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Abstract: In the medical field, it is delicate to anticipate good performance in using deep learning due
to the lack of large-scale training data and class imbalance. In particular, ultrasound, which is a key
breast cancer diagnosis method, is delicate to diagnose accurately as the quality and interpretation of
images can vary depending on the operator’s experience and proficiency. Therefore, computer-aided
diagnosis technology can facilitate diagnosis by visualizing abnormal information such as tumors and
masses in ultrasound images. In this study, we implemented deep learning-based anomaly detection
methods for breast ultrasound images and validated their effectiveness in detecting abnormal regions.
Herein, we specifically compared the sliced-Wasserstein autoencoder with two representative unsu-
pervised learning models autoencoder and variational autoencoder. The anomalous region detection
performance is estimated with the normal region labels. Our experimental results showed that the
sliced-Wasserstein autoencoder model outperformed the anomaly detection performance of others.
However, anomaly detection using the reconstruction-based approach may not be effective because
of the occurrence of numerous false-positive values. In the following studies, reducing these false
positives becomes an important challenge.

Keywords: breast cancer; ultrasonography; deep learning; anomaly detection; autoencoder

1. Introduction

Recently, deep learning (DL), a branch of machine learning, has attracted considerable
attention. This is a technology for hierarchically learning numerous data features through
a deep artificial neural network(ANN), extracting from simple features of input data to
complex features [1]. In addition, DL performs well in analyzing various data types, such
as video, voice, and text. Moreover, it can be applied to various areas, such as image
classification, object detection, language translation, sentence classification, voice automatic
generation and composition, robotics, medical image analysis, and cybersecurity [2].

In the medical field, various medical imaging techniques, such as magnetic resonance
imaging (MRI), X-ray, computed tomography, ultrasound, and endoscopy are used for
numerous complicated medical imaging analyses because of their improved diagnosis
rates and reduced screening time based on the consistency, scalability, and accuracy of DL.
However, it is challenging to apply DL models to numerous medical images using various
types of medical equipment without additional information from experts. Consequently, a
method for self-learning the inherent features from numerous images without additional
expert opinion and maximizing discrimination via a minimal amount of expert judgment
has been developed recently [3].

Sensors 2023, 23, 2864. https://doi.org/10.3390/s23052864 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052864
https://doi.org/10.3390/s23052864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9930-1484
https://orcid.org/0000-0002-5281-6306
https://orcid.org/0000-0002-9799-1773
https://doi.org/10.3390/s23052864
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052864?type=check_update&version=1


Sensors 2023, 23, 2864 2 of 19

Among the above medical imaging techniques, ultrasound is one of the key diagnostic
imaging techniques for the physical examination of various organs, such as abdominal
organs, breasts, musculoskeletal systems, heart, and blood vessels [3]. Furthermore, ultra-
sonic waves can be imaged in real-time and used with existing resources without building
a separate environment. However, the quality and interpretation of an image may differ
depending on the operator [3,4] and the false-positive rate (FPR), which is the probability
of judging a disease-free normal region as an anomaly with a high value [5]. In particular,
in breast ultrasonography, it is difficult to detect lesions and accurately diagnose them with
a false-negative rate of 50% in dense breasts with a large quantity of mammary tissue and
a fairly small quantity of fat[5]. To overcome these limitations, DL technology has been
employed to effectively extract biometric information or elaborately visualize anomaly
information of organs similar to masses and tumors to aid diagnosis.

Therefore, in this study, DL models were applied to breast ultrasound images to
learn the image features. Using anomalous data, the results of applying deep learning-
based anomaly detection methods for ultrasound images were verified. Thus, DL-based
anomalous region detection technology can automatically detect anomalous regions with
tumors or masses in ultrasound images. Moreover, we aim to study the effectiveness
of this technology in practical applications, e.g., whether it can be used as a computer-
aided diagnostic tool to detect anomalous regions more quickly in ultrasound diagnosis
and more accurately by visually presenting the anomalous region to the user than those
of the other tools.

2. Related Work
2.1. Deep Learning-Based Anomaly Detection

An anomaly is generally defined as the contrary conception of the normal defined
in a field or problem. Anomalies can be largely categorized into point, contextual, and
collective anomalies [5]. Point anomalies represent irregularities or diversions; individual
data can be linked from given data without a particular interpretation and are considered
anomalies. Contextual anomalies are also called conditional anomalies; data are judged
to be anomalous in certain situations and are identified in consideration of contextual,
behavioral, and operational attributes. Collective anomalies may not be anomalies for
individual data; however, data related to each other show anomalous characteristics within
an entire group and are judged as anomalous.

