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Abstract: Data from omics studies have been used for prediction and classification of various diseases
in biomedical and bioinformatics research. In recent years, Machine Learning (ML) algorithms have
been used in many different fields related to healthcare systems, especially for disease prediction
and classification tasks. Integration of molecular omics data with ML algorithms has offered a great
opportunity to evaluate clinical data. RNA sequence (RNA-seq) analysis has been emerged as the
gold standard for transcriptomics analysis. Currently, it is being used widely in clinical research.
In our present work, RNA-seq data of extracellular vesicles (EV) from healthy and colon cancer
patients are analyzed. Our aim is to develop models for prediction and classification of colon cancer
stages. Five different canonical ML and Deep Learning (DL) classifiers are used to predict colon
cancer of an individual with processed RNA-seq data. The classes of data are formed on the basis
of both colon cancer stages and cancer presence (healthy or cancer). The canonical ML classifiers,
which are k-Nearest Neighbor (kNN), Logistic Model Tree (LMT), Random Tree (RT), Random
Committee (RC), and Random Forest (RF), are tested with both forms of the data. In addition,
to compare the performance with canonical ML models, One-Dimensional Convolutional Neural
Network (1-D CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) DL
models are utilized. Hyper-parameter optimizations of DL models are constructed by using genetic
meta-heuristic optimization algorithm (GA). The best accuracy in cancer prediction is obtained
with RC, LMT, and RF canonical ML algorithms as 97.33%. However, RT and kNN show 95.33%
performance. The best accuracy in cancer stage classification is achieved with RF as 97.33%. This
result is followed by LMT, RC, kNN, and RT with 96.33%, 96%, 94.66%, and 94%, respectively.
According to the results of the experiments with DL algorithms, the best accuracy in cancer prediction
is obtained with 1-D CNN as 97.67%. BiLSTM and LSTM show 94.33% and 93.67% performance,
respectively. In classification of the cancer stages, the best accuracy is achieved with BiLSTM as 98%.
1-D CNN and LSTM show 97% and 94.33% performance, respectively. The results reveal that both
canonical ML and DL models may outperform each other for different numbers of features.

Keywords: transcriptomics; RNA-seq; machine learning; deep learning; classification; cancer
prediction; exRNA

1. Introduction

Colorectal cancer is among the most common cancers around the world. It has high
incidence and mortality rate with increasing trend. Many factors, such as smoking and
alcohol consumption, could contribute to incidence of colorectal cancer. Currently detection
methods for colorectal cancer, such as colonoscopy and fecal occult blood test, have various
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disadvantages. These disadvantages are lower sensitivity and specificity and also bleeding
problems. Moreover, many patients can be diagnosed at late stage of colorectal cancer.
Therefore, there is a great demand for rapid and reliable detection methods for diagnosis
and prognosis of colorectal cancer.

In recent years, attention has been drawn to omics technologies in life sciences and
clinical analysis. These techniques provide essential information about the pathogenesis
of diseases at metabolite, protein, and transcriptome level. Transcriptomics is the general
analysis of organism’s transcriptome, in other words, the sum of all RNA transcripts.
Transcriptomics have been used to understand nature of diseases and to find diagnostic
and prognostic biomarkers. Moreover, high throughput RNA-seq data could provide
an opportunity to analyze hundreds