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Abstract: With the advent of Software Defined Network (SDN) and Network Functions Virtualization
(NFV), network operators can offer Service Function Chain (SFC) flexibly to accommodate the
diverse network function (NF) requirements of their users. However, deploying SFCs efficiently
on the underlying network in response to dynamic SFC requests poses significant challenges and
complexities. This paper proposes a dynamic SFC deployment and readjustment method based
on deep Q network (DQN) and M Shortest Path Algorithm (MQDR) to address this problem. We
develop a model of the dynamic deployment and readjustment of the SFC problem on the basis
of the NFV/SFC network to maximize the request acceptance rate. We transform the problem
into a Markov Decision Process (MDP) and further apply Reinforcement Learning (RL) to achieve
this goal. In our proposed method (MQDR), we employ two agents that dynamically deploy and
readjust SFCs collaboratively to enhance the service request acceptance rate. We reduce the action
space for dynamic deployment by applying the M Shortest Path Algorithm (MSPA) and decrease
the action space for readjustment from two dimensions to one. By reducing the action space, we
decrease the training difficulty and improve the actual training effect of our proposed algorithm. The
simulation experiments show that MDQR improves the request acceptance rate by approximately
25% compared with the original DQN algorithm and 9.3% compared with the Load Balancing Shortest
Path (LBSP) algorithm.

Keywords: network function virtualization; service function chain; dynamic deployment; resource
allocation; deep reinforcement learning; deep Q-networks; network readjustment

1. Introduction

Network operators often face significant challenges in delivering services efficiently.
Traditional network architectures rely heavily on specialized hardware devices known as
middleboxes to provide various network functions (NFs). However, this approach can re-
sult in high capital and operating expenses. To address this issue, Network Function Virtual-
ization (NFV) unbundles specific network functions (e.g., firewalls, Deep Packet Inspection)
from hardware and allows them to run on general-purpose devices (e.g., X86 servers) [1].
Moreover, Software Defined Networking (SDN) technology enables flexible deployment
and traffic scheduling of NFV by decoupling the control plane from the data plane [2].
Service Function Chain (SFC) consists of a specific sequence of Virtual Network Functions
(VNFs), each of which can be deployed on a virtual machine of the underlying network
and flexibly scaled or migrated to other servers [3,4].

In domains such as 5G networks, cloud computing, and data centers, we need various
services to meet the user demands. Therefore, it is worthwhile to study how to quickly
and flexibly deploy SFCs on the underlying network according to users’ needs [5]. This
deployment process requires optimal utilization of computing resources while also satisfy-
ing latency and bandwidth constraints and arranges the deployment location of SFC/VNF
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reasonably to provide superior services to users. This problem belongs to the class of
NP-hard problems [6], which are at least as hard as any problem in NP. NP stands for non-
deterministic polynomial time, which denotes the class of problems that can be solved by a
nondeterministic algorithm in polynomial time. NP-hard problems are known to be highly
challenging and computationally expensive to solve efficiently. The deployment problem
of SFC is divided into static deployment and dynamic deployment. In static deployment,
all SFC requests are known before deployment, and an overall optimal solution for all SFC
requests is required.

Dynamic deployment differs from static deployment in that SFC requests arrive dynam-
ically, and an optimal deployment solution for each arriving SFC must be found on the basis
of the current situation. Most existing traditional methods transform the SFC deployment
problem into integer linear programming (ILP) or its transformed form [6–9]. However,
these methods have high computational complexity and face difficulties in finding optimal
solutions in large-scale networks. To reduce the complexity of ILP-based methods, some
studies have proposed heuristic algorithms [10–12]. However, these algorithms rely on the
assumption that the network can be well-modelled and predicted. Therefore, they need
to be redesigned when the network conditions change [13], which makes them unsuitable
for dynamic deployment. Recently, Machine Learning approaches have also been applied
to the problem of resource provisioning in VNF/SDN networks [14,15]. In Reinforcement
Learning (RL), agents learn strategies for achieving specific goals by maximizing returns
during interactions with the environment. RL has proven its strength in solving combi-
natorial optimization problems [16]. However, given that the dynamic SFC deployment
problem has a large set of states and actions, the classical RL algorithm, Q-learning, needs to
maintain a vast Q-table and suffers from low algorithmic performance due to limited com-
putational resources. Deep reinforcement learning (DRL) has gained increasing popularity,
as it combines RL with deep learning (DL) to overcome the limitations of traditional rein-
forcement learning methods. DQN uses neural networks to replace Q-tables, increasing the
speed of calculation, and is now also used in the dynamic SFC deployment problem [17–23].
Most existing studies on dynamic SFC deployment, however, overlook the need for the
readjustment of deployed SFCs, which is a meaningful aspect of the problem [24–26].

In this paper, the objective is to deploy SFCs dynamically in an SDN/NFV-enabled
network, aiming to achieve higher request acceptance rates. The deployment needs to
consider the bandwidth and CPU resource requirements of SFC requests while ensuring
their end-to-end latency requirements. The main contributions of this paper are as follows:

1. We propose MQDR, a DRL-based framework for dynamic deployment and readjust-
ment of SFCs. This framework employs two trained agents, A∗ and B∗, to select VNF
deployment locations by A∗ and adjust the underlying network by B∗, respectively,
to enable SFC requests to be received successfully when such requests arrive dynami-
cally. We first present the use of these two agents together to address the dynamic
SFC deployment problem.

