised autoencoder; auto-
matic feature extraction

1. Introduction

Atrial Fibrillation (AFib) is a Cardiovascular Disease (CVD) characterized by the
uncoordinated activity of the heart chambers, with the atria exhibiting irregular and high-
rate electrical activity. It is the most frequent type of cardiac arrhythmia in the Western
World, with an estimated prevalence of 46.3 million individuals worldwide [1,2], and it
is one of the leading causes of stroke, as it increases the risk of having one by four to five
times [3]. In addition, recent reports suggest that both global incidence and prevalence are
on the rise, putting a greater strain on healthcare systems [4,5].

AFib occurs because of a lack of synchrony in atrial contraction since disorganized
electrical impulses propagate throughout both atria. This can be caused by the appearance
of ectopic pacemaker foci, or by structural and biochemical changes that delay regular
electrical pulses [6]. Over time, risk factors and lack of treatment can deteriorate the
atria’s condition, and AFib can progress from a paroxysmal to a permanent state, in a
process known as atrial remodeling [7,8]. Because persistent AFib is linked to a higher
risk of a severe stroke [9], AFib early diagnosis and monitoring are crucial to prevent
further complications.

Diagnosing AFib is commonly made using the Electrocardiogram (ECG) to monitor
the heart’s electrical activity (Figure 1). Both its rhythm and waveform morphology are
changed by the presence of an irregular heart rate, the replacement of P-waves by fibrillatory
waves (F-waves), and the lack of an isoelectric baseline [10].
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Figure 1. Morphological and rhythm changes between ECG recordings in Normal Sinus Rhythm (top)
and in Atrial Fibrillation (bottom), where the absence of P-waves and the irregular heart rate are noticeable.

Since one cannot predict rare AFib events to occur while at the hospital, continuous
monitoring of patients at risk can be achieved in other environments (e.g., home and/or
ambulatory) by using implantable cardiac monitors, wearable patch monitors, and Holter
monitoring systems [11–13]. Cardiovascular monitoring has also been extended to the
general population using wrist-worn wearable devices, which can benefit from automatic
detection of heart conditions [14]. More recently, off-the-person devices, increasingly
dubbed as “invisibles”, are integrated with everyday use objects and do not require a
conscious effort to perform data acquisition, providing a more pervasive way to detect
CVDs [15–18].

Because of the overwhelming amount of data generated by these long-term acquisi-
tions, many Computer-Aided Diagnosis (CAD) tools have been developed over the last
decades to assist in AFib detection. State-of-the-art CAD examples include algorithms based
on Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Decision-
Trees (DTs) [19]. Most of these algorithms rely on ventricular and signal features extracted
from ECG recordings, such as RR-Intervals (RRIs) and associated variability metrics, fre-
quency content, among others. However, despite AFib being an atrial phenomenon, very
few algorithms rely on atrial features (e.g., atrial wave morphology), mainly because of the
relatively low amplitudes of the atrial activity and high sensitivity to noise [19].

Given the large number of features that can be extracted, feature selection can be com-
putationally expensive (given that it is an NP-hard problem), and, depending on the number
of chosen features, feature extraction can compromise the algorithms’ responsiveness. This
way, algorithms that do not rely on feature engineering (e.g., only using morphology) or
that use optimized features for a specific problem (e.g., using automatic feature extraction
tools) can be advantageous for real-time (or near real-time) and resource-limited systems.

In addition, the duration of the temporal window in which the features are to be extracted
has to be considered. Ideally, systems for real-time implementation need to have low latency
between acquisition and result. Consequently, short-term features are preferred in monitoring
systems. In this regard, morphological characteristics could be more efficient than ventricular
and signal features, which frequently require more samples to become relevant [20].

To deal with such challenges, we propose an approach based on Autoencoders (AEs)
to distinguish AFib from Normal Sinus Rhythm (NSR) in a beat-by-beat fashion. The
AE is capable of automatically generating features from the morphology of the ECG
waveforms, which can then be used by a standard Machine Learning (ML) classifier. To
this end, two PhysioNet [21] databases were used to evaluate its performance: the MIT-
BIH Atrial Fibrillation (AFDB) [22] and the Computing in Cardiology Challenge 2017
(CinC2017) [23]. In addition, we also examine the impact of Supervised AEs (SupAEs)
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and the effect of incorporating a short-term engineered ventricular feature on the overall
classification performance.