Anomaly detection means finding an unusual pattern unless the expected behavior
in the data is followed, defining a region representing normal behavior, and considering
data that do not belong to the specific region as anomalous and finding them [6]. These
detection methods have long been applied in various fields, e.g., medicine, transportation,
cyber intrusion, telephone or insurance fraud, and industrial control system detection,
playing a crucial role as the demand increases and applications become widespread [7].

DL is a type of ANN that resembles human cognitive function as a machine learning
technique [8]. This is to achieve flexibility by learning how to express data in an overspread
hierarchical structure and ensure excellent performance in learning complex data charac-
teristics such as high-dimensional, temporal, spatial, and graphic data on its purpose of
analysis [7]. DL-based anomaly detection applies DL technology to the anomaly detection
method. A deep ANN algorithm comprising artificial neurons stacked between the input
and output layers is applied to determine whether there is an anomaly.

This method is further classified into supervised, semisupervised, and unsupervised
learning according to the learning approach. Besides, this method is utilized to supervise
outlier detection according to the presence or absence of label data, which is used for
learning data [6].

Unsupervised Deep Anomaly Detection

Supervised and semisupervised deep anomaly detection approaches require securing
labels for learning data. Because obtaining labeled data is complex, research is actively
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being conducted to enable learning without obtaining separate label data, assuming that
most data are normal [9]. The objective of unsupervised anomaly detection is to detect
previously unseen rare objects or events without prior knowledge about them, meaning it
only requires a single labeling process to train a model. Consequently, high accuracy is not
achieved because the restoring performance of the original data depends on the degree of
compression of input data.

The reconstruction methodology for deep anomaly detection has been implemented
for unsupervised-based deep anomaly detection. The authors of [10] assumed that learned
traditional structures are well-remodeled and reconstructed; however, abnormal structures
were difficult to reconstruct. Specifically, in images, a significant difference was visible
between the input data and the anomalous region reconstructed using the data that can be
determined using an object. The core model of unsupervised-based deep anomaly detection
is an AE[11]. As shown in Figure 1, an AE is a generative unsupervised DL algorithm for
reconstructing high-dimensional input data. An AE uses an NN with a narrow bottleneck
layer in the middle that contains the latent that compresses features and then decodes
data to reconstruct the original input. The encoder maps the input data features to a
low-dimensional latent space, and the decoder is trained to restore the low-dimensional
features most similar to the input data through reverse processing.

Figure 1. Autoencoder (AE) Architecture.

The encoder maps high-dimensional data into a low-dimensional latent space as
shown in Equation (1), and the decoder reconstructs and restores the compressed low-
dimensional data as shown in Equation (2) into high-dimensional data [1]. In Equations (1)
and (2), the encoder parameters are {W, b} and the decoder parameters are {W′, b′}. The
activation function is α [1].

z = encoder(x) = α(Wx + b) (1)

x′ = decoder(z) = α(W′z + b′) (2)

As shown in Equation (3), the purpose of the AE model is to minimize the recon-
struction errors using the difference between the restored images and the input image that
mainly uses mean square error (MSE) and cross-entropy error.

L(x, x′) = argmin
1
n

n

∑
i=1
‖x− x′‖2 (3)

We consider three typical AE models applied to unsupervised-based deep anomaly de-
tection: variational AE (VAE), general adversarial network (GAN), and sliced-Wasserstein
AE (SWAE).

The VAE model was proposed by D. Kingma and M. Welling[12] in 2014; it is a
generative model that learns the probability distribution of data and generates new data
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from the learned probability distribution. The structure is shown in Figure 2 and comprises
a network structure of an encoder and a decoder, as shown in the AE model. The encoder
extracts potential features by abstracting input data, and the decoder restores these potential
features to the original data. At this time, the decoder generates data on the premise of a
normal distribution with the average (µ) and variance (σ) of the latent features created by
the encoder as parameters.

Figure 2. VAE Architecture.

The loss function of the VAE model is shown in Equation (4), which computes the
errors in the two optimization tasks. It comprises a sum of reconstruction errors, indicating
how well the input image has been restored, and Kullback–Leibler divergence (KLD) errors,
indicating how closely the latent variable matched the Gaussian distribution, i.e., the latent
space probability distribution.

