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Abstract: In order to accurately predict the gas concentration, find out the gas abnormal emission in
advance, and take effective measures to reduce the gas concentration in time, this paper analyzes
multivariate monitoring data and proposes a new dynamic combined prediction method of gas
concentration. Spearman’s rank correlation coefficient is applied for the dynamic optimization of
prediction indicators. The time series and spatial topology features of the optimized indicators are
extracted and input into the combined prediction model of gas concentration based on indicators
dynamic optimization and Bi-LSTMs (Bi-directional Long Short-term Memory), which can predict the
gas concentration for the next 30 min. The results show that the other gas concentration, temperature,
and humidity indicators are strongly correlated with the gas concentration to be predicted, and
Spearman’s rank correlation coefficient is up to 0.92 at most. The average R2 of predicted value and
real value is 0.965, and the average prediction efficiency R for gas abnormal or normal emission is
79.9%. Compared with the other models, the proposed dynamic optimized indicators combined
model is more accurate, and the missing alarm of gas abnormal emission is significantly alleviated,
which greatly improves the early alarming accuracy. It can assist the safety monitoring personnel in
decision making and has certain significance to improve the safety production efficiency of coal mines.

Keywords: gas concentration; combined prediction model; indicators dynamic optimization;
Bi-LSTMs; gas abnormal emission

1. Introduction

A gas disaster is one of the most serious disasters in the coal mining process. Gas
explosions, coal and gas outbursts, and other gas disasters will not only cause serious loss
of life and property but also seriously affect mine safety production [1–4]. On 27 November
2014, a major gas explosion accident occurred in Songlin Coal Mine in Guizhou Province of
China, resulting in 11 deaths and 8 injuries. This accident was caused by the accumulated
gas in the roadway encountering frictional sparks from the fan blades running. The keys to
preventing such accidents are to accurately predict the gas concentration and take effective
measures to reduce the gas concentration in time [5,6].

The safety monitoring system, as one of the six major systems of the mine, provides
real-time monitoring of gas concentration, wind speed, and other indicators in the mining
working face [7]. The safety monitoring system is generally connected to the mine power
supply system, which will automatically cut off the power supply once any gas abnor-
mal emission is detected [8]. However, the start-up and shutdown of the power supply
system will seriously affect the productivity of the coal mine. If the gas concentration
can be predicted, the relevant measures to reduce the gas concentration can be taken in
advance [9]. The multivariate monitoring data in the safety monitoring system provides
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conditions for the gas concentration prediction. The dynamic and accurate prediction of
gas concentration can provide a decision-making basis for safety monitoring personnel,
which is also significant to improve the safety production efficiency of coal mines.

In recent years, scholars have conducted in-depth research on the gas concentration
prediction and put forward various prediction methods. Traditional prediction methods
include gray prediction [10], chaotic time series [11], ARIMA time series prediction [12],
etc. These methods make full use of the time series characteristics of gas concentration,
but the prediction accuracy needs to be further improved. In latest years, with the gradual
application of the neural network algorithm, many scholars have used it in gas concen-
tration prediction, including long short-term memory network [13–16], recurrent neural
network [17,18], and random neural networks [19], etc. As a deep learning technology,
neural network has strong adaptability in time series prediction. It can rely on its special
structural units to effectively use historical series information to realize deep mining of
potential correlations between data, thus improving the accuracy of gas concentration
prediction [13,20]. To further improve the prediction accuracy, scholars have made fur-
ther improvements in terms of input data and model combinations. Cheng et al. [21]
proposed an Evolutionary attention-based temporal graph convolutional network (EAT-
GCN) to simultaneously capture the spatial and temporal dependences. Wang et al. [22]
proposed the LSTM-LightGBM model with a variable weight combination method based
on residual assignment. Wu et al. [23] proposed a model that integrates the t-distributed
stochastic neighbor embedding algorithm (t-SNE) and the support vector regression (SVR)
algorithm. Meng et al. [24] proposed a novel prediction method that combines classi-
cal time series analysis with these deep learning models. Dey et al. [25] proposed the
t-SNE_VAE_bi-LSTM prediction model that combines the t-SNE, VAE, and bi-LSTM net-
works. Xu et al. [26] constructed a new IWOA-LSTM-CEEMDAN prediction model based
on the improved whale optimization algorithm (IWOA). The above methods have im-
proved the prediction accuracy.

In order to further improve the prediction accuracy of gas concentration, this paper
analyzes the multivariate monitoring data and proposes a new combined prediction model
of gas concentration based on indicators dynamic optimization and Bi-LSTMs. The proposal
of this new prediction model significantly improves the accuracy of gas concentration
prediction and also has a certain significance to improve the safety production efficiency of
coal mines.

2. Research and Theoretical Background
2.1. Data Sources

The research data in this paper are obtained from IJCRS’15 Data Challenge: Mining
Data from Coal Mines, organized at the Knowledge Pit web platform [27–30]. These data
are the multivariate monitoring data near the long wall of the fully mechanized mining
face in Poland, mainly including gas concentration, wind speed, temperature, humidity,
air pressure, working current of the fully mechanized mining machine, etc. The layout of
various sensors is shown in Figure 1. In Figure 1, sensors descriptions are as follows: AN-
anemometer [m/s] (including AN311, AN422, and AN423); TP-temperature [◦C] (including
TP1711 and TP1721, the sensor type of TP1711 is temperature THP, three-component
sensor THP2/94, and the sensor type of TP1721 is temperature THP, three-component
sensor THP2/93); RH-humidity [%RH] (including RH1712 and RH1722, the sensor type
of RH1712 is temperature THP, three-component sensor THP2/94, and the sensor type
of RH1722 is temperature THP, three-component sensor THP2/93); BA-barometer [hPa]
(including BA1713 and BA1723); MM-methane meter [%CH4] (including MM252, MM261,
MM262, MM263, MM264, MM256 and MM211); CM861-high concentration methane meter
[%CH4], the range is 0–100; TC862-temperature inside the pipeline [◦C], the range is 10–40;
WM868-methane delivery calculated according to CM861, CR863, P, TC862 [m3/min], the
range is 0–50; CR863-sensor for pressure difference on the methane drainage flange [Pa],
the range is 0–250; P-pressure inside the methane drainage pipeline [kPa], the range is
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0–110; AMP1-current of the left cutting head of the cutter loader [A]; AMP2-current of the
right cutting head of the cutter loader [A]; DMP3-current of the left haulage in the cutter
loader [A]; DMP4-current of the right haulage in the cutter loader [A]; AMP5-current of
the hydraulic pump engine in the cutter loader [A]; F-driving direction, 1 = left, 0 = right;
V-cutter loader speed [Hz], Vmin = 3 Hz, Vmax = 100 Hz. Herz values are then transformed
into m/min, 100 Hz equal to about 20 m/min.
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Figure 1. The layout of various sensors. The red arrows show the directions of air flow, and the blue
arrows show the directions of gas flow.