2. We impose restrictions on the action space to simplify the training of the agents
and enhance the deployment performance. Unlike allowing the agents to determine
deployment locations among all nodes, MQDR incorporates the M Shortest Path
algorithm (MSPA) to reduce the range of actions to be chosen by the agents.

3. Finally, we compare MQDR with other methods, and it is found that MDQR improves
the request acceptance rate by approximately 25% compared with the original DQN
algorithm and by 9.3% compared with the Load Balancing Shortest Path (LBSP)
algorithm. Therefore, the proposed method is a feasible solution to the dynamic SFC
deployment problem.

The remainder of this paper is organized as follows: Section 2 provides a summary
of previous related work conducted by other researchers; Section 3 presents the network
architecture, the system model, and the formulation description of the research problem;
Section 4 describes our MQDR algorithm in detail; Section 5 shows simulation experiments
and performance evaluation; and Section 6 concludes and discusses future work.
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2. Related Works

Traditional network function equipment can lead to a long update cycle of network
service and high operating expenses. In response to the practical need to solve these
problems, SDN and NFV have become research focuses in the relevant field in recent
years [27–29]. On the basis of SDN/NFV technologies, SFC defines a sequence of ordered
VNFs. In earlier studies, the SFC deployment problem was usually modelled as an op-
timization problem and solved by integer linear programming (ILP) or its deformation.
Zhong et al. [7] proposed an ILP model to minimize the cost of deploying SFCs among data
centers. Bari et al. [6] considered minimizing operational costs while maximizing resource
utilization and proposed a corresponding ILP model. Savi et al. [8] considered the impact of
network function location on deployment costs and proposed an ILP model. Addis et al. [9]
developed an MILP model to minimize the CPU resources used to instantiate the VNF.
However, most of these studies focused on the static deployment of SFCs and did not
consider that SFC requests are constantly arriving.

Compared with ILP, heuristic algorithms can reduce the calculation time to obtain sub-
optimal solutions. Rankothge et al. [10] proposed an SFC resource allocation framework
using genetic algorithms. The ILP takes several hours to compute for SFC deployment
in a network of 16 servers, while their heuristic algorithm takes only a few milliseconds.
Jin et al. [11] proposed a depth-first search algorithm to select paths and a path-based
greedy algorithm to allocate VNFs when applying the MILP problem to a large network
scenario. Wu et al. [12] proposed a heuristic algorithm to jointly optimize end-to-end latency,
resource consumption, and network load balancing on the basis of SRv6. Although heuristic
algorithms can deploy SFCs sequentially, they may lack flexibility and are unsuitable for
their dynamic deployment of SFCs. Additionally, these algorithms are susceptible to
quickly falling into local optima, which limits their effectiveness.

Machine Learning (ML) has emerged as a powerful tool for various domains in recent
years [30–33]. Some studies have leveraged it to tackle the challenges of SFC deployment
problem. Tang et al. [14] solved the node overload problem by predicting the resources
required for SFCs on the basis of a deep belief network prediction algorithm. For nodes
that are predicted to be overloaded, each VNF on them is migrated to the underlying
node that satisfies the resource threshold constraint by a greedy algorithm based on merit
selection. Subramanya et al. [15] considered a neural network to predict traffic, followed by
deployment with heuristic algorithms. Among the available studies, deep learning was
used mainly for traffic prediction, aiding other deployment methods.

In Reinforcement Learning (RL), the agent struggles to obtain the strategies that max-
imize returns during interaction with the environment. RL has been applied to various
research areas, including complex networking and communications problems [17]. Sev-
eral studies have recently applied RL to the SFC deployment problem. Sun et al. [18]
proposed a method that combines graph neural networks with RL for SFC deployment.
Li et al. [19] proposed an adaptive SFC deployment method that chooses between two
heuristic algorithms using DQN. However, choosing between two heuristic algorithms
leads to a limited range of actions. Wang et al. [20] utilized RL to determine to which data
center the SFCs and standby SFCs are deployed. The authors proposed five backup-level
schemes to improve fault tolerance. However, this study considered only where SFCs are
deployed and not where VNFs are deployed. Gu et al. [21] proposed an Intelligent VNF
Orchestration and Flow Scheduling model via Deep Deterministic Policy Gradient (DDPG),
aided by a heuristic algorithm to accelerate the training progress. However, the model in
that paper assumes that the underlying resources are unlimited and that traffic requests
can be predicted in advance, which is inconsistent with reality. Pei et al. [22] formulated a
Binary Integer Programming (BIP) model and obtained the placement of VNFs by Double
Deep Q-network (DDQN). When resources were insufficient, they considered horizontal
scaling, which initiated new instances. However, this study also assumed that traffic can
be predicted in advance. Qiu et al. [23] proposed a DQN-based online SFC deployment
method. The algorithm minimizes the total resource consumption overhead while satisfy-
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ing the request delay constraint and improves the request acceptance rate of the operator’s
network. However, this algorithm does not limit the action space of the DQN, which poses
a challenge for training the algorithm effectively in practice.

There already exists some research on the readjustment of SFCs. Fu et al. [24] applied
DQN to adapt SFCs to changing traffic in IoT networks and proposed decomposing VNFs
into components, but did not elaborate on the implementation details. Tang et al. [25]
proposed a traffic prediction method and designed two dynamic VNF instance scaling
algorithms. Liu et al. [26], proposed a Dyna-Q-based SFC readjustment algorithm to
balance the load of the underlying network and demonstrated its advantages over the
baseline algorithm in terms of overhead and running time. However, these studies focused
mainly on adjusting existing SFCs to adapt to traffic changes and did not address how to
accommodate new SFC requests.