Li(θ, φ) = −Ez ∼ qθ(z|xi)[logpφ
(xi|z)] + KL(qθ(z|xi)|p(z)), (4)

where x is an input value, and z represents a sampled latent variable. θ is the encoder
parameter, φ is the decoder parameter; the encoder and decoder can be expressed as qθ(z|x)
and pφ(x|z), respectively.

The SWAE model enables the shaping of the latent space distribution into a samplable
probability distribution without the need to train an adversarial network [12]. Similar to
the VAE model, the sample data distribution is enforced. However, in the normalization
process, there is a difference between the usage of the Wasserstein distance (WD) and not
the KLD. Both the KLD and WD measure the distance between probability distributions.
However, the KLD is θ when the two probability distributions overlap, as shown in
Equation (5), and +∞ when they do not overlap. Thus, learning becomes problematic if
the probability distribution is not continuous. However, the WD (EM distance) maintains a
constant |θ| regardless of whether the two probability distributions overlap, as shown in
Equation (6). Hence, it is easy to use it in learning because probability distributions that do
not converge with other distances or divergences can converge with it.

KL(Pθ‖P0) = KL(P0‖Pθ) =

{
+∞ if θ 6= 0,
0 if θ = 0

(5)

W(P0, Pθ) = |θ| (6)

To minimize the sliced-WD (SWD) between the distribution of encoded learning data
and the prior distribution, the distance used in sliced-Wasserstein is the same as that in
Equation (7). It refers to the lower limit when the expected value of the distance is the
smallest in the combined probability distributions γ(x, y) combining the two probability
densities Pr and Pg.

W(Pr, Pg) = inf
γ∈Π(Pr ,Pg)

(E(x,y)γ[‖x− y‖p]
1
p ) (7)
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However, because it is impossible to find the minimum in all combinations of proba-
bility distributions, we calculate the value for the 1-Lipschitz function ‖ f ‖L ≤ 1, which is
the upper limit where the average rate of change between any two points does not exceed
1, using the Kantorovich–Rubinstein equation:

W(Pr, Pg) = sup
‖ f ‖L≤1

Ex∼Pr [ f (x)]− Ex∼Pg [ f (x)] (8)

The SWD projects high-dimensional probability densities such as PrandPg in the
distribution of Equation (8) from the WD into one-dimensional (1D) peripheral distributions
and compares these peripheral distributions through the WD.

For the two probability distributions R and G, the Wasserstein-2 distance is calculated
as Equation (9), and the SWD is approximated to W2

2 as shown in Equation (10) and
optimized as Equation (11).

W2
2 (R, G) =

1
|G| min

M

|G|

∑
i=1

|R|

∑
j=1

Mi,j‖Rj − Gi‖2
2, M :

∫
, doubly stochastic (9)

W̃2
2 (R, G) =

∫
w∈Ω

W2
2 (Rw, Gw)dw, Rw = wT R|R|ii=1

, Gw = wTG|G|ii=1
, Ω : unit sphere (10)

min
θ

1

|̂Ω|
W2

2 (Rw, Gw(θ))dw (11)

The 1D peripheral distribution of the high-dimensional probability densities may be
defined as follows:

RPX(t; θ) =
∫

X
PX(x)δ(t− θ • x)dx, ∀θ ∈ Sd−1, ∀t ∈ R, (12)

where Sd−1 means a unit sphere of d-dimensional, and for fixed θ ∈ Sd−1, RPX(•; θ) is a
1D slice of PX distribution. That is, RPX(•; θ) is obtained by integrating a hyperplane PX
orthogonal to θ. The following Equation (13) is the sliced-WD defined from the peripheral
distribution of Equation (12).

SWc(PX, PY) =
∫

Sd−1
Wc(RPX(•; θ), RPY(•; θ))dθ (13)

According to Soheil Kolouri[13], the SWAE is calculated as follows to optimize the
model to the minimum SWD value:

argminφ,ψWc(PX, PY) + λSWc(pz, qz), (14)

where φ represents an encoder, ψ represents a decoder, PX represents a data dis-
tribution, PY represents a distribution of data through an encoder and a decoder; pz is
the encoded data distribution, and qz represents a predefined sampling distribution; λ
represents the relative importance of the loss function. The model structure is shown
in Figure 3.
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Figure 3. SWAE Architecture.

Most DL-based anomaly detection models learn using one of the aforementioned
three learning approaches and determine whether it is abnormal through output values.
According to the result, an abnormal score that can be determined based on a specific
reference value is defined for a given problem to determine its abnormality.