To do so, this paper first briefly describes comparable state-of-the-art approaches for
AFib detection (Section 2). Next, the methodology used to build the AE-based model is
presented, along with the training approach (Section 3). Finally, the results and key findings
are described (Section 4), compared to other approaches, and discussed (Sections 5 and 6).

2. Related Work

As stated in Section 1, many approaches around AFib detection have been developed
over the years [19], where the use of ANNs has recently been more pronounced and
achieves the best performances (Figure 2). There is a wide variety of algorithms based on
ANNs, such as using Convolutional Neural Networks (CNNs), Deep Neural Networks
(DNNs), Recurrent Neural Networks (RNNs), and AEs. The following subsections provide
some insight into the current state-of-the-art of these approaches, taking into account the
nature of the proposed model.

Figure 2. Number of AFib detection algorithm publications from 2013 to 2020, showing how the
number of ANN-based algorithms have gained popularity over time. The year 2018 was boosted by
the CinC2017 challenge. Data obtained from the Appendix A, Supplementary Data section of [19].

2.1. Without Feature Engineering

Feature extraction and feature selection are two of the main ML tasks since their
purpose is to provide algorithms with meaningful and compact data. In AFib detec-
tion, Heart-Rate Variability (HRV) metrics are often used to measure the irregularity of
RR-Intervals [19,24]. Examples of such ventricular features include: Root Mean Square
of Successive Differences (RMSSD), Poincaré plots, Sample Entropy (SampEn), Turning
Point Ratio (TPR), and Lyapunov exponents. In addition, signal features can include signal
power, frequency content, statistical measures, Wavelet Transform, phase-space analysis,
among others.

Using a Deep Learning (DL) approach, Baalman et al. [25] developed a feedforward
neural network focused on classifying ECG beats (i.e., single cycle) as NSR or AFib. This
approach demonstrated the capacity of DL models to automatically extract adapted features
to a specific classification task. In addition, the authors used an attention mechanism to
highlight the model’s hidden features, thus providing explainable results (in contrast with
the typical black-box paradigm). Using their own ECG data recorded at 500 Hz, the authors
achieved an accuracy of 96% and an F1-score of 94% using Lead II ECG recordings and,
using Lead I recordings, the model achieved an accuracy of 93% and an F1-score of 90%.
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Based on computer vision strategies, Fan et al. [26] proposed a fusion of two deep
convolutional neural networks (DCNNs) with different filter sizes. Using ECG signals in
one dimension, the output of both DCNNs is concatenated and fed into a set of 3 fully
connected layers that produce an output for the AFib/NSR classification with a Softmax
activation function. This model was tested in single-lead short ECG recordings from the
CinC2017 dataset, and it achieved a 96.99% accuracy using a 5 s time window, and a peak
accuracy of 98.13% using a 20 s input sequence.

To tackle the limitation of CNN-based models to analyze variable-duration ECG
recordings, Zhang et. al [27] proposed a time-adaptive structure that consists of multiple
densely connected CNNs (DenseNets) and a Bidirectional Long Short-Term Memory (Bi-
LSTM) cell. Using 10 s cropped single-lead ECG fragments, the binary classification
performance was 99% and 87% for the CinC2017 and AFDB datasets, respectively.

2.2. Autoencoder-Based

AEs are well-known for their ability to perform dimensionality reduction and have
been used in numerous applications. However, their usage for AFib detection has been
very scarce.

Yuan et al. [28] developed an approach for AFib detection from ECG records using a
stacked Sparse Autoencoder (SAE) based on 84 selected features extracted from the RR-
Intervals and P-wave measurements within a 10 s ECG window. The AE used to achieve
data compression had 84 input nodes and 2 hidden layers with 300 nodes each. AFib
detection was made by stacking a Softmax activation function to the extracted features of the
AE. Using ECG recordings from the MIT-BIH databases, the model first achieved a detection
accuracy of 75.6%, and, after fine-tuning the model, a 98.3% accuracy was reported.

A similar approach was followed by Chen and Ying [29], where a stacked SAE receives
19 features extracted from the ECG records, including statistical measures, parameters
from the Hilbert–Huang transform, and Wavelet decomposition features. After training,
the AE is then coupled to a Softmax activation function to detect AFib; a 96.0% accuracy
was achieved.