Compared with existing studies, we consider constraints on the action space when
applying DRL and consider network readjustment for newly arrived SFC requests. These
changes have paid off and improved the request acceptance rate.

3. System Model and Problem Description

This section provides a detailed description of the VNF/SFC-based network model,
followed by a formulation of the dynamic deployment and readjustment problems of SFCs.
The problem is then defined as a Markov decision process (MDP).

3.1. Network Model

The network architecture considered in this study is a three-layer NFV architecture [34,35],
as depicted in Figure 1 (the Notations used in the model are shown in Table 1). The
physical layer consists of physical nodes (servers) connected by physical links in the
underlying network. In the VNF layer, VNFs are instantiated on physical nodes that
provide the required resources. In the application layer, different NFs are deployed on the
corresponding type of VNFs to form SFCs.
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Table 1. Notations used in the model.

Notations Description

G The underlying network
VS Set of underlying nodes, vs

i ∈ Vs

ES Set of underlying links, es
ij ∈ ES

es
ij Underlying link between vs

i
and node vs

j

BWS
ij Bandwidth of es

ij
LS

ij Link latency of es
ij

F Set of VNF types, f ∈ F
coe f f f

c CPU resource factor of VNF type f
θ f Traffic scaling factor of VNF type f
R Set of SFC requests, rj ∈ R

VNF
j Set of ordered NF requests, vn f

j,u ∈ VNF
j denotes the u-th NF

ENF
j Set of logical links of rj, en f

j,uv ∈ ENF
j

cn f
j,u CPU resource requirement of vn f

j,u

bwn f
j,uv Bandwidth requirement of logical link en f

j,uv
lj End-to-end delay allowed for the request rj

The underlying network is modeled as a fully connected undirected graph, denoted
as G = (VS, ES), where the set of nodes is represented by VS, and the set of links is
represented by ES. Each underlying node in the network has a CPU resource capacity
denoted as CS

i . The physical link between node vs
i

and node vs
j

is represented by es
ij ∈ ES,

with a bandwidth capacity of BWS
ij and a latency of LS

ij.

3.2. SFC and VNF

The set of VNF types is denoted as F, where each VNF has its own type f . coe f f f
c repre-

sents the CPU resource factor, indicating the amount of CPU resources consumed per unit of
traffic passing through the VNF of type f . θ f represents the traffic scaling factor, indicating
the multiple by which traffic passing through the VNF is of type f . The set of SFC requests is
denoted by R. Each request rj ∈ R can be denoted as rj = [vs

j,in, vs
j,out, VNF

j , ENF
j , lj, zj

s, zj
e],

where the ingress is vs
j,in, and the egress is vs

j,out. VNF
j denotes the ordered set of NF re-

quests, which is the set of VNF types through which rj passes in order. The CPU resource
requirement of the u-th NF vn f

j,u ∈ VNF
j is cn f

j,u.

The traffic segment of rj is denoted as logical link en f
j,uv ∈ ENF

j , where bwn f
j,uv represents

its bandwidth requirement, while lj represents the maximum end-to-end delay allowed for
the request. We assume that the traffic requested by the SFC does not change after arrival,
and [zj

s, zj
e] represents the service period of rj.

For each SFC request rj, we use a Boolean variable pj to show whether it has been
successfully deployed (the Notations of Decision variables are shown in Table 2).

Table 2. Decision variables.

Notation Description

pj To show whether rj has been successfully deployed.
t f
j,u To show whether vn f

j,u is of type f .

ηi,t
j,u

To show whether the u-th virtual node vn f
j,u is deployed on physical node vs

i
when t.

τ
pq
j,uv To show whether traffic segment en f

j,uv flows through physical link es
pq

βi
f To show whether there is a VNF of type f on physical node vs

i .
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The variable t f
j,u ∈ {0, 1} specifies the type of NFs in the SFC. It is noteworthy that

input and output nodes do not deploy VNFs, i.e., t f
j,u equals 0.

t f
j,u =

{
1,
0,

vn f
j,u is type of f ∈ F

else
(1)

The decision variable ηi,t
j,u ∈ {0, 1} is introduced to show whether the u-th virtual node

vn f
j,u ∈ VNF

j of rj is deployed on physical node vs
i ∈ VS during t. We partition time into

discrete time slots, with each slot representing a specific temporal interval. The variable t is
introduced to represent one of these time slots.

ηi,t
j,u =

{
1,
0,

vn f
j,u is deployed on vs

i during t
else

(2)

The decision variable τ
pq
j,uv ∈ {0, 1} is introduced to show whether the traffic segment

en f
j,uv ∈ ENF

j of rj flows through the physical link es
pq ∈ ES during t.

τ
pq,t
j,uv =

{
1,
0,

en f
j,uv deployed on es

pq during t
else

(3)

If an NF of type f maps to vs
i ∈ VS, then vs

i must also instantiate a VNF of type f . The
decision variable βi

f ∈ {0, 1} is introduced to show whether there is a VNF of type f on

physical node vs
i ∈ VS.