2.2. Deep Learning-Based Anomaly Detection for Medical Images

In the medical field, DL-based anomaly detection methods have been applied to
improve classification performance by learning the characteristics of complex and abstract
medical images and spatially transforming lesions to contribute to the characteristics, which
is helpful for prevention treatments [14].

Data imbalance due to the variety of data is a common issue in the medical field. It is
challenging to collect disease data compared with normal data due to practical limitations
in detecting and classifying lesions. Recently, DL methods have been implemented for
anomaly detection for various medical images modalities, such as brain MRI, retinal
optical coherence tomography (OCT), hand X-ray, chest X-ray, skin disease, and muscle
ultrasound [15–26].

Unsupervised anomaly detection based on implicit field learning was recently pro-
posed for high-resolution three-dimensional volume images [27]. The implicit field learning
was implemented to learn a mapping of latent features and coordinates to a data point
intensity class so that the encoding module preserves as much information as possible in
the original image. The implicit field learning approach with AE achieved state-of-the-art
performance in anomaly detection for brain cancer MRI. GAN-based architectures have also
been employed in various anomaly detection studies. In [28], the GANomaly architecture
was applied to detect chronic brain infarcts. In [29], a unified GAN and VAE architecture
was proposed to identify chest radiographs with abnormal lesions.

DL methods, especially AE and GAN architectures, learn normal image patterns of
human organs in medical images without lesions. In the process of reconstructing a given
image, they have the advantage of using the difference between the input image and the
reconstructed image to determine the abnormality of the input. However, although various
AEs have been proposed, the FPR is still high in pixel-wise anomaly detection. In this
study, the effectiveness of the SWAE in anomaly detection, which is known to have better
reconstruction quality than other AE variants, is validated through comparative studies
with the VAE and conventional AE models.
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3. Materials & Methods
3.1. Materials

In this study, we retrospectively collected 1147 breast ultrasound images compris-
ing 947 normal breast ultrasound images and 200 abnormal ultrasound images from
Kyungpook National University Hospital in the Republic of Korea. The images con-
sist of 113 benign tumors and 87 malignant tumors. The size of all data is 224× 224× 3;
853 normal breast ultrasound data and 94 normal data for model training and verifica-
tion. Data with anomalous region (region of interest: ROI) label values were used for
model evaluation.

The ultrasound images used in the experiment were cut into specific areas. Some
normal ultrasound images were used for learning via applying Gaussian filters for noise
removal, and gamma correction with 0.5 and 1.5 gamma values, which decide to express
the dark areas of ultrasound in more detail. The input data were used by dividing the
values of 0–255 pixels into 255 values and converting them into values between 0 and 1.

3.2. Reconstruction-Based Anomaly Detection

The method of detecting an anomalous region applied in this study is to detect an
unrestored region by considering it as abnormal using an error image between an input
image and a reconstructed image (Figure 4). The learning process uses a modified SWAE
model based on AE, a representative generation model of ANNs, and the conventional
AE, which obtains latent features for the summit through input. In the evaluation process,
anomalous data are input to the learned model, and an anomalous region is detected
through the restored results. The difference between the input image and the restored
image is calculated to derive an anomaly map, which is an error image. The anomaly map
is binary divided based on a specific threshold to detect the anomalous region. This process
was applied to the three models to compare and analyze their detection performances and
investigate the factors influencing anomalous region detection in breast ultrasound images.

Figure 4. Deep Learning-based Anomalous Region Detection Process.

3.2.1. Hyperparameter Tuning

In this study, the hyperparameters of the implemented models are as shown in
Tables 1–3. We tuned the hyperparameters by the grid search method.

Table 1. Hyperparameter setting of the AE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function L1 distance

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002
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Table 2. Hyperparameter setting of the VAE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function Reconstruction Error + KLD

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002

Table 3. Hyperparameter setting of the SWAE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function Reconstruction Error + SWD

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002

3.2.2. Model Architecture of Anomaly Detection Model for Breast Ultrasound

The implemented models comprise encoders and decoders with multiple hidden
layers. In the learning process, the encoders map normal ultrasound images into low-
dimensional spaces to represent them as key features of the latent space; meanwhile, the
decoders update and restore weight to some extent according to input. The process for
detecting the anomalous region calculates a pixel unit error over the reconstructed, restored
image and the input image (Figure 5). The anomaly map detects an anomalous region by
binary division based on a specific threshold. It considers the region abnormal if it is larger
than the threshold value and normal otherwise.