The fully mechanized mining machine moves along the long wall between MM262
and MM264. The larger the working current of the coal cutter, the higher efficient the coal
cutting will be, which theoretically leads to more gas diffusion into the mined-out area,
and the monitoring value of the gas sensor will increase accordingly. The three key sensors,
MM263, MM264, and MM256, are located near the upper corner of the fully mechanized
mining face, which is prone to gas accumulation. The three sensors can monitor the change
of gas concentration at this location in real-time, and the coal cutter will automatically shut
down when the gas concentration of any sensors reaches the alarm threshold (the alarm
threshold value of the three sensors is 1.0%). If the gas abnormal emissions can be predicted
in advance, it is possible to reduce the coal cutter’s cutting speed, i.e., to give more time for
the gas to diffuse before the entire line is stopped. Therefore, it is particularly important to
predict the gas concentration of MM263, MM264, and MM256.

2.2. Prediction Theories
2.2.1. Spearman’s Rank Correlation Coefficient

In order to accurately predict the gas concentration near the fully mechanized mining
machine, the Spearman’s rank correlation coefficient (SRC) is used to dynamically optimize
prediction indicators. Spearman’s rank correlation coefficient (SRC) refers to the degree of
correlation between indicators. The larger the SRC, the stronger the correlation between the
two indicators, indicating that the indicator is useful for predicting the other indicator [31].
SRC is not affected by the overall distribution and sample size of data and is more suitable
for non-normal distributed coal mine time series data [32]. Suppose that the two variables
are P and Q respectively, and the number of their elements is both N. Pi and Qi represent
the ith (1 ≤ i ≤ N) value of P and Q, respectively, and the two variables are sorted (both in
ascending or descending order) to obtain the two variable ranking sets p and q, where the
elements pi and qi represent the ranking of Pi and Qi in P and Q, respectively. A ranked
difference set d is obtained by subtracting the corresponding elements in the sets p and



Sensors 2023, 23, 2883 4 of 21

q, where di = pi − qi (1 ≤ i ≤ N), and the SRC between the two variables P and Q is
the following:

ρ = 1−
6

N
∑

i=1
d2

i

N(N2 − 1)
(1)

If the SRC is 0.8~1.0, there is an extremely strong correlation between variables; 0.6~0.8,
strong correlation; 0.4~0.6, moderate correlation; 0.2~0.4, weak correlation; 0.0~0.2, very
weak correlation or no correlation. When the SRC is a negative, there is negative correlation
between variables.

2.2.2. Long Short-Term Memory Network

Bi-directional Long Short-term Memory (Bi-LSTM) and Long Short-Term Memory
(LSTM) networks are applied to establish a combined prediction model of gas concentration.
Long Short-Term Memory (LSTM) network is an improved recurrent neural network
(RNN) [33,34]. Three logic control units, namely, input gate, output gate, and forget gate,
are added to the basic structure of RNN to control the input and output of information flow
and the state of the cell units by setting the weights at the edges where the neural network
memory cells are connected to other parts. LSTM overcomes the shortcomings of RNN,
which cannot deal with long-distance dependence and is prone to gradient disappearance
and explosion. The basic structure of LSTM is shown in Figure 2.
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Figure 2. The basic structure of LSTM.

Ct and ht represent the memory state and the hidden state of LSTM, respectively,
and xt represents the input of the model, σ is a sigmoid activation function. Ft, it, and C̃t
calculation formula are the following:

ft = σ
(

W f [ht−1, xt] + b f

)
(2)

it = σ(Wi[ht−1, xt] + bi) (3)

C̃t = tanh(Wc[ht−1, xt] + bc) (4)

Ot = σ(Wo[ht−1, xt] + bo) (5)

ht = Ot × tanh(Ct) (6)

where tanh is the hyperbolic tangent activation function; Wf, Wi, Wc, and Wo are the weight
matrices connected to the input vector xt and the previous hidden state ht−1 for each layer,
respectively; bf, bi, bc and bo are the bias terms of each layer, respectively.
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2.2.3. Bi-Directional Long Short-Term Memory Network

Bi-directional Long Short-Term Memory (Bi-LSTM) network [35,36] combines the
information of the input sequence in both forward and backward directions based on the
LSTM, i.e., the sequence is input into LSTM in forward and reverse order, respectively.
Bi-LSTM makes the feature acquired at moment t to have information between the past and
the future, which can effectively ensure the accuracy of time sequence prediction [37,38].
For the output at moment t, the forward LSTM layer has the information at moment t in
the input sequence and the previous moments, while the backward LSTM layer has the
information at moment t in the input sequence and the moments after. The structure of
Bi-LSTM is shown in Figure 3.
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It can be seen from Figure 3 that Bi-LSTM is composed of two LSTMs. When solving,

the hidden vector ht−1 of the front term is calculated to generate a new hidden vector
→
h t,

and the hidden vector ht+1 of the rear term is also calculated to generate a new hidden

vector
←
h t. Combine the output results of the positive and negative input sequences to

obtain the result Yt, and the calculation formula is as follows:

→
h t = LSTM

(
xt,
→
h t−1

)
(7)

←
h t = LSTM

(
xt,
←
h t−1

)
(8)

Yt = tanh
(

WY

[→
h t +

←
h t

]
+ bY

)
(9)

where, WY is the weight matrix of each layer connected to the previous hidden state ht−1;
bY is the bias term.