βi
f =

{
1,
0,

there is a VNF of type f on vs
i

else
(4)

i f βi,t
f = 1, ∑

rj∈R
∑

vn f
j,u∈VNF

j

ηi,t
j,ut f

j,u ≥ 1, ∀vs
i ∈ VS, f ∈ F, t ∈ T (5)

The CPU resource requirements of vn f
j,v ∈ VNF

j can be determined by the incoming
traffic bandwidth:

cn f
j,v = bwn f

j,uv ∑
f∈F

t f
j,vcoe f f f

c (6)

The traffic may experience scaling as it passes through each VNF, resulting in changes
to the required bandwidth:

bwn f
j,uv = bwn f

j,ku ∑
f∈F

t f
j,uθ f (7)

vn f
k , vn f

u , vn f
v ∈ VNF

i is a set of sequential NFs.
We define the readjustment of SFC as an NF migration process. For instance, the

migration of the u-th NF of rj from vs
i to vs

i′ can be defined as follows: ηi,t
j,u = 1⇒ ηi,t

j,u = 0

ηi′ ,t
j,u = 0⇒ ηi′ ,t

j,u = 1
(8)

Simultaneously, the mapping between the logical links en f
j,ku and en f

j,uv of rj and the
corresponding physical links undergoes a change. Let Es1 be the set of physical links
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passing through the original deployment route and Es2 be the set of physical links passing
through the post-migration deployment route. Thus, we can express this change as: τ

pq,t
j,uv = 1⇒ τ

pq,t
j,uv = 0, ∀es

pq ∈ Es1

τ
p′q′ ,t
j,uv = 0⇒ τ

p′q′ ,t
j,uv = 1, ∀es

p′q′ ∈ Es2
(9)

The above variables satisfy the following constraints: each VNF of the SFC must be
deployed on a single physical node, and each virtual link must be mapped onto a single
physical link:

∑
vs

i∈VS
ηi,t

j,u = 1 ∀rj ∈ R, ∀vn f
j,u ∈ VNF

j , ∀t ∈ T (10)

∑
es

pq∈ES
τ

pq,t
j,uv = 1 ∀rj ∈ R, ∀en f

j,uv ∈ ENF
j , ∀t ∈ T (11)

The CPU resources available on the node must satisfy the following constraint:

∑
rj∈R

∑
vn f

j,u∈VNF
j

ηi,t
j,ucn f

j,u ≤ CS
i ∀vs

i ∈ VS, ∀t ∈ T (12)

The underlying link bandwidth must satisfy the following constraint:

∑
s f cj∈S

∑
en f

j,uv∈ENF
j

τ
pq,t
j,uv bwn f

j,uv ≤ BWS
pq ∀es

pq ∈ ES, ∀t ∈ T (13)

SFC must satisfy the following latency constraint:

∑
en f

j,uv∈ENF
j

∑
es

pq∈ES
τ

pq,t
j,uv LS

pq ≤ lj ∀rj ∈ R
(14)

Every connected pair of VNFs must satisfy the principle of traffic conservation:

∑
vs

q∈Ω+(vs
p)

τ
qp,t
j,uv− ∑

vs
q∈Ω−(vs

p)

τ
pq,t
j,uv

=


η

p,t
j,v − η

p,t
j,u ,

1,

−1,

0,

∀vn f
j,u, vn f

j,v ∈ VNF
j

∀vn f
j,v ∈ {v

s
j,out}, vs

j,out = vs
p, vn f

j,u ∈ VNF
j

∀vn f
j,u ∈ {v

s
j,in}, vs

j,in = vs
p, vn f

j,v ∈ VNF
j

else

, ∀rj ∈ R, ∀t ∈ T
(15)

Ω+(vs
p) and Ω−(vs

p) represent the set of upstream and downstream nodes, respectively.
Our objective is to deploy as many SFC as possible, which can be represented by

maximizing the SFC request acceptance rate:

max
∑

rj∈R
pj

|R| (16)

3.3. Markov Decision Process (MDP)

The dynamic deployment and readjustment of SFC is a complex and multi-faceted
process that can be approached using RL, which is based on the MDP. RL is employed to
identify the optimal policy, which is a mapping of states to actions aimed at maximizing
the final cumulative return.

There are two main categories of methods used in DRL: (1) value-based methods,
such as Deep Q Network (DQN), and (2) policy-based methods, such as Policy Gradient
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(PG). The difference between them is as follows [36]: (1) Value-based methods are more
appropriate for action spaces that are discrete and low-dimensional, while policy-based
methods are better suited for continuous action spaces. (2) The value-based methods
provide the value of actions, whereas the strategy-based methods provide the most valuable
action directly. (3) The value-based methods update the agent after each step, whereas the
strategy-based methods update them after each episode.

We then formally define dynamic SFC deployment and readjustment as a Markov
decision process. Typically, a Markov decision model is defined as 〈S, A, P, R, γ〉, where
S represents the set of states, A represents the set of discrete actions, and P : S× A× S
represents the probability distribution function of state transfers. R : S× A represents the
reward function. γ ∈ [0, 1] represents the discount factor of the current reward value to the
future—the higher the discount factor, the more attentive the agent is to the impact of the
current step on the future.

State: We define each state si∈S as a vector st =[Ct, BWt, It], where Ct =[Ct
1, Ct

2,. . ., Ct
|Vs |]

represents the CPU resource of the underlying network, and BWt = [BWt
1, BWt

2, . . . , BWt
|Es |]

represents the available bandwidth resource of the underlying physical link. It = [rj, vj
l , lt

j ]

represents the state of the currently deployed SFC, rj represents the currently arriving SFC
request, vl

j represents the last NF deployed physical node, and lt
j denotes the sum of the

latency of all used paths of the SFC.
In DRL, an agent selects an optimal action on the basis of the current state S. In

the deployment and readjustment, we define the actions chosen by the agent separately
as follows:

Deployment Action: Let k = 1, 2, . . . , |Vs| be the indexes of the nodes in the network.
An action a ∈ A is an integer where A = {0, 1, 2, . . . , |Vs|}. If a = 0, no physical nodes are
available for deployment. Otherwise, a indicates the node index where the NF is deployed.