Figure 5. Anomaly detection by pixel difference between an original image and reconstructed image
on ultrasonography.

Autoencoder (AE) Model

Figure 6 describes the AE model, comprising different filter sizes and convolutional
layers that are added to the encoder and decoder to extract features. Therefore, the batch
normalization layer is used to normalize the power value. The LeakyRelu activation func-
tion is used with a slight slope to convert the calculated input value into the power value.
In this model, input data are converted to values between 0 and 1 through normalization,
and a sigmoid function is used as the output layer.
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Figure 6. AE model architecture.

The loss value L of the AE model is calculated using the L1 distance loss function to
indicate the abnormal score by the difference in pixel values. This is calculated as the sum
of the absolute values of the difference between the restored image x̂ and the input image x
(Equation (15); the smaller the loss value, the better the model performance. The Adam
optimizer is used for model optimization. The learning rate is set to the maximum initial
value of 0.0002. The cosine annealing method, which can improve accuracy by adjusting
the learning rate in a cosine function, is applied.

L(x, x̂) =
n

∑
i=1
|xi − x̂i| (15)

Variational Autoencoder (VAE) Model

The VAE model comprises an encoder and a decoder similar to the AE model. The only
difference is the AE model is used to map Gaussian distribution and noise for normalization
to the latent space (Figure 7). It is to generate similar data using the latent variable z by
allowing the encoder to return the distribution of the latent space instead of a single point.
Changing the parameter can be ideal for the probability distribution. In this case, the
distribution returned from the encoder is close enough to the standard normal distribution.
In this study, we assumed a Gaussian distribution. Because the immediate differential
calculation is impossible in the latent variable sampling stage. Thus, the latent variable
is converted into z = µ + εσ(sample ε ∼ N(0, 1)) using the reparameterization trick for
optimization to enable backpropagation.

Figure 7. VAE model architecture.

The input data are converted into values between 0 and 1 through normalization,
and the output layer of the model uses a sigmoid function. The loss value L for model
optimization comprises the sum of reconstruction errors using L1 distances as shown in
Equation (16) and the KLD terms for normalization. As in the AE model, the learning
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rate is set to 0.0002 and adjusted by applying cosine annealing for accurate learning. The
parameters are updated using the Adam optimizer for model optimization.

L = Regularization Parameter + Reconstruction Error

= DKL(q∅(z|x)‖pθ(z|x)) + L(θ, ∅, x)

= DKL(N(µ, ∑)‖N(0, 1)) + Eq∅ [logpθ
(x|z)]

= −1
2

J

∑
j=1

(1 + log(σ2
j )− µ2

j + σ2
j ) + E[

D

∑
i=1

(xi logyi
+(1− xi) • log(1− yi)]

(16)

SWAE Model

Similar to the VAE model, the SWAE model is a generative model comprising an
encoder and a decoder, which allows the latent space to be formed into a sampling proba-
bility distribution. However, the only difference is normalizing reconstruction losses using
the SWD between the encoded learning sample distribution and the predefined sampling
distribution. Figure 8 shows the SWAE architecture.

Figure 8. SWAE model architecture.

Ultrasonography data converted to values between 0 and 1 are used as input, and
the configuration and output of each model layer are configured the same as those of
the AE and VAE models. The loss value L is calculated as the sum of the reconstruction
error and the SWD of the 1D projection for normalization (Equation (17)). The maximum
value of the learning rate is set to 0.0002, and cosine annealing is applied and adjusted to
increase accuracy.

L = Lrec + Sliced−Wasserstein distance

=
1
n

n

∑
i=1

(x− x̂)2 + SW(Px, Px̂)

= argminEnc,DecW(Px, Px̂) + λSW(pz, qz)

(17)

In the loss function calculation, Lrec evaluates the error between the input and re-
constructed images as a pixel-by-pixel MSE, and the SWE is applied by projecting the
difference between the encoded data distribution pz and predefined sampling distribution
qzin dimensions.

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (18)

3.2.3. Validation of Anomaly Detection Method for Breast Ultrasonography

Anomalous data are input to the learned model to detect the anomalous region of an
ultrasound image, and the output is a difference image between the restored and input
images. The anomalous region is detected by a binary division based on a specific threshold.
For performance verification, the ROI label data, extracted from a tumor region of the breast
ultrasound image, is used. Indicators such as similarity (Dice), sensitivity (true-positive rate
(TPR)), and FPR are calculated using overlapping pixel value information in the anomalous
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region of the label data and the binary-split image obtained from the models. Further, these
indicators are employed to compare and analyze the detection results of each model. In
addition, factors influencing the anomalous region detection results in an ultrasound image
are identified.