2.3. For Real-Time Implementation

Detecting AFib in real-time is challenging, requiring algorithms that are highly sen-
sitive and specific while also being robust to noise and artifacts, with low computational
requirements. Additionally, designing embedded systems for AFib detection must take
into account hardware constraints, such as memory allocation and processing power, as
well as the efficiency and number of operations of the algorithm.

To address these challenges, Chen and colleagues [30] proposed an edge computing
framework for AFib detection based on an embedded platform that mainly uses feature
engineering to collect ECG signals in real-time. The model used for AFib detection is
lightweight and achieved an F1-score of about 90% with only 18 multiplications and
18 additions. Directly analyzing data at the edge can reduce the response time, making the
proposed solution feasible for analysis and training on the edge.

In addition, Andersen et al. [31] proposed a DL-based approach for real-time automatic
detection of AFib in long-term ECG recordings. Their proposed model, a combination
of CNNs and RNNs, achieved high sensitivity and specificity of 98.98% and 96.95%,
respectively, after being trained and validated on three different databases with a total of
89 subjects. The model also demonstrated computational efficiency, analyzing 24 h of ECG
recordings in less than one second. The proposed algorithm was tested on unseen datasets,
resulting in 98.96% and 86.04% for specificity and sensitivity, respectively, and was found
to outperform existing state-of-the-art models evaluated on standard benchmark ECG
datasets. By learning data-driven features to distinguish AFib from the remaining rhythms
in the signals, the proposed method eliminates the need for traditional feature engineering.



Sensors 2023, 23, 2854 5 of 16

3. Methods

We study the ability to promptly distinguish ECG beats in NSR and in AFib using
waveform morphology, for which an AE-based approach is proposed. Here, we briefly
describe the purpose of the AE training and how classification is performed using the
compressed version of the ECG waveforms.

3.1. Autoencoder-Based Models

An AE is an ANN that is divided into two elements: an encoder and a decoder
(Figure 3a). The encoder is responsible for generating a feature vector (also called code)
from the input, generally by compression, while the decoder is responsible for reconstruct-
ing the input from the feature vector. The traditional AE model (called undercomplete)
achieves compression and reconstruction by, respectively, reducing and increasing the num-
ber of nodes layer by layer, often symmetrically. By enforcing the input to be compressed
into a latent representation, and by using a cost function that favors the output to be as
close as possible to the input (e.g., mean squared error (MSE)), the feature vector within the
code should retain the most relevant information about the data’s nature, provided that the
model converged and properly fit the data.

SAEs, on the other hand, take advantage of setting some nodes to zero, which can have
a positive effect when learning an internal representation. Instead of reducing the number
of nodes to achieve an information bottleneck, SAEs try to enhance the generalization
ability by applying an L1 penalty to the code layer, which equals the sum of the absolute
values of the ANN’s weights [32].

Another approach is to add a classifier in the AE’s bottleneck (Figure 3b), called a
Supervised Autoencoder [33]. Although a regular AE is supervised in the sense that the
target is the input, the set of features generated by the SupAE is regulated by both the MSE
and the classification loss, which should result in higher classification performances.

Upon a previously made systematic study of different combinations of AE type and
classifier [34], the proposed model for AFib detection consists of first training a three-layer
SAE (with 75% compression level) using ECG waveforms from both classes (NSR and AFib),
and then using the encoded features as an input to a Multilayer Perceptron (MLP) binary
classifier (Figure 4). By doing this, the ECG waveforms are mapped into a compressed
version, consisting of feature vectors, which are then classified as NSR or as AFib.

(a) (b)

Figure 3. (a) A traditional autoencoder which is trained to reproduce the input samples, and (b) a
supervised autoencoder that receives additional feedback from labeled samples.

3.2. Rhythm Feature

Since rhythm information (i.e., RR-Interval variability) is not fed into the AE, an addi-
tional feature was also tested to possibly enhance the classification task. This engineered
feature is called Local Change of Successive Differences (LCSD) [34], which was specifically
designed for the beat-by-beat classification problem. Given an ECG signal with R-peaks at
time instants R1, R2, ..., Ri, ..., RN , the LCSD is computed for a given Ri as:

LCSD(Ri) =
|(Ri+1 − Ri)− (Ri − Ri−1)|

1
N−1 ∑N−1

j=1 (Rj+1 − Rj)
, 1 < i < N, (1)
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which consists in computing the absolute difference between consecutive RR-Intervals
and dividing by the mean RR-Interval of the recording. Because AFib is characterized by
irregular RR-Intervals, the LCSD values in this rhythm should be different from the ones in
NSR as illustrated in Figure 5.