Readjustment Action: Let k = 1, 2, . . . , |Vs| be the indexes of the nodes in the net-
work. An action a ∈ A is an integer where A = {0, 1, 2, . . . , |Vs|}. If a = 0, there are no
physical nodes to be adjusted. Otherwise, a indicates the node index where we carry out
the readjustment.

Reward: Our objective function is to maximize the service request acceptance rate.
Therefore, the reward function is defined as:{

1, when sfc is deployed
0, else

(17)

State Transition: The state transition of MDP is defined as (st, at, rt, st+1), where st
denotes the current state, at is the action taken by the agent in the current state, rt is the
reward received for taking at, and st+1 is the resulting state.

This section provides a detailed description of the VNF/SFC-based network model,
which serves as the basis for formulating the dynamic problem of SFC deployment and
readjustment. The problem is then framed as a Markov Decision Process, enabling the
application of DRL to address it.

4. Algorithm Design

This section presents the framework of the DQN-based dynamic SFC deployment
and readjustment algorithm, which uses trained RL agents to make decisions directly.
Subsequently, a detailed description of the DQN-based dynamic SFC deployment and
readjustment algorithm and its training process is provided.

4.1. DQN-Based Dynamic SFC Deployment and Readjustment Framework (MQDR)

In the previous section, we adopted the MDP to continually and automatically describe
the transition of actions and states. Reinforcement learning can find the optimal policy
given a Markov decision process, where the policy maps states to actions. As illustrated
in Figure 2, the agent interacts with the environment by perceiving the current state and
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selecting an action from the available set of actions. Following the execution of the chosen
action, the agent receives a reward signal from the environment, and the system transitions
to the next state. The agent leverages these transitions to learn from the environment during
the training phase.
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Figure 2. Reinforcement Learning.

Most existing studies on the dynamic SFC deployment problem neglect the readjust-
ment of the deployed SFCs, which can be beneficial in some cases. Figure 3 shows an
example of such a case, where NodeA and NodeB have equal CPU resources, and the
grey squares represent the CPU resources occupied by the VNFs. Suppose NodeA’s CPU
resources are 75% occupied and NodeB’s CPU resources are 70% occupied. A new SFC
request that requires 40% of the CPU resources cannot be deployed successfully. How-
ever, if we move a VNF that occupies 25% of CPU resources from NodeA to NodeB, we
can deploy the new SFC request after the readjustment [37]. Moreover, the readjustment
enables us to deploy the new SFC on a path with lower latency to meet the requested
latency requirements.
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We propose a dynamic SFC deployment and readjustment method based on a deep Q
network and M Shortest Path Algorithm (MQDR), which is illustrated in Figure 4. When a
request arrives dynamically, it is first readjusted for the underlying network by the well-
trained agent B∗. Agent B∗ adjusts some of the serving SFCs in the underlying network
on the basis of the current network conditions and the arriving SFC request. It migrates
some VNFs on the nodes that are close to resource saturation and creates conditions for
the arriving SFC to be deployed. Following the adjustment, agent A∗ is responsible for the
dynamic deployment of the SFCs. The two agents work collaboratively towards the goal of
maximizing the number of SFC requests that can be received.
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As discussed in the previous section, the action space for both SFC dynamic deploy-
ment and dynamic readjustment is discrete. Therefore, we utilized the DQN algorithm,
which is a value-based algorithm that supports discrete actions. DQN combines neural net-
works and Q-learning. It inputs the current state directly to the neural network, computes
the value of all actions and outputs the best one.

Figure 4 depicts our framework which involves two agents, A∗ and B∗. In multi-agent
reinforcement learning, the following relationships may exist among agents: (1) cooperative
relationship, where multiple agents have the same goal as each other; (2) competitive
relationship, where one agent’s gain is another agent’s loss; (3) mixed relationship, where
agents cooperate with some and compete with others; and (4) egoistic relationship, where
agents care only about their own gain. Since both A and B aim to deploy more SFCs,
they have a cooperative relationship. However, due to the added complexity of multi-
agent reinforcement learning, directly applying the same training method as single-agent
reinforcement learning may result in inadequate performance. For instance, if we train A
and B simultaneously and B finds an optimal policy at some point while A does not, then
B’s policy may change in the next iteration due to A’s influence. Consequently, B’s original
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optimal policy may no longer be optimal. This mutual interference may prevent the agents
from converging to stable strategies. To avoid this problem, we propose obtaining the
optimal deployment policy for A first and then training the readjustment policy for B
without changing A.

In this study, the neural network parameters of Agent A depicted in Figure 4 are gen-
erated via a process of random initialization. Subsequently, the neural network parameters
are trained through dynamic deployment in the training environment to obtain an optimal
policy denoted by A∗. Next, we randomly initialize the neural network parameters of agent
B and perform readjustment training. In each step of this process, agent B first readjusts its
underlying network and then deploys the SFC by following agent A∗’s policy. This leads
to agent B∗, which has the optimal readjustment policy.

The neural network of agents consists of an input layer, an output layer, and three fully
connected layers for processing intrinsic information. The input to this neural network
is the current environmental state vector, and the output is the Q-value of each action.
As analyzed in the previous section, the input state st = [Ct, BWt, It], where |Ct| = |Vs|,
|BWt| = |Es|, |It| = 9, and the number of neural nodes in the input layer is |Vs|+ |Es|+ 9.
The output corresponds to the index of a node chosen from the current network for
deployment or readjustment operations, so the number of output nodes is |Vs|.