Performance Evaluation of Anomaly Detection

In this study, three models were used to detect anomalous regions using the error value
between the input and reconstructed images. This should restore the normal ultrasound
image input for learning, and the abnormal ultrasound image input for testing should
restore the anomalous region close to normal. The role of restoration is essential for
successful anomalous region detection by applying a reconstruction-based approach to
ultrasound images. Accordingly, the restoration results for each model for normal and
abnormal ultrasound images are compared and analyzed using the root MSE (RMSE)
values that minimize the error between the input and reconstructed images (Equation (19)).

RMSE =

√
1
n

n

∑
i=1

(Reconstruction− Input)2 (19)

Restoration performance by RMSE value-based model can be considered as a model
with improved learning when learning with normal data, a high RMSE value when eval-
uated with anomalous data, and failure to restore results and can be attributed to a well-
trained model for anomalous region detection.

In addition, three indicators, Dice, TPR, and FPR, belonging to the overlap-based
evaluation index group, were used to evaluate anomaly detection performance. Dice is
calculated from Equation (20) using true positive (TP), false positive (FP), false negative
(FN), and true negative (TN), which are components of the diffusion matrix. It is an indica-
tor that checks the similarity with the correct answer by directly comparing the division
results of the two images. TPR is an indicator of sensitivity, and by predicting the actual
anomalous region abnormal, the anomalous region detection results can be confirmed.
Moreover, FPR is an indicator of the normal region classified above [30]. Performance is
measured based on the indicator values for each model derived by inputting anomalous
data into the model, which are evaluation data. Indicator values are also compared and
analyzed to verify whether the reconstruction-based approach of unsupervised learning is
suitable for anomaly detection in ultrasound images.

Dice =
2TP

2TP + FN + FP
, TPR =

TP
TP + FN

, FPR =
FP

FP + TN
(20)

Analysis of Factor Influencing Anomalous Region Detection

To measure the anomaly detection performance of the reconstruction-based approach,
we analyzed the effects of threshold setting and model-specific latent variables on recon-
struction [17] and tumor and mass size of ultrasound images on anomaly detection.

As for the threshold for determining the anomalous region, the difference between the
mean values of the individual anomaly maps and the overall anomaly map of the validation
data is calculated using 94 normal data points for validation, as shown in Algorithm 1,
and the maximum value calculated by applying the Relu function is set as the reference
threshold [31]. However, in this study, the Relu function applied to obtain the threshold
value treats the negative value of the vector as 0. Hence, the threshold value becomes
relatively large, resulting in a region that treats the abnormality as normal. Therefore, by
supplementing this, three additional thresholds, 0.1, 0.2, and 0.3, which can more accurately
detect anomalous regions in ultrasound images, were applied and compared.



Sensors 2023, 23, 2864 12 of 19

Algorithm 1 Find threshold for anomaly detection
Input: anomaly map of validation dataset
Output: threshold

1: Max_relu← 0
2: calculate an average of anomaly map
3: for v in validation set do
4: relu_th← ReLU(v− average)
5: if Max_relu < max(relu_th) then
6: Max_relu← max(relu_th)
7: end if
8: end for

return Max_relu

Other influencing factors include the latent variable dimension of the latent space. The
results are analyzed by limiting the structure of latent features through whether the encoder
that generates latent variables for each model reduces dimensions. A reconstructed image
is derived by varying the latent space dimensions of the three models. Anomalous region
detection was performed by setting the latent space to a low dimension. In addition, the
encoder and anomalous region detection results were confirmed by setting the latent space
to a high dimension. Furthermore, changes in indicators according to the ROI sizes, such
as masses and tumors of abnormal images used in the evaluation process, were examined.
We also confirmed that ROI affects anomalous region detection.

4. Experimental Results and Analysis
4.1. Experimental Overview and Environment

In our experiment, AE, VAE, and SWAE models were implemented by applying the
reconstruction-based approach of unsupervised learning. The detection performance of
each model was measured. In addition, the effect of anomaly detection application in
ultrasound was confirmed by comparison based on the performance evaluation values for
each model.