3. Methodology
3.1. Prediction Methods

Through the analysis of multivariate monitoring data, this paper proposes a new com-
bined prediction method of gas concentration based on indicators dynamic optimization
and Bi-LSTMs, as shown in Figure 4. First, the multivariate monitoring data is processed
into time series data, and the SRC between the gas concentration to be predicted and other
indicators within the time window length l are analyzed. Considering the SRC changes
with time, the prediction indicators are dynamically optimized. Then, the time series and
spatial topology features of the optimized indicators are extracted to build the feature
matrix X, which is input into the Bi-LSTM single indicator model to obtain the prediction
result Y. After that, each optimized single indicator prediction result is input into the LSTM
combined model again and obtain the gas concentration prediction value Ypredict. Finally,
the model is continuously evaluated and optimized to improve the applicability of the
prediction model.
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3.2. Prediction Model
3.2.1. Correlation Analysis

The safety monitoring system stores all kinds of monitoring data, but not all indicators
are useful for gas concentration prediction, and some may even be counterproductive.
Redundant indicators will prevent the model from finding potential laws of data, cause
dimensional disasters, and reduce the prediction efficiency of the model [20]. SRC shows
the degree of correlation between indicators. Take MM256 as an example, set the length of
time window to 1 day, calculate the SRC of MM256 and other indicators, and select the top
three indicators of the strongest correlation with MM256 for 7 consecutive days, as shown
in Table 1.

Table 1. The top three indicators of the strongest correlation with MM256.

Day The Top 1 Indicator and SRC The Top 2 Indicator and SRC The Top 3 Indicator and SRC

day 22 MM263 0.79 TP1711 0.76 TC862 0.73
day 23 MM262 0.51 MM252 0.45 MM211 0.34
day 24 MM264 0.81 RH1712 0.77 MM263 0.71
day 25 MM263 0.66 MM264 0.59 MM211 0.58
day 26 RH1712 0.71 MM264 0.51 AMP1 0.5
day 27 RH1712 0.78 MM264 0.66 MM263 0.65
day 28 MM263 0.71 AMP1 0.49 RH1712 0.48
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As can be seen from Table 1, the top three indicators of the strongest correlation with
MM256 are almost different every day. Most of the three indicators contain a gas indicator,
that is, the other gas indicators are mostly useful for MM256 prediction. However, the
indicator with strongest correlation is not necessarily the gas indicator. For example, on the
26th and 27th days, the indicator with strongest correlation is RH1712, and the SRC is more
than 0.7, showing a strong correlation. The SRC between each indicator and MM256 also
changes every day. In order to clarify the SRC between other indicators and MM256, the
frequency of each indicator in the top three indicators is counted, as shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 22 
 

 

Table 1. The top three indicators of the strongest correlation with MM256. 

Day The Top 1 Indicator and SRC The Top 2 Indicator and SRC The Top 3 Indicator and SRC 
day 22 MM263 0.79 TP1711 0.76 TC862 0.73 
day 23 MM262 0.51 MM252 0.45 MM211 0.34 
day 24 MM264 0.81 RH1712 0.77 MM263 0.71 
day 25 MM263 0.66 MM264 0.59 MM211 0.58 
day 26 RH1712 0.71 MM264 0.51 AMP1 0.5 
day 27 RH1712 0.78 MM264 0.66 MM263 0.65 
day 28 MM263 0.71 AMP1 0.49 RH1712 0.48 

As can be seen from Table 1, the top three indicators of the strongest correlation with 
MM256 are almost different every day. Most of the three indicators contain a gas indicator, 
that is, the other gas indicators are mostly useful for MM256 prediction. However, the 
indicator with strongest correlation is not necessarily the gas indicator. For example, on 
the 26th and 27th days, the indicator with strongest correlation is RH1712, and the SRC is 
more than 0.7, showing a strong correlation. The SRC between each indicator and MM256 
also changes every day. In order to clarify the SRC between other indicators and MM256, 
the frequency of each indicator in the top three indicators is counted, as shown in Figure 
5. 

 
Figure 5. The frequency of each indicator in the top three indicators. 

It can be seen from Figure 5 that the frequency of each indicator is different, but the 
frequency of gas indicators is higher than other indicators on average, which also shows 
that gas indicators are mostly useful for MM256 prediction. In addition, humidity indica-
tors (RH1212, RH1722) and temperature indicators (TP1721, TP1711, TC862) also appear 
more frequently, indicating that MM256 is more influenced by temperature and humidity. 
Among the top three indicators of the strongest correlation, MM263, RH1712, and MM264 
have the highest frequency. Therefore, take these three indicators as an example to calcu-
late the SRC with time, as shown in Figure 6. 

0
0

1
6

5
0

6
16

0
4

3
3

16
14

7
9

1
0

6
3

5
1

0
2

0
0
0

AN311
AN422
AN423
TP1721
RH1722
BA1723
TP1711
RH1712
BA1713
MM252
MM261
MM262
MM263
MM264
MM211
CM861
CR863

P
TC862

WM868
AMP1
AMP2
DMP3
DMP4
AMP5

F
V

0 2 4 6 8 10 12 14 16
Count

In
di

ca
to

rs

Figure 5. The frequency of each indicator in the top three indicators.