4.2. DQN-Based Dynamic SFC Deployment Algorithm

This section presents the DQN-based dynamic SFC deployment algorithm and its
training process. Algorithm 1 shows the pseudocode of our algorithm. It takes as input the
initial network state and the set of SFC requests r1, r2 · · · rm. After training, it outputs the
dynamic deployment policy Π1 (agent A∗).

The action-value function Q and the target action-value function Q̂ are initialized, and
Q̂ is reset to Q every C steps. In the following C steps, we use Q̂ to generate the target value
y and use it to update Q. With the assistance of Q̂, we can enhance the overall stability of
the training process [38].

During the training, the environment is reset and a new set of SFC requests is initialized
in every episode. It is worth noting that the agent is not informed of the SFCs in advance,
only once they arrive.

For DQN, the more actions that can be selected, the more difficult it is to train. We,
therefore, consider some rules to narrow down the selectable actions. Firstly, nodes that fail
to satisfy resource and delay conditions are excluded. Secondly, we prioritize shorter paths
to minimize latency and link resource usage. Nodes are sorted on the basis of the delay
from the last Network Function (NF) deployment location (or input node), and the nearest
m nodes are selected as the set Φ. Φ represents the truly selectable action space for agent A.
The benefits of this approach are demonstrated in our experiments.

At each step, we select actions by ε− greedy to increase the “exploration” space of the
agent. The complete state transition et = (st, at, rt, st+1) during this step is subsequently
stored in the experience replay pool. During the training process, we sample a small batch
from the experience replay pool and use the Q̂ to generate a target yj, which is the sum of
the current reward and the discounted future reward. The neural network parameters θ
are then updated using the gradient descent method.

4.3. DQN-Based Algorithm for Dynamic SFC Readjustment

This section presents the DQN-based dynamic SFC readjustment algorithm and its
training process. Algorithm 2 takes as input the network state, SFC requests, and the
dynamic SFC deployment policy Π1 (agent A∗) and outputs the dynamic readjustment
policy. The basic training framework of Algorithm 2 is similar to that of Algorithm 1, which
also uses target network, experience replay, and gradient descent methods.
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Algorithm 1: DQN-based dynamic SFC deployment algorithm

Input: The underlying network state st the set of dynamically arriving SFC requests r1, r2 · · · rm.
Output: Dynamic SFC deployment policy Π1.
1: Initialize the action-value function Q(st, a; θ) where θ are the randomly generated neural
network weights.
2: Initialize the target action-value function Q̂(st, a; θ−), where θ− = θ.
3: Initialize the experience pool D with memory N.
4: for episode in range (EPISODES):
5: Generate a new collection of SFCs.
6: Initialize state s.
7: for step in range (STEPS):

8: Select the nodes that satisfy the resource and delay requirements.
9: Select m nodes that are closest to the last deployed node among the nodes that

satisfy the deployment requirements and add them to set Φ.
10: With probability ε, select an action at at random.
11: Otherwise, select the action at = argmaxaQ(st, a; θ), a ∈ Φ.
12: Execute action at and observe reward rt.
13: Store transition et = (st, at, rt, st+1) in D.
14: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D.

15: Set yj =

{
rj, rj = end

rj + γmaxa′ Q̂(sj+1, a′; θ′), rj 6= end
16: Perform a gradient descent step on (yj −Q(sj+1, a; θ))2 with respect to the

network parameters θ.
17: Every C steps, reset Q̂ = Q.
18: End.
19: End.

At each step, the agent identifies nodes that need readjustment due to excessive CPU
resource usage and adds them to the set Φ. Then, the agent selects a node from those that
need readjustment. The target node is selected by (1) filtering out nodes with sufficient
resources and (2) selecting the nearest one as the target node. Compared with the way the
agent selects both the source and target nodes for readjustment, the action space is reduced
from

∣∣VS
∣∣2 to

∣∣VS
∣∣, which significantly simplifies the neural network training.

Once the readjustment node is selected, the agent moves the NF with the highest re-
source share on that node to the target node. Readjustment can improve the load balancing
of the network and increase its capacity to accommodate more SFCs. After readjustment,
the SFC is deployed by the dynamic deployment policy Π1.

4.4. Conclusions

This section introduces the framework of the DQN-based approach to dynamic SFC
deployment and readjustment (MQDR), as well as the specific details of its two main
components. MQDR differs from other existing research work in two aspects: (1) it
integrates dynamic readjustment of deployed SFCs with the deployment of newly arrived
SFC requests, which can improve request acceptance rates, whereas existing research has
addressed only either readjustment or deployment; and (2) it reduces the training difficulty
and increase the practical value. The performance evaluation will demonstrate the benefits
of these two features in detail.
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Algorithm 2: DQN-based dynamic SFC readjustment algorithm

Input: The network state st the set of SFC G1, G2 · · · Gm, dynamic SFC deployment policy Π1.
Output: Dynamic SFC readjustment policy Π2.
1: Initialize the action-value function Q(st, a; θ), where θ is the randomly generated neural
network weights.
2: Initialize the target action-value function Q̂(st, a; θ−), where θ− = θ.
3: Initialize the experience pool D with memory N.
4: for episode in range (EPISODES):
5: Generate a new collection of SFCs.
6: Initialization state s.
7: for step in range (STEPS):
8: Generate the set of nodes that need to be readjusted based on the state of the
underlying network.
9: With probability ε, select an action at at random.
10: Otherwise, select the action at = argmaxaQ(st, a; θ).
11: Execute readjustment action at, st ⇒ st

′ .
12: Perform deployment with Π1.
13: Observe reward rt , st

′ ⇒ st+1 .
14: Store transition et = (st, at, rt, st+1) in D.
15: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D.