The experimental environment used is the programming language Python 3.6.9 ver-
sion, DL framework Pytorch 1.6 version, CUDA 10.0 version for GPU operation, and
cuDNN 7.6.5 version library. A model’s learning, evaluation, and outcome analysis are per-
formed in an environment using Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz
and GeForce GTX Titan Xp 440.100 versions.

4.2. Evaluation of Anomalous Region Detection in Ultrasonography
4.2.1. Reconstruction Performance by Model

The reconstruction performances of the models are presented in Table 4 by comparing
the average RMSE of the verification process using normal ultrasound images and the
average RMSE of abnormal ultrasound images. In the image reconstruction process by
an AE, the smaller the RMSE value, the better the reconstruction performance. However,
in a test process for abnormal ultrasonic images, a larger RMSE value indicates that the
input image is not well-reconstructed. This means that the input image contains abnormal
features that are difficult to reconstruct by the model. The pixel-wise differences between
the input and reconstructed images would be suitable for identifying an anomalous region.
In the comparison experiment for the three models, the RMSE value increases in the order
of SWAE, VAE, and AE, and the anomalous region detection performance is found to be
the best in the SWAE model. Examples of the image reconstruction results for each model
are shown in Figure 9 below.
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Figure 9. Reconstructed images by model.

Table 4. Reconstruction performances of models.

Model Normal Ultrasound RMSE Abnormal Ultrasound RMSE

AE 0.077 0.072

VAE 0.089 0.084

SWAE 0.139 0.139

We confirmed that the AE model with the smallest RMSE value yielded restoration as
the input. For the VAE model, although the normalization value was considered in learning,
the results were similar to those of the AE model. This shows that it is difficult to find an
anomalous region in an error image by restoring the anomalous region similar to the input
as a result of the test by inputting an abnormal image. Conversely, the reconstructed images
of the SWAE model, which showed the highest RMSE value in the evaluation process, did
not restore abnormal features. The anomalous region could be verified in the different
maps more accurately.
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4.2.2. Anomalous Region Detection

To evaluate the anomaly detection performance of the three models, we used three in-
dicators, Dice, TPR, and FPR, as described in Section N. The results of detecting anomalous
regions by the three models based on an arbitrary threshold of 0.2 are shown in Table 5.

Table 5. Indicators of anomalous region detection results of models.

Model Similarity (Dice) True Positive Rate
(TPR)

False Positive Rate
(FPR)

AE 0.000017 0.001995 0.001494

VAE 0.00005 0.005804 0.001616

SWAE 0.001252 0.312863 0.043162

Similarity generally showed low values in the three models. However, they were
the lowest in the AE model, and all indicator values showed the highest results in the
SWAE model. The SWAE model showed relatively high sensitivity and good performance,
but the FPR value was relatively low. Figure 10 shows each model’s anomalous region
detection performance.

The AE model, which has the smallest similarity, sensitivity, and performance values,
restored an input very similarly. It can be seen that there is almost no region indicating an
abnormality in the case of binary division based on a specific threshold of 0.2. The VAE
model restored the input image similar to the AE model, and both the error and binary-split
images, and the indicator values, showed similar results to the AE model. The SWAE
model shows the most significant result in all three indicator values. The anomalous region
is most clearly detected and displayed in the error and binary-split images.

Figure 10. Reconstructed result images by models.
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4.3. Analysis of Factor Influencing Anomalous Region Detection in Ultrasonography
4.3.1. Threshold

As a result of detecting anomalous regions of the models, the reconstruction-based
approach is considerably affected by the threshold value. Figure 11 shows the change in
indicators for each arbitrary threshold.

Figure 11. Changes in indicators according to the threshold for each model.

In all three models, the smaller the threshold, the larger the region, which is considered
abnormal, indicating an increase in the TPR and FPR values. In the AE model, the FPR value
increases significantly more than the TPR value because the FPR value, which considers
typical abnormalities as normal, is larger than the TPR value, which considers abnormalities
as abnormalities. It is difficult to say that the anomalous region was well-detected. The
VAE and SWAE models show that the TPR value increases more than the FPR value as the
threshold value decreases. In particular, for the SWAE model, the TPR value increases the
most, indicating that the anomalous region was well-detected by considering the actual
abnormality as abnormal. As shown in Figure 11, thresholds play an important role in
anomalous region detection, thus, we did not use arbitrary thresholds. We applied the
method using the validation data mentioned in Algorithm 1 of the Research Methodology
to derive thresholds. The derived thresholds are shown in Table 6.