Figure 4. The proposed model for classifying ECG heartbeat waveforms into Normal Sinus Rhythm
(NSR) and Atrial Fibrillation (AFib). It consists of an encoder responsible for extracting morphological
features from the ECG segments, which are then used by a classifier. The LCSD metric is also used to
train the classifier to provide local rhythm information and improve classification performance.

Figure 5. Example of LCSD values for ECG beats in NSR (left) and in AFib (right). Since RR-Intervals
are more regular in NSR, their consecutive differences are smaller compared to AFib.

4. Results

In this section, we first describe the datasets chosen to evaluate the performance of
the proposed approach, then validate the preprocessing steps, including the LCSD feature
calculation, and finally present the training and classification results.

4.1. Databases

In the last decades, a number of databases for AFib detection have been made publicly
available to promote the development and testing of new algorithms. The AFDB [21,22],
created by Boston’s Beth Israel Hospital laboratories and the Massachusetts Institute of
Technology, contains 10-hour recordings of 25 people with AFib (mainly paroxysmal). The
dataset contains annotations for NSR, AFib, atrial flutter, and AV junctional rhythm. The
250 Hz Holter recording system consisted of two ECG leads, however, with no indication
of the electrodes’ placement.

Another well-known and recent database originated from the CinC2017 [23], which
is considered to be one of the main sources of new publications related to AFib detection
algorithms in 2018 (Figure 2) [19]. In addition, because of its acquisition environment,
the CinC2017 database is particularly interesting to test algorithms using short-term ECG
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acquisitions from wearable devices. There are 12,186 single-lead recordings in this database,
ranging in length from 9 to 60 s. The recordings are labeled as NSR, AFib, other rhythms,
and noisy acquisitions. The data were collected using AliveCor’s single channel ECG
devices, including the AliveCor® KardiaMobile, with a Left Arm–Right Arm lead con-
figuration (equivalent to Lead I [16]). The acquisitions were made using a sampling rate
of 300 Hz with a 0.5–40 Hz bandwidth. More information regarding the aforementioned
databases can be found in Table 1.

Table 1. Description of publicly available databases for atrial fibrillation detection.

DATABASE
(YEAR)

LEAD
SYSTEM

DURATION/
RECORDING

SAMPLING
RATE
(HZ)

ADC RESO-
LUTION

DYNAMIC
RANGE

BANDWIDTH

CinC2017 (2017) Single-lead 9–60 s 300 16-bit ±5 mV 0.5–40 Hz
AFDB (1983) Two-lead 10 h 250 12-bit ±10 mV 0.1–40 Hz

4.2. Preprocessing

Data preprocessing (Figure 6) was conducted using the BioSPPy toolbox [35] on a
Python 3 environment. All ECG signals were first filtered using a high-pass Finite Impulse
Response (FIR) filter with a cut-off frequency of 0.5 Hz. An R-peak detection algorithm that
follows the approach proposed by Hamilton [36] was applied to the CinC2017 data, and
the AFDB R-peak data (already provided) were corrected to achieve more accurate R-peak
locations. Only the first channel of the AFDB database (“ECG1”) was used.

Figure 6. Preprocessing steps of the ECG recordings.

Afterwards, all ECG recordings were segmented by beats using a segmentation tech-
nique proposed by Lourenço et al. [37], where ECG beats are obtained by clipping around
the R-peaks (200 milliseconds (ms) before and 400 ms after). However, since this method
generates fixed-length templates, second R-peaks can appear due to the short RR-Intervals
caused by AFib. To prevent the model from being affected by such second R-peaks, they
were removed by applying zero-padding 70 ms before their appearance, to also cover the
Q-wave (Figure 7a).

In addition, to prevent the models from being trained with anomalous waveforms,
an ECG outlier detection algorithm based on DMEAN was used [38], which discards ECG
beats by their cosine distance to the average waveform (Figure 7b).