It can be seen from Figure 5 that the frequency of each indicator is different, but
the frequency of gas indicators is higher than other indicators on average, which also
shows that gas indicators are mostly useful for MM256 prediction. In addition, humidity
indicators (RH1212, RH1722) and temperature indicators (TP1721, TP1711, TC862) also
appear more frequently, indicating that MM256 is more influenced by temperature and
humidity. Among the top three indicators of the strongest correlation, MM263, RH1712, and
MM264 have the highest frequency. Therefore, take these three indicators as an example to
calculate the SRC with time, as shown in Figure 6.
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As can be seen from Figure 6, the SRC of each indicator fluctuates drastically with time,
and the highest SRC of three indicators all reach above 0.9, which is an extremely strong
correlation. The extreme differences are 1.53, 1.1, and 1.22, respectively, which indicates
that each indicator’s prediction effect on MM256 is unstable and the effect changes with
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time. Therefore, it is difficult to apply fixed one or some indicators to achieve stable and
accurate prediction.

3.2.2. Indicators Dynamic Optimization

From the correlation analysis in Section 3.2.1, it can be seen that gas concentration,
humidity, and temperature indicators are highly correlated with MM256. However, the
top three indicators are not fixed, and the SRC of each indicator fluctuates with time.
Analyze the above reasons, the underground environment of the coal mine is complex,
and the gas concentration is disturbed by various factors (such as geological, human,
equipment factors, etc.). In a certain period of time, the influence of various factors on
gas concentration is different. For a certain factor, its influence on the gas concentration is
not fixed, so it is difficult to determine its relationship with the gas concentration. Similar
results are obtained when analyzing MM263 and MM264 data. It is more important to
consider the correlation between gas concentration and other indicators at the prediction
moment. Therefore, a dynamic optimization method for prediction indicators based on
SRC is proposed, as shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 7. A dynamic optimization method for prediction indicators based on SRC. 

For the multivariate time series monitoring data, calculate the SRC of each indicator 
with the gas indicator to be predicted within the time window length l of moment tc, and 
obtain ρ = (ρ1, ρ2, …, ρn). According to the SRC, the indicators with moderate correlation 
and above are optimized, i.e., the SRC ρ’ = (ρ’1, ρ’2, …, ρ’m) is higher than 0.4, those indi-
cators form the optimized indicators set. If there are less than 2 indicators in the optimized 
indicators set, i.e., except for the gas indicators to be predicted, no other indicators’ SRC 
is higher than 0.4, then the five indicators corresponding to the 5 largest SRC in ρ = (ρ1, ρ2, 
…, ρn), gas concentration, temperature and humidity indicators form the optimized indi-
cators set. Among them, gas concentration indicators include MM252, MM261, MM262, 
MM263, MM264, MM256, MM211 and CM861, recorded as MM; temperature indicators 
include TP1721, TP1711 and TC862, recorded as T; humidity indicators include RH1212 
and RH1722, recorded as H. This method not only considers the spatiotemporal relation-
ship of indicators but also the change of correlation between other indicators and gas con-
centration with time. 

3.2.3. Features Extraction 
Feature extraction is a very critical step in prediction model design, and the quality 

of features directly affects the model prediction performance. Time series and spatial to-
pology features are extracted from the optimized indicators. 
(1) Time series features 

The monitoring data are typical time series data, and the gas time series is set as fol-
lows: 

( ) ( ) ( ) ( ) ( ){ }1 1 2 2 3 3, , , , n nC t C t C t C t C t= ⋅⋅ ⋅  (10)

where, ti is time; Ci(ti) is the gas concentration at moment ti; n is the time length of gas time 
series. 

Calculate the features of the gas time series C(t): 
Gas concentration monitoring value Cc(tc) at the moment tc; First order difference 

value of gas concentration at the moment tc, Dc(tc) = Cc(tc) − Cc−1(tc−1); Statistical features of 
the gas concentration time series Cl(t) ={Cc-l(tc−l),…, Cc−2(tc−2), Cc−1(tc−1), Cc(tc)} with time 

If : ρi ≥0.4

……
Indicators Set

Indicator 1 Indicator 2 Indicator n

Target Indicator 

……
SRCs Set

SRC SRC

……

……

ρ2ρ1 ρn

ρ'1 ρ'2 ρ'm

Optimized Indicators Set
Indicator 1 Indicator 2 Indicator m

If :m≤2

Indicators: ρi = nlargest(5, ρ) ∪ T, H, MM Indicators 

tctc −p tc +p
Predicting Sliding Step Length Predicting Sliding Step Length

tctc−p tc+p

Time

Time

Length of Time Window : lLength of Time Window: l

Multivariate Time Series Data Multivariate Time Series Data 

Indicators 
Dynamic 

Optimization
of tc−p

Indicators 
Dynamic 

Optimization
of tc+p

Figure 7. A dynamic optimization method for prediction indicators based on SRC.

For the multivariate time series monitoring data, calculate the SRC of each indicator
with the gas indicator to be predicted within the time window length l of moment tc,
and obtain ρ = (ρ1, ρ2, . . . , ρn). According to the SRC, the indicators with moderate
correlation and above are optimized, i.e., the SRC ρ′ = (ρ′1, ρ′2, . . . , ρ′m) is higher than
0.4, those indicators form the optimized indicators set. If there are less than 2 indicators
in the optimized indicators set, i.e., except for the gas indicators to be predicted, no
other indicators’ SRC is higher than 0.4, then the five indicators corresponding to the 5
largest SRC in ρ = (ρ1, ρ2, . . . , ρn), gas concentration, temperature and humidity indicators
form the optimized indicators set. Among them, gas concentration indicators include
MM252, MM261, MM262, MM263, MM264, MM256, MM211 and CM861, recorded as
MM; temperature indicators include TP1721, TP1711 and TC862, recorded as T; humidity
indicators include RH1212 and RH1722, recorded as H. This method not only considers the
spatiotemporal relationship of indicators but also the change of correlation between other
indicators and gas concentration with time.
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3.2.3. Features Extraction

Feature extraction is a very critical step in prediction model design, and the quality of
features directly affects the model prediction performance. Time series and spatial topology
features are extracted from the optimized indicators.