16: Set yj =

{
rj, rj = end

rj + γmaxa′ Q̂(sj+1, a′; θ′), rj 6= end
17: Perform a gradient descent step on (yj −Q(sj+1, a; θ))2 with respect to the network
parameters θ.
18: Every C steps, reset Q̂ = Q.
19: End.
20: End.

5. Performance Evaluation
5.1. Simulation Setup

The algorithm proposed in this paper is evaluated on the CERNET2 network topol-
ogy [39] using SFCSim [40], a Python-based SFC simulation platform. CERNET2 is the
next-generation backbone network of the China Education and Research Network, which
connects universities, research institutions, and other educational organizations across
China. SFCSim employs a discrete-time event scheduling engine that supports the simula-
tion of scenarios such as static and dynamic deployment of SFCs, service migration, and
mobility management. The platform also implements various benchmark algorithms for
experimental comparisons.

The underlying network CERNET2 is depicted in Figure 5, with 21 physical nodes
and 23 physical links, which can be abstracted as an undirected connectivity graph with
21 nodes and 23 edges. The server CPU resources are randomly generated within [10, 30]
(units), the link bandwidth capacity to 20 Mbps, and the transmission delay is randomly
generated within [0.7, 1.5] (ms). The SFCs arrive at different times, with their arrival time
and service time following a uniform distribution in [1200, 10000] (units) and [1000, 1800]
(units), respectively. Each SFC request contains 3~5 NFs, and its maximum SFC delay
follows a uniform distribution in [10, 18] (ms). The traffic of each SFC is randomly generated
within [0.1, 0.6] (Mbps).
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The experiments in this paper are conducted on a PC with an Intel i7-10750H CPU
(6 cores and 12 threads), an Nvidia GTX2060 GPU (6 GB of video memory) and 16 GB RAM.
The PC runs Windows 10 operating system and uses PyCharm IDE for simulation. The
SFCSim simulation platform is integrated with TensorFlow 2.8 library based on Python 3.9
and tf-agents 0.12 library for the DQN simulation. The learning rate is set to 0.0005, the
neural network parameters are learned by Adam [41] optimization, and each hidden layer
has 512 nodes.

5.2. Experimental Results

Figure 6 compares the request acceptance rates of the five different methods at different
request quantities. We conducted 20 experiments for each request quantity and generated
different sets of SFC requests according to the same parameters every time. We then
obtained the average result. The five methods were as follows: (1) LBSP, a load-balanced
shortest path algorithm [40], which deployed SFCs with fewer resources and used the
shortest path delay route for stable performance; (2) MSPA, a method that selected the
set of m nearest well-resourced nodes to the previous VNF, denoted as Φm, and then
randomly chose a node from Φm to deploy the next NF; (3) DQN, an online SFC deployment
method based on deep Q networks [23]; (4) MQD combined DQN with MSPA, where the
agent selected one node from Φm at each step; and (5) MQDR, which extended MQD by
dynamically readjusting already deployed SFCs, as described in Section 4.

Figure 7a,b show the training process of DQN, MQD and MQDR 3–5 when the SFC
request quantity is 1000, and Figure 8 depicts the request acceptance rate of each algorithm
as the requests arrive.
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Figure 7. The training process comparison of DQN, MQN, and MQDR. (a) Compares the training
performance of DQN and MQD, which reduces the action space based on DQN. (b) Compares the
training performance of the MQD and the MQDR, where the MQDR adds readjustments to the MQD.
MQD is the training base for MQDR.



Sensors 2023, 23, 3054 16 of 21

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22 
 

 

Figure 7. The training process comparison of DQN, MQN, and MQDR. (a) Compares the training 
performance of DQN and MQD, which reduces the action space based on DQN. (b) Compares the 
training performance of the MQD and the MQDR, where the MQDR adds readjustments to the 
MQD.MQD is the training base for MQDR. 

 
Figure 8. Performance of different algorithms with different number of requests. 

In the experiments, we adopted the greedyε −  method in DQN , MQD and MQDR 
and reduced ε  from 0.9 to 0.05. The discount factor γ  was set to 0.9. The parameter m 
of MSPA was set to 5 in MQD and MQDR. 

As depicted in Figure 6, the request acceptance rate for all five algorithms decreased 
to different degrees as the quantity of SFC requests increased. As more underlying 
resources were occupied, subsequent SFC requests were less likely to be received and 
deployed successfully. LBSP outperformed MSPA at low to medium volumes, whereas 
they had similar performance at high volumes. This indicates that LBSP was a superior 
method, and MSPA introduced some uncertainty by randomly selecting from mΦ , which 
did not achieve better results than SPA. 

MQD was the second most effective method overall. It improved the request 
acceptance rate by an average of 5.5% compared with MSPA by using DQN instead of 
randomly selecting actions from mΦ , and it outperformed LBSP. When comparing MQD 
with DQN, as depicted in Figure 7a, MQD also achieved a significant improvement over 
DQN by limiting the action space, which saved bandwidth resources and reduced the 
difficulty of training compared with selecting a node from all nodes. 

MQDR outperformed MQD and achieved the best performance among all algorithms. 
This is because MQDR dynamically adjusted the existing deployment on the basis of the 
current underlying status when each new request arrived, which led to a more balanced 
allocation of resources and reduced the negative factors that hindered the deployment of 
new requests. 