The number of NSR and AFib signal portions and beats extracted from the recordings
is presented in Table 2.

4.3. Validation of the LCSD Metric

As previously presented, the LCSD feature was proposed to provide the model with
local rhythm information. This metric is proportional to the absolute difference between
consecutive RR-Intervals around an R-peak, which is expected to result in different values
for NSR and AFib. To validate its usefulness, the Mann–Whitney U test was conducted on
all databases, and the results showed significant differences between the two groups (as
illustrated in Figure 8).
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(a) (b)

Figure 7. (a) Example of second R-peak removal from an AFib ECG segment using zero-padding. (b) Use
of DMEAN to detect outliers in a set of ECG segments from a recording—valid segments are depicted
as solid lines, while outliers are displayed in dashed lines. Data from the CinC2017 database [23].

Table 2. Number of recordings, signal portions, and ECG waves after data preprocessing.

DATABASE RECORDINGS
SIGNAL PORTIONS ECG WAVES

NSR AFib NSR AFib

CinC2017 5788 5050 738 144,310 27,969

AFDB 23 288 289 478,898 365,455

Figure 8. Distribution of LCSD values for NSR and AFib in two databases. The Mann–Whitney U
test revealed significant statistical differences between the distributions, with p-values smaller than
0.0001 (marked by ****).

Additionally, the use of the LCSD metric was studied as the sole feature for the
separation of NSR and AFib. A logistic regression classifier was trained to predict the
classes and its performance was evaluated using various metrics, as reported in Table 3.
The results show good performance, which highlights the importance of the LCSD metric
to enhance the classification results of the morphology-based models.
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Table 3. Performance of the Logistic Regression classifier for the LCSD metric in two databases.

DATABASE ACCURACY PRECISION RECALL F1-SCORE

CinC2017 0.870 0.739 0.304 0.431
AFDB 0.757 0.820 0.562 0.667

4.4. Training

For both datasets, the data split consisted of using 80% of the signal portions for
training and 20% for testing, and, to determine the number of epochs to train the AE
models, a 10-fold cross-validation procedure was used. Because the AFDB is organized by
patients, an additional data split approach was tested: 80% of the patients (18) for training
and 20% for testing (5). This stratification by patient could give insight into whether the
proposed model is able to generalize for ECG recordings of unseen patients.

After extraction of the ECG waveforms from each subject’s recording(s), the number
of NSR samples used to train the models was limited by the number of AFib waveforms
(i.e., undersampling of the majority class), to deal with class imbalance (Table 2).

The training procedure was performed using a TensorFlow 2 version in a Python
3 environment. The training data were standardized using the StandardScaler imple-
mentation of the Scikit-Learn Python library [39], and the validation and test inputs were
transformed using the training standardization.

The loss functions chosen were MSE loss for the AEs and binary cross-entropy for
the MLP classifiers. A maximum of 2000 epochs was set for all models, using an early
stopping condition with a 50 epoch-patience after no decrease in validation loss. The
models were trained on batches of 32 samples using the Adam optimizer algorithm with an
initial learning rate set to 1× 10−4. The architecture of the models can be found in Table A1
and detailed information regarding the training procedure is in Table A2.

The resulting learning curves are represented in Figures 9–11, where the differences
in the convergence between the AE and SupAE models can be noted. Table A3 reports
the training results of the models, with indication of the number of epochs, losses, and
classification thresholds.

Figure 9. Comparison of Encoder-MLP (left) and Supervised Autoencoder (center) on CinC2017 data
shows that SupAEs have insignificant changes in convergence and performance in terms of lower
classification losses. The ROC curve of SupAE with and without the LCSD metric (right) highlights
the best threshold value.

4.5. Classification

Table 4 summarizes the classification results using data from the CinC2017 and AFDB
databases, including the models using patient-stratified data. The accuracy, F1-score, and
Area Under Curve (AUC) are presented for the AE and SupAE models with and without
the LCSD feature. The remaining metrics such as precision and recall are available in
Table A4.
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Figure 10. Comparison of Encoder-MLP (left) and Supervised Autoencoder (center) on AFDB data
shows the SupAE’s quicker convergence and better performance in terms of lower classification
losses. The ROC curve of SupAE with and without the LCSD metric (right) highlights the best
threshold value.