(1) Time series features

The monitoring data are typical time series data, and the gas time series is set
as follows:

C(t) = {C1(t1), C2(t2), C3(t3), · · ·, Cn(tn)} (10)

where, ti is time; Ci(ti) is the gas concentration at moment ti; n is the time length of gas
time series.

Calculate the features of the gas time series C(t):
Gas concentration monitoring value Cc(tc) at the moment tc; First order difference

value of gas concentration at the moment tc, Dc(tc) = Cc(tc) − Cc−1(tc−1); Statistical features
of the gas concentration time series Cl(t) = {Cc−l(tc−l), . . . , Cc−2(tc−2), Cc−1(tc−1), Cc(tc)}
with time window length l before moment tc, including 10 statistical features of maximum,
average, root mean square, variance, standard deviation, dispersion coefficient, peak factor,
skewness, kurtosis and range of Cl(t) [39].

(2) Spatial topology features

During the production process of a coal mine, gas flows into the roadway from fallen
coal, coal wall, and mined-out area, and the gas continuously diffuses in the roadway.
According to the correlation analysis in Section 3.2.1, there is a strong correlation between
different indicators at different monitoring points. Randomly select the time series moni-
toring data of different sensors with a time length of 1 day, as shown in Figure 8.
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As shown in Figure 8, The monitoring values of different sensors are correlated in
time and space, and their time series data show a similar trend, but the peak value shows a
certain time lag, which is obviously related to sensor layout. Therefore, when predicting
the gas concentration at a certain measuring point, in addition to calculating its own time
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series features, it also calculates the time series features of the optimized indicators and
inputs them into the model as spatial topology features.

3.2.4. Gas Concentration Prediction Model

(1) Bi-LSTM single indicator model

Indicators dynamic optimization is applied to predict gas concentration, and single
indicator prediction model is established based on single indicator time series data. Set the
single indicator time series as follows:

X(t) = {x1(t1), x2(t2), x3(t3), · · ·, xn(tn)} (11)

where ti is the time; xi(ti) is the monitoring value at the moment ti; n is the time length
of the single indicator time series. According to the features extraction method in this
paper, calculate the time series features of the sequence Xl(t) = {Xc−l(tc−l), . . . , Xc−2(tc−2),
Xc−1(tc−1), Xc(tc)} with the following time window length l before moment tc:

Xtc =
[

xtc
1 , xtc

2
, xtc

3 , · · ·, xtc
12

]
(12)

Then the features matrix with lag step of h and prediction step of p is the following:

X =
[

Xtc−hp+p, · · ·, Xtc−p, Xtc

]T
(13)

i.e.,

X =


xtc−hp+p

1 xtc−hp+p
2 . . . xtc−hp+p

12
. . .

xtc−p
1 xtc−p

2 . . . xtc−p
12

xtc
1 xtc

2 . . . xtc
12

 (14)

Different features have different dimensions and units, which will affect the model
prediction accuracy. Therefore, firstly, the features matrix X is mapped between [0, 1]
by using the method of MinMaxScaler_fit_transform to obtain the standardized feature
matrix XN. Input XN into Bi-LSTM, and then input its output results into 3 layers DenseNet.
Feature reuse is achieved through the connection of features on the channel, and the
activation function RELU is used to de-linearize between DenseNet layers. The Dropout
layer is set to discard neurons from the network with a probability of 20% to prevent
overfitting of the model. Dense connections with weight sharing are used to filter out
process noise and interference information. Different features are learned in a supervised
manner to output predicted values. Finally, the maximum gas concentration Y within
T time after the moment tc is obtained through MinMaxScaler_inverse_transform. T is
defined as the prediction length. Bi-LSTM single indicator model network structure is
shown in Figure 9.

(2) LSTM dynamic optimized indicators combined model

Gas disasters are often the result of multiple factors coupling, and combined prediction
can excavate more hidden information. The simple combination of indicators does not
necessarily improve the prediction accuracy, so it is necessary to optimize and process
the information from various indicators. Bi-LSTM single indicator model can predict the
maximum value Y of gas concentration in time T after the moment tc. If Y is larger than
the threshold, the gas emission is abnormal in time T, and corresponding measures should
be taken at once. By applying the proposed dynamic optimization method, m prediction
indicators at moment tc are optimized. According to Formulas (11)–(14), the features matrix
X = [X1, X2, . . . , Xm] with the lag step of h and the prediction step of p are calculated
respectively. The features matrix of each indicator is input as the Bi-LSTM single indicator
model, and obtain the prediction result Y = [Y1, Y2, . . . , Ym].
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(sklearn.preprocessing.MinMaxScaler.
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Output: XN( p, 12)

(sklearn.preprocessing.MinMaxScaler.
inverse_transform)

Input: (None, 1)
Output: Y(None, 1)

Figure 9. Bi-LSTM single indicator model network structure.

Combined prediction is to combine the results of different prediction models to im-
prove the prediction accuracy as much as possible [40]. In this paper, the prediction result
Y = [Y1, Y2, . . . , Ym] is combined and standardized to obtain YN, input YN into the LSTM of
the two layers in turn, and the Dropout layer is also set to discard neurons from the network
with a 20% probability. DenseNet layer connection and weight sharing are adopted. The
final prediction value Ypredict of gas concentration in T time after the moment tc is obtained
through MinMaxScaler_inverse_transform. LSTM-optimized indicators combined model
network structure are shown in Figure 10.
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Figure 10. LSTM-optimized indicators combined model network structure.
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3.3. Model Evaluation

In order to quantitatively evaluate the performance of the prediction model, evaluation
indexes are used to evaluate the prediction results. The errors are divided into longitudinal
error and transverse error. Longitudinal error is used to analyze the long-term operation of
system in amplitude, while transverse error is utilized to study the prediction performance
in time delay [40]. Longitudinal error includes mean absolute error (MAE), root mean
square error (RMSE), etc.; transverse error includes determination coefficient (R2), etc. The
closer the longitudinal error is to 0, and the closer the transverse error is to 1, the better the
prediction model performance is. These evaluation indexes are defined as follows:

MAE =
1
n∑n

i=0|yi − ŷi| (15)

RMSE =

√
1
n∑n

i=0(yi − ŷi)
2 (16)

R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−y)2 y = 1

n ∑n
i=1 yi (17)

where, n is the total number of samples; yi is the real value of gas concentration; ŷi is the
predicted value of gas concentration.