The method applied in Figure 6 uses the Relu function. The application method
shows a relatively significant threshold value because the negative number is treated as
0 in the vector value of the error image. A significant threshold may occur in a region
where the abnormality is treated as normal during the binary division of an error image.
Figure 12 demonstrates the anomalous region detection results. Figure 12 shows that most
results compared with the ROI are considered normal in the error image, resulting in the
anomalous region not occurring and no overlapping area with the ROI occurring, which
further indicates that it is difficult to detect the anomalous region.

Table 6. Comparison of thresholds by models.

Threshold AE Model VAE Model SWAE Model

Applying Relu 0.52675 0.559735 0.497874

When the average value of the verified data error image was used without applying
the Relu function to calculate the threshold value for detecting the anomalous region of the
breast ultrasonography, a threshold value, somewhat lower than that of applying the Relu
function, was derived, indicating relatively good results for anomalous region detection.
However, for small thresholds, the FPR value increases as the increase of FPs, indicating
the limitation of anomalous detection.
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Figure 12. Anomalous region detection results with respect to threshold with applying Relu function.

4.3.2. Size of Tumor

The number of pixels in the ROI image representing the tumor was calculated to
confirm the effect of tumor size on anomalous region detection. The tumor size was
divided into ranges according to the number of pixels, and the averages of the Dice scores
and TPR values in the corresponding range were calculated to compare the performance
of each model. Figure 13 shows the change in indicators according to tumor size at a
corresponding threshold for each model.

Figure 13. Changes in indicators according to tumor size by model.
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Dice scores were small in all models, making it difficult to compare, but TPR values
showed similar patterns for each model. The error image is binary divided based on a
specific threshold, hence, the TPR value can be calculated somewhat larger at a smaller
threshold. However, the TPR value according to tumor size showed a similar pattern
depending on the model’s threshold value. In the AE and VAE models, the TPR value
decreased as the tumor size increased. Meanwhile, in the SWAE model, the TPR value
increased as the tumor size increased to a specific range; in general, the larger the tumor
size, the larger the TPR value.

5. Conclusions

In this study, we have used the reconstruction-based approach of unsupervised learn-
ing to confirm the effect of using deep learning-based technology to detect anomalies in
breast ultrasound images. Three models–AE, VAE, and SWAE–were used to compare the
results of anomalous region detection based on calculated specific threshold similarity
(Dice), sensitivity (TPR), and FPR indicators. The performance results of restoring ultra-
sound images were good in the order of AE, VAE, and SWAE; however, abnormal images
could not be restored in the anomalous region detection.

In addition, we confirmed that the SWAE model, which represents a more significant
TPR value than the FPR value, exhibited relatively good performance in anomalous region
detection. Meanwhile, the VAE model, which performed similar learning as the SWAE
model by adding normalization values, failed to enforce the distribution of sample data, a
characteristic of the model, resulting in similar results to the AE model.

The anomalous region detection technology applied in this study has a threshold-
dependent limitation because based on a specific threshold, it determines whether an error
image is abnormal by dividing it. This resulted in a higher TPR value with a decreasing
threshold value. However, the FPR value that could detect non-tumor regions as tumors
also increased and that was not a good result.

Changes in the Dice and TPR indicators according to the tumor size were confirmed
to check the effect of tumor size on detecting anomalous regions. Although the indicator
values might differ due to the difference in anomalous regions according to the threshold
value, similar patterns were observed for each model. In the AE and VAE models, the
larger the tumor size, the fewer the detected anomalous regions. This is observed as a result
of a restoration similar to the anomalous region, resulting in a smaller region considered
abnormal. Furthermore, because the reconstruction in the SWAE model was restored to map
the anomalous region to normal, the overall anomalous region was detected. The larger
the tumor size, the more overlapping parts occurred, and the higher the TPR value was.

In this study, we detected anomalous regions such as tumors and masses in ultrasound
images and checked whether they could be visually presented. The results of anomalous
region detection using the SWAE model showed the best performance in ultrasound images
among the three AE-based models.

Further research is required to reduce learning through securing various samples, FPR
values, and increasing TPR values to detect anomalous regions with improved performance
on breast ultrasound images with high variance characteristics. Moreover, because the
threshold setting considerably influences the anomalous region detection results, visual
presentation of anomalous regions for ultrasound images will be possible if additional
methods are applied to determine anomalies without a separate threshold setting.
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