Figure 11. Comparing the performance of Encoder-MLP and Supervised Autoencoder on AFDB data
using a patient-based split. The learning curves on the (left) and (center) show that both models face
difficulties in converging the validation loss, possibly due to the presence of unseen pathological
waveforms. The ROC curve of the SupAE model (right) with and without the LCSD metric highlights
the best threshold value.

Table 4. Classification metrics for the proposed AE-based models using data from two PhysioNet
databases. The best models for each database are highlighted in bold (based on the F1-Score).

DATABASE SUPAE FEATURES ACCURACY F1-SCORE AUC

CinC2017
No AE 0.820 0.827 0.892

AE+LCSD 0.885 0.886 0.945

Yes AE 0.831 0.834 0.908
AE+LCSD 0.888 0.888 0.951

AFDB
No AE 0.777 0.803 0.797

AE+LCSD 0.818 0.837 0.825

Yes AE 0.870 0.860 0.874
AE+LCSD 0.887 0.879 0.908

AFDB
(by patient)

No AE 0.703 0.746 0.719
AE+LCSD 0.732 0.763 0.754

Yes AE 0.804 0.815 0.833
AE+LCSD 0.837 0.840 0.907

Because the training approach for the AEs and MLPs involved a 10-fold cross-validation,
the instance of the models chosen for testing was the one with the lowest validation loss.

5. Discussion

The results of our study suggest that coupling a trained encoder with a classifier
can effectively distinguish NSR from AFib waveforms using single-lead ECG recordings.
The Supervised AEs demonstrated the ability to create a feature space that enhanced the
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classification performance, outperforming the “unsupervised” versions (Table 4). This is
also supported by the lower train and validation losses (Figures 9–11).

Since the features created by AEs are based only on ECG waveforms and were able
to obtain high scores (86% F1-score with the SupAE), this suggests that morphological
features alone are a distinct and sufficient factor for detecting AFib in ECG recordings. This
is an advantage comparatively to most state-of-the-art algorithms that only use rhythm
information (i.e., ventricular features), because these rely on the analysis of heartbeat
variations occurring over a longer time period than a single ECG waveform.

In this respect, multiple-beat classification could potentially lead to superior perfor-
mance. However, for the time being, existing datasets do not allow more detailed analysis,
since the available labels are assigned to a signal portion rather than to individual beats.
As a result, a signal portion labeled AFib may actually contain normal ECG beats (i.e., with
a regular P-wave). This could have prevented the AE from reaching its full potential, as
there could be mislabeled data.

Nevertheless, the SupAE with the LCSD metric achieved peak F1-scores of 88.8%
and 87.9% for the CinC2017 and AFDB data, respectively, corresponding to a 6% and 2%
increase in classification performance (Table 4). These improvements are supported by the
validation tests of the LCSD metric (Section 4.3).

Regarding the learning of the AE-based models, the difference between the two data-
split approaches provides some insight into the generalization ability of the proposed
approach. While the validation loss curve converged similarly to the training loss in the
CinC2017 and AFDB training (Figures 9 and 10), the AFDB stratified by patients did not,
with high cross-entropy values (Figure 11). Although the models using this approach
obtained F1-scores between 74% and 84% with the test data (Table 4), the training curves
suggest that the model is not able to fully capture the ECG morphological differences of
different patients. Indeed, some recordings of this database appear to have pathological
ECG waveforms (Figure 12).

This observation clarifies the ability of AEs to be used in AFib detection. Since ECG
morphology is unique for each subject, the use of AEs for patient-independent diagnosis is
limited. In this respect, algorithms using RR-Intervals to perform AFib detection have an
advantage over morphology-based ones, as they have a greater generalization ability.
On the other hand, the AE-based approach for subject-specific AFib detection yields
good results.

Table 5 compares the performance of our approach to other state-of-the-art methods
for AFib detection. One of the key aspects to highlight is that our method achieved
competitive F1-scores when compared to the other approaches that were designed for real-
time implementation, despite not using any feature engineering. Our approach extracts
useful features automatically from the input data, making it more efficient and scalable.