According to the predicted value of gas concentration and the threshold value (1.0%),
it can be inferred whether the gas emission is abnormal. The gas emission situations are
divided into the following two categories: gas abnormal emission and gas normal emission.
Considering the influence of sample imbalance [41], missing alarm and false alarm compre-
hensively, the false alarm rate (FAR), missing alarm rate (MAR), and prediction efficiency
(R) [39,42,43] are applied to objectively evaluate the prediction model for gas abnormal or
normal emission. These evaluation indexes are defined as follows:

FAR =
FP

FP + TN
(18)

MAR =
FN

FN + TP
(19)

R =
TP

TP + FN
− FP

FP + TN
(20)

where TP is the number of samples with both predicted and real values exceeding the
threshold; FN is the number of samples with real values exceeding the threshold but not
the predicted value, i.e., the number of missing alarm samples; FP is the number of samples
with predicted value exceeds the threshold but not the real value, i.e., the number of false
alarm samples; TN is the number of samples with neither predicted value, nor real value
exceeds the threshold.

4. Results
4.1. Data Preprocessing

The data provided by the Knowledge Pit web platform includes a training set and a
test set. The training set contains the monitoring values of 28 sensors, which are given in
time order, with each type of sensor producing one monitoring value per second, but there
is a time overlap in the training set. The test set has the same data format as the training
set, and its time does not overlap, but it is generated in random order. Therefore, this paper
only analyzes the training set data. The time window length of the training set is 10 min,
and the sliding step length is 1 min. The training set overlapping data is processed into
time series data, as shown in Figure 11.
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4.2. Model Training

The time overlapping test set data is processed through the method as shown in
Figure 11, and 36 days of multivariate monitoring data of fully mechanized mining face
is obtained. Set the time window length l = 1 d, lag step length h = 5, prediction length
T = 30 min, that is, according to the multivariate monitoring data with 1 day before the
current moment, calculate the features matrix of optimized indicators with the length of 5,
and predict gas abnormal or normal emission within 30 min after the current moment. The
prediction step p = 30 min, that is, it is predicted once every 30 min.

For each optimized indicator, according to the feature extraction and sample con-
struction methods in this paper, 1629 sample datasets between features matrix X and
Y corresponding one by one are constructed with the help of the Python-Keras frame-
work. The first 80% of the sample datasets are divided into the training set and the last
20% into the test set. Input the training set and test set into the Bi-LSTM single indica-
tor model, respectively, and the model is continuously trained and optimized. In the
model training process, the Nadam optimizer is used to train the network, Epochs = 50,
batch_size = 32, and lr = 0.001. For the prediction result Y of the Bi-LSTM single indicator
model, the sample datasets corresponding to Y and Ypredict are constructed, which are input
into the LSTM optimized indicators combined model again. In order to avoid overfitting,
5-fold cross-validation is used to adjust the hyperparameters for automatic optimization.
The model training is reflected by cross-entropy loss (Loss), which is defined as follows:

Loss = − 1
n

n

∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (21)

For the three key sensors MM256, MM263, and MM264, the gas indicator to be pre-
dicted, all-indicators, specified indicators (gas concentration, temperature, and humidity in-
dicators, i.e., MM, T, and H), dynamically optimized indicators are respectively established
in the following four models: Bi-LSTM single indicator model, Bi-LSTMs all-indicators
combined model, Bi-LSTMs specified indicators combined model, and Bi-LSTMs dynamic
optimized indicators combined model. The changes of Loss with Epoch during the training
of different models are shown in Figure 12.
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flat, and the model convergence performance is better. The convergence of the single
indicator model is slightly poor, with large fluctuations. The all-indicators model has
inferior convergence performance than the specified indicators model and the optimized
indicators model due to the introduction of more redundant indicators. The specified
indicators model is better than the optimized indicators model and converges slightly faster
for MM256, but when Epoch = 30, the convergence of the two models is consistent. The
optimized indicators model converges significantly better than the specified indicators
model for MM263 and MM264. Indicators dynamic optimization is helpful to improve the
convergence performance of the model, which verifies the necessity of indicators dynamic
optimization to determine the input indicators of the model. Meanwhile, the changes of
Loss with Epoch show that the Bi-LSTMs dynamic optimized combined indicators model
is better for gas concentration prediction, and the prediction results of which can reflect the
gas abnormal or normal emission in the future.

4.3. Prediction Results

Using the trained Bi-LSTMs dynamic optimized combined indicators model, 325 groups
of test set data are used for model testing, and the prediction results are shown in Figure 13.
It can be seen from Figure 13 that the fluctuation trend of the predicted value is basically
consistent with the real value, and the proposed model has good prediction performance for
gas concentration. In the prediction of gas abnormal emission, there is no false alarm for the
three key sensors, but there are a few missing alarms.
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4.4. Model Comparison

In order to comprehensively evaluate the prediction performance of the model, the
predicted and real value of gas concentration, gas emission prediction, and actual gas
emission situation of different models are compared. According to Equations (15)–(17),
the R2, MAE, and RMSE are applied to evaluate the model’s gas concentration prediction
performance. According to the gas concentration prediction value, the threshold value
(1.0%), and Equations (18)–(20), the FAR, MAR, and R are applied to evaluate the model’s
gas emission prediction performance. The prediction results of different indicators models
are shown in Figure 14 the gray area in Figure 14 indicates that the prediction of gas
abnormal or normal emission events is accurate. The evaluation of prediction results is
specifically shown in Tables 2 and 3, and R2′, MAE′, RMSE′, FAR′, MAR′, and R′ represent
the average values of the corresponding evaluation indexes.