Figure 9 shows the Q-network’s different training processes with different hidden 
layers. Table 3 presents their performance in the test environment. The figure indicates 
that the three-layer and four-layer networks achieved similar results in training, while the 
three-layer network performed better in the test. Too many layers may cause overfitting 
and gradient instability during training. The two-layer networks performed the worst, as 
they were not deep enough to perceive all the intrinsic features. 

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
qu

es
t A

cc
ep

ta
nc

e 
Ra

te

Number of SFC Requests

 LBSP
 DQN
 MQD
 MQDR

Figure 8. Performance of different algorithms with different number of requests.

In the experiments, we adopted the ε− greedy method in DQN, MQD and MQDR and
reduced ε from 0.9 to 0.05. The discount factor γ was set to 0.9. The parameter m of MSPA
was set to 5 in MQD and MQDR.

As depicted in Figure 6, the request acceptance rate for all five algorithms decreased to
different degrees as the quantity of SFC requests increased. As more underlying resources
were occupied, subsequent SFC requests were less likely to be received and deployed
successfully. LBSP outperformed MSPA at low to medium volumes, whereas they had
similar performance at high volumes. This indicates that LBSP was a superior method, and
MSPA introduced some uncertainty by randomly selecting from Φm, which did not achieve
better results than SPA.

MQD was the second most effective method overall. It improved the request accep-
tance rate by an average of 5.5% compared with MSPA by using DQN instead of randomly
selecting actions from Φm, and it outperformed LBSP. When comparing MQD with DQN,
as depicted in Figure 7a, MQD also achieved a significant improvement over DQN by
limiting the action space, which saved bandwidth resources and reduced the difficulty of
training compared with selecting a node from all nodes.

MQDR outperformed MQD and achieved the best performance among all algorithms.
This is because MQDR dynamically adjusted the existing deployment on the basis of the
current underlying status when each new request arrived, which led to a more balanced
allocation of resources and reduced the negative factors that hindered the deployment of
new requests.

Figure 9 shows the Q-network’s different training processes with different hidden
layers. Table 3 presents their performance in the test environment. The figure indicates
that the three-layer and four-layer networks achieved similar results in training, while the
three-layer network performed better in the test. Too many layers may cause overfitting
and gradient instability during training. The two-layer networks performed the worst, as
they were not deep enough to perceive all the intrinsic features.
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Table 3. Performance of DQN with different numbers of hidden layers.

Number of Hidden Layers Request Acceptance Rate

2 0.56
3 0.71
4 0.68

Figure 10 shows the effect of different discount factors γ on the training of the agents.
The discount factor γ is used to calculate the target value during training and to regulate
the immediate and long-term effects in reinforcement learning, i.e., how far ahead the
agent considers when making decisions, in the range (0,1]. The larger the γ is, the more
steps the agent considers going forward, but the more difficult it is to train; the smaller
the γ is, the more the agent focuses on immediate benefits and the easier it is to train.
Although we want the agent to think in the long term, excessively high discount factors
may impede algorithm convergence. As observed in Figure 10, training proceeded swiftly
when γ = 0.4, and the best result was achieved when γ = 0.9. On the other hand, the
algorithm trained most slowly when γ = 0.99, implying that, while unfinished services can
influence dynamic deployment, it is not necessary to consider overly long-term impacts in
a limited training cycle.

The training used the ε− greedy approach to enhance the agent’s exploration ability. ε
represents the probability that the agent will randomly choose an action. The best states are
often explored only with a good enough Q-network. If ε is too large, excessive exploration
in the later stages of training may affect the utilization of acquired knowledge and hinder
further performance improvement. If ε is too small, on the other hand, it may lack sufficient
exploration in the early stages. Instead of setting ε to a fixed value, the dynamic decrement
strategy started with ε = 0.9, the strongest exploration, and gradually reduced it in a
linear fashion until it reached 0.05, and then it remained constant. This approach provided
adequate exploration in the initial stages and maximized the use of acquired knowledge
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in the later stages. The simulation results depicted in Figure 11 demonstrate that the
dynamic decrement strategy prolonged effective learning time and ultimately yielded
better training outcomes.
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The impact of varying m on agent training is shown in Figure 12. The MDQR algorithm
requires an appropriate value of m to balance between exploration and exploitation. When
m is too small, it approaches the LBSP algorithm (m = 1), which limits the selection space
and may miss better actions. When m is too large, it approaches the original DQN algorithm
(m = n), which increases the selection space and may cause training difficulty. Therefore,
choosing a suitable value of m is crucial for the performance of the MDQN algorithm. In
our simulation experiments, we achieved the best results when m was 5.
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6. Conclusions

This paper focuses on the problem of how to deploy dynamically arriving SFC requests
more effectively on the SDN/NFV-enabled network. We propose a DRL-based method
MQDR that reduces the action space of the intelligent agents to facilitate their training
and enhance their performance. We also demonstrate that performing some readjustment
on the basis of the SFC request information and the underlying network state before
deploying the SFCs can improve the load balancing of the network and increase its capacity
to accommodate more SFCs. Simulation experiments indicate that our approach is suitable
for online deployment in dynamic networks; it increases the request acceptance rate by
approximately 25% compared with the original DQN algorithm and by 9.3% compared
with the Load Balancing Shortest Path (LBSP) algorithm. However, despite considering
dynamic SFC request arrival, our study assumes that the SFC traffic remains constant
following the request arrival. In future work, we will delve more deeply into deploying
and readjusting service chains when both SFC request arrival and traffic are dynamic.
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