For the CinC2017 dataset, our approach achieved an F1-score of 88.8% (with
180 trainable parameters), which is slightly lower than the F1-score obtained by Chen et al. [30]
using an MLP (with 8 trainable parameters) with feature engineering (91.5%). However, it is
worth noting that feature extraction may involve preprocessing steps such as interpolation,
frequency analysis, and other tasks that may compromise latency and be more susceptible
to noise. Zhang et al. [27] achieved a higher F1-score of 99.0% using DenseNet+Bi-LSTM,
but their approach, which involves a significant number of operations (e.g., convolutions,
multiplications, additions), may not be suitable for real-time and resource-limited systems.

Regarding the AFDB dataset, our approach achieved an F1-score of 87.9%, which
is comparable to the F1-score achieved by Zhang et al. [27] using DenseNet+Bi-LSTM
(87.6%) but lower than the F1-score obtained by Andersen et al. [31] using CNN+LSTM
(97.2%). Nevertheless, the approach by Andersen et al. uses a more complex architec-
ture (with 159,841 trainable parameters), which may not be optimal for AFib real-time
detection. In contrast, our approach is simple and efficient, making it compatible with
real-time mplementation.
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Compared to DL methods, our proposed approach offers several advantages. Firstly,
our model has a significantly simpler architecture, with only 148 trainable parameters for
AFDB and 180 for CinC2017, as opposed to the thousands or even millions of parameters
required by DL models. This makes our approach faster and more computationally efficient,
which is important for real-time detection applications. Secondly, our model is more
interpretable, as the extracted features are directly related to the waveform morphology. In
contrast, DL models often rely on complex and opaque architectures, making it difficult to
explain how decisions are made. Lastly, our approach does not require extensive feature
engineering, which is often a time-consuming and challenging task in ML/DL applications.

Based on the overall score of the proposed morphological AE-based model, our work
demonstrates the ability of AEs to automatically extract features tailored to a specific
classification task, with performance that compares favorably to other state-of-the-art
algorithms. Furthermore, because of their efficient feature mapping, AEs avoid the need for
explicit feature extraction, and can be easily implemented in resource-limited and real-time
systems, which is especially relevant in wearable devices that aim to provide real-time
results and/or that do not rely on external processing units (e.g., cloud computing). The
low number of trainable parameters and operations, as well as the extracted morphological
features, offer advantages over DL models. However, some limitations have been identified
regarding the generalization ability of morphology-based algorithms.

Figure 12. Portion of a pathological ECG waveform from the AFDB database (recording 04043).

Table 5. Classification performances of different ANN-based algorithms, and comparison with
our results.

DATA
SOURCE

AUTHOR METHODOLOGY F1-SCORE
FOR

REAL-TIME

FEATURE

ENGINEERING

CinC2017

Zhang et al. [27] DenseNet+Bi-LSTM 0.990 No No

Chen et al. [30] MLP 0.915 Yes Yes, 22 features

Proposed Approach AE+MLP 0.888 Yes No

AFDB

Zhang et al. [27] DenseNet+Bi-LSTM 0.876 No No

Andersen et al. [31] CNN+LSTM 0.972 Yes No

Proposed Approach AE+MLP 0.879 Yes No

6. Conclusions

In this work we evaluate an AE-based technique to classify ECG beats into NSR and
AFib. The results of combining a trained encoder with a classifier reveal that single-lead
ECG recordings can be used to differentiate NSR and AFib waveforms. In general, SupAEs
can provide a feature space that improves classification performance as they produce
better results.

This approach was tested with two highly referenced databases that demonstrate
the ability of AEs to handle different acquisition modalities. Namely, the AFDB database,
containing ECG recordings from hospital-grade Holter devices, and the CinC2017 database
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with single-lead ECG data recorded with a mobile device using current technology. Since
the latter results from the subject’s interaction with a device, its use case is more naturalistic.

This versatile strategy of using single-lead ECG beats for near real-time classification
is an advantage over state-of-the-art algorithms that only use rhythm information and/or
need a longer time period to be computed. However, using the short-term feature LCSD
greatly enhances classification performances. The best model achieved F1-scores of 88.8%
and 87.9% using the data from the CinC2017 and AFDB. However, when a patient-based
data split was used (i.e., the model was evaluated using data from patients that were left
out during training), the F1-score dropped to 84%. This suggests that morphology-based
AFib detection models based on Supervised Autoencoders generalize better when trained
with patient-specific data.