Compare and analyze the prediction results in Figure 14, Tables 2 and 3. As shown
in Figure 14a, Bi-LSTM single indicator model has poor prediction performance for gas
concentration, the prediction performance of MM256 and MM264 is slightly better than
that of MM263. The average R2 of predicted value and real value is 0.667, and the average
MAE and RMSE are 0.156 and 0.143, respectively. There is a large difference between the
predicted value and the real value. The prediction performance of a single indicator on gas
abnormal or normal emission is also poor, with a high missing alarm rate, among as high
as 100.0% for MM263, and the average missing alarm rate is 67.2%, which is quite serious.
At the same time, there are also a few false alarms, with an average false alarm rate of 1.2%
and an average prediction efficiency R of 31.6%.

As shown in Figure 14b, the prediction performance of the Bi-LSTMs all indicators
combined model for gas concentration is slightly better than that of the single indicator
model, but the results are also unsatisfactory. The average R2 is 0.675, the average MAE
and RMSE are 0.095 and 0.138, respectively, and the error between the predicted and real
value is reduced compared with the single indicator model. However, the prediction
performance of all indicators on gas abnormal or normal emission is inferior to that of
a single indicator, and the missing alarm rate of MM263 is still 100.0%, and the average
missing alarm rate is 70.8%, which is still serious instead of decreasing compared to the
single indicator model. The false alarm rate is reduced, with an average of 0.4%, and the
average prediction efficiency R of 28.7%, which is lower than that of the single indicator.

As shown in Figure 14c, the prediction performance of the Bi-LSTMs specified in-
dicators combined model for gas concentration is similar to that of single indicator and
all-indicators models. The average R2 is 0.687 and the average MAE and RMSE are 0.100
and 0.138, respectively. However, the prediction performance of gas abnormal or normal
emission is better than that of single indicator and all-indicators models. The missing alarm
rate of MM263 is reduced to 68.2%, and the average missing alarm rate is 58.8%, the missing
alarm is still serious. Compared with all indicators, the average false alarm rate is still 0.4%.
The average prediction efficiency R is 40.7%, which is higher than that of single indicator
and all indicators models.

As shown in Figure 14d, the Bi-LSTMs dynamic optimized indicators combined model
has a better prediction performance for gas concentration, R2 of the three sensors is all
above 0.90, with an average value of 0.965, average MAE and RMSE is 0.039 and 0.046
respectively. Compared with the single indicator, all indicators, and specified indicators
models, the average R2 is significantly improved. The prediction performance for gas
abnormal or normal emission is also better than that of other models. It significantly
reduces the missing alarm and eliminates false alarms, with a false alarm rate of 0.0% and
an average missing alarm rate of 20.1%. The average prediction efficiency R is 79.9%, which
is 152.8%, 178.4%, and 96.3% higher than that of applying the single indicator, all-indicators,
or specified indicators models, respectively.
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Table 2. The evaluation of gas concentration prediction results by different indicators models.

Indicator(s) Sensor R2 MAE RMSE R2′ MAE′ RMSE′

Single
Indicator

MM256 0.711 0.098 0.129
0.667 0.156 0.143MM263 0.571 0.110 0.151

MM264 0.718 0.109 0.148

All Indicators
MM256 0.759 0.085 0.118

0.675 0.095 0.138MM263 0.488 0.114 0.166
MM264 0.778 0.087 0.131

Specified
Indicators

MM256 0.743 0.086 0.122
0.687 0.100 0.138MM263 0.579 0.113 0.150

MM264 0.739 0.102 0.142

Optimized
Indicators

MM256 0.980 0.027 0.034
0.965 0.039 0.046MM263 0.974 0.027 0.037

MM264 0.940 0.062 0.068

Table 3. The evaluation of gas abnormal or normal emission prediction results by different
indicators models.

Indicator(s) Sensor TP FN TN FP FAR MAR R FAR′ MAR′ R′

Single
Indicator

MM256 7 15 302 1 0.3% 68.2% 31.5%
1.2% 67.2% 31.6%MM263 0 8 317 0 0.0% 100.0% 0.0%

MM264 16 8 291 10 3.3% 33.3% 63.3%

All Indicators
MM256 11 11 301 2 0.7% 50.0% 49.0%

0.4% 70.8% 28.7%MM263 0 8 317 0 0.0% 100.0% 0.0%
MM264 9 15 299 2 0.7% 62.5% 36.8%

Specified
Indicators

MM256 7 15 302 1 0.3% 68.2% 31.5%
0.4% 58.8% 40.7%MM263 3 5 316 1 0.3% 62.5% 37.2%

MM264 13 11 299 2 0.7% 45.8% 53.5%

Optimized
Indicators

MM256 17 5 303 0 0.0% 22.7% 77.3%
0.0% 20.1% 79.9%MM263 6 2 317 0 0.0% 25.0% 75.0%

MM264 21 3 301 0 0.0% 12.5% 87.5%

5. Discussion

Mining working faces are important production places of a coal mine, and safe and
efficient coal mining is the key to coal mine production and operation. Gas concentration
usually increases abnormally before the occurrence of gas disasters such as gas explosions
and coal and gas outbursts. In order to prevent gas accidents and ensure safe production
during coal mining, the Coal Mine Safety Regulations of China stipulate that the gas
concentration in the coal mining working face shall not exceed 1%; otherwise, an alarm will
be given. The setting of this threshold value has effectively reduced gas accidents. However,
with the gradual increase in the mine depth, the ground stress, and gas content increase.
When the gas concentration exceeds the threshold value, coal mining processes such as
coal cutters will be interrupted, and the operators will also fall into panic, which seriously
affects the safety production efficiency of the coal mine and the psychological health of
the operators. Therefore, the dynamic and real-time prediction of the gas concentration
can improve the working efficiency of the coal cutters and effectively ensure the safe and
continuous production of the mining working face.