The performance of our approach for AFib detection was compared to other state-
of-the-art methods, and it was found to achieve competitive F1-scores without requiring
any feature engineering. The approach extracts useful features automatically from input
data, making it more efficient and scalable. It is also simpler and more efficient compared
to DL methods and suitable for real-time detection. To the best of our knowledge, this is
the first work that presents a near real-time morphological approach to detect AFib under
naturalistic ECG acquisition with a mobile-based device.

Future work may explore the extension of the proposed technique to classify multiple
arrhythmias, beyond NSR and AFib, to enhance the model’s clinical relevance. In addition,
investigating the use of AEs to capture the morphological features of other types of cardiac
pathologies could further expand the proposed approach’s applicability. A next step for
future research could also involve the integration of the proposed technique into a real-time
ECG monitoring system. This would require addressing the challenge of deploying a
computationally efficient model that does not compromise classification performance while
accounting for device and data transmission constraints.
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Appendix A

Table A1. Architecture of the AE and MLP models for CinC2017 and AFDB Databases. The SupAE
consists of training the AE+MLP model. In models with the use of LCSD, the MLP is increased in one
input node.

DATABASE MODEL LAYER SIZE
ACTIVATION
FUNCTION

REGULARIZATION

CinC2017

AE
Input 180 - -
Dense 45 Linear L1 (1× 10−5)
Dense 180 Linear L1 (1× 10−5)

MLP

Input 45 - -
Dense 45 ReLU 0.2% Dropout
Dense 45 ReLU 0.2% Dropout
Dense 45 ReLU 0.2% Dropout

Output 1 Sigmoid -

AFDB

AE
Input 150 - -
Dense 37 Linear L1 (1× 10−5)
Dense 150 Linear L1 (1× 10−5)

MLP

Input 37 - -
Dense 37 ReLU 0.2% Dropout
Dense 37 ReLU 0.2% Dropout
Dense 37 ReLU 0.2% Dropout

Output 1 Sigmoid -

Table A2. Training details for the Autoencoder and MLP Classifier models.

PARAMETER AUTOENCODER MLP CLASSIFIER

Training

Loss Function Mean Squared Error Binary Cross-Entropy
Epochs 2000 2000

Early Stopping min mode,
50 epoch-patience

min mode,
50 epoch-patience

Batch Size 32 32

Optimizer

Type Adam Adam
Learning Rate 1× 10−4 1× 10−4

Beta1 0.9 0.9
Beta2 0.999 0.999

Epsilon 1× 10−7 1× 10−7

Appendix B

Table A3. Training results for the AE-based models using data from two PhysioNet databases.

DATABASE SUPAE FEATURES
NUM. OF TRAINING VALIDATION AUC
EPOCHS LOSS (MIN) LOSS (MIN) THRESHOLD

CinC2017
No M 229 0.320 0.317 0.337

M+LCSD 223 0.218 0.217 0.408

Yes M 942 0.337 0.314 0.46
M+LCSD 2000 0.195 0.214 0.439

AFDB
No M 122 0.074 0.054 0.298

M+LCSD 206 0.067 0.05 0.563

Yes M 359 0.039 0.044 0.239
M+LCSD 2000 0.035 0.039 0.17

AFDB
(by patient)

No M 100 0.080 0.491 0.313
M+LCSD 55 0.082 0.373 0.437

Yes M 141 0.081 0.251 0.450
M+LCSD 2000 0.076 0.107 0.480
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Table A4. Classification metrics for the proposed AE-based models using data from two Phys-
ioNet databases.

DATABASE SUPAE FEATURES ACCURACY PRECISION RECALL F1-SCORE AUC

CinC2017
No M 0.82 0.794 0.863 0.827 0.892

M+LCSD 0.885 0.876 0.897 0.886 0.945

Yes M 0.831 0.821 0.847 0.834 0.908
M+LCSD 0.888 0.888 0.889 0.888 0.951

AFDB
No M 0.777 0.718 0.911 0.803 0.797

M+LCSD 0.818 0.759 0.932 0.837 0.825

Yes M 0.87 0.933 0.798 0.86 0.874
M+LCSD 0.887 0.947 0.82 0.879 0.908

AFDB
(by patient)

No M 0.703 0.652 0.871 0.746 0.719
M+LCSD 0.732 0.684 0.864 0.763 0.754

Yes M 0.804 0.771 0.865 0.815 0.833
M+LCSD 0.837 0.824 0.857 0.84 0.907
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