In the process of coal mining, gas flows into the roadway from the fallen coal, coal wall,
and mined-out area, and the gas continuously diffuses in the roadway. In this process, the
gas emission from the coal wall and adjacent coal seams is relatively stable, while the gas
from the fallen coal and mined-out area is easy to accumulate, which is greatly influenced by
the degree of coal fragmentation, coal cutter speed, wind speed, etc. The influences of this
information are largely reflected in other types of sensors, such as gas, temperature, humidity,
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and air pressure sensors. However, not every sensor information is useful for gas concentration
prediction, and the correlation between other sensors and gas concentration changes with time.
Therefore, this paper proposes a dynamic optimization method for prediction indicators. This
method not only considers the spatiotemporal relationship of indicators but also the change of
correlation between other indicators and gas concentration with time. On this basis, establishes
a combined prediction model of gas concentration based on indicators dynamic optimization
and Bi-LSTMs, which further improves the accuracy of gas concentration prediction and
its abnormal emission alarming. The prediction model is based on multivariate real-time
monitoring data, which can realize real-time and dynamic prediction of gas concentration.
However, the prediction model is more suitable for the prediction of gas or other indicators
monitored by multiple sensors compared with a few sensors, which is also the limitation of
the model. Admittedly, the alarming effect of the proposed prediction model is significantly
better than that of the single indicator model, all-indicators combined model, and specified
indicators combined model.

Analyzing the above reasons, the single indicator model only uses its own historical
data for prediction, with less input information, which can only reflect the gas time fea-
tures, but not the spatial topology features. Compared with the single indicator model,
all-indicators combined model introduces more information for the model, but this infor-
mation is not all useful for prediction, and some information may even have a negative
effect, causing dimensional disasters. The specified indicators combined model considers
the spatial topology features, and the prediction indicators are relatively better, but the
quality of these indicators changes with time and is not optimal at the prediction moment.
Therefore, compared with single indicator and all-indicators, the performance of the model
is only slightly improved. The dynamic optimized indicators combined model optimizes
strongly correlated indicators, and different moments correspond to different indicators,
which ensures the optimal sample indicators at the prediction moment. Compared with
a single indicator, all-indicators, and specified indicators, the model introduces the most
useful information for prediction at the prediction moment. Therefore, indicators dynamic
optimization significantly improves the performance of the model.

The prediction model established in this paper sets many adjustable parameters,
including time window length l, lag step h, prediction length T, prediction step p, etc. In
this paper, set l = 1 d, lag step h = 5, T = 30 min, and p = 30 min, calculate the features matrix
of optimized indicators with the length of 5 based on the multivariate monitoring data with
1 d before the current moment, apply optimized indicators to predict the gas abnormal
or normal emission within 30 min after the current moment and the prediction is made
once every 30 min. Of course, these parameters can be adjusted according to the actual
demand of the coal mine, but this may affect the prediction performance of the model. The
influence of these parameters on model prediction performance will be also the focus of
future research. In addition, this study is a “Point prediction” of gas concentration for three
key gas sensors. We plan to expand the gas concentration prediction to “Two-dimension
prediction”, or even “Three-dimension prediction”, so as to visualize the gas concentration
prediction area in the mining face, which is also the key direction of future research. The
research in this paper lays the foundation for future research.

6. Conclusions

Accurate prediction of gas concentration in the mining face and early detection of gas
abnormal emissions are the keys to preventing gas accidents. In order to avoid the contin-
gency of a single indicator early alarming method and capture the precursor information of
gas disaster more accurately, this paper proposes a new combined prediction model of gas
concentration based on indicators dynamic optimization and Bi-LSTMs, which is proved to
be effective. The main conclusions are as follows:

(1) The Spearman’s rank correlation between gas concentration and other indicators
is analyzed. The gas concentration, temperature, and humidity indicators have a
strong correlation with the gas concentration to be predicted, and Spearman’s rank
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correlation coefficient can reach 0.92 at most. For a certain indicator, its correlation with
gas concentration fluctuates with time, with a maximum range of 1.53. The prediction
effect of a single indicator on gas concentration is not stable, it is necessary to consider
that the correlation changes with time at the prediction moment to dynamically
optimize indicators;

(2) A dynamic optimization method for prediction indicators based on Spearman’s rank
correlation coefficient is proposed. This method not only considers the spatiotemporal
relationship of indicators, but also the change of correlation between other indicators
and gas concentration with time, reducing the training cost and model complexity,
and improving the model convergence speed and training efficiency;

(3) A new combined prediction model of gas concentration based on indicators dynamic
optimization and Bi-LSTMs is established, which can predict the gas concentration
for the next 30 min. Using the proposed model, the average R2 of predicted value and
real value is 0.965, and the average prediction efficiency R for gas abnormal or normal
emission is 79.9%. The proposal of this new prediction model significantly reduces
the missing alarm and eliminates false alarms. Compared with other models, the gas
concentration prediction is more accurate, and the missing alarm of gas abnormal
emission is greatly alleviated, which greatly improves the alarming accuracy;

(4) The research of this paper is a “Point prediction” of gas concentration for three key
gas sensors. “Two-dimension prediction” or “Three-dimension prediction” for gas
concentration could realize to visualize the gas concentration prediction area in the
mining face, and it is also the key direction of future research. In addition, the
influence of adjustable parameters of the model on prediction performance will be
also the focus of future research. The research in this paper lays the foundation for
future research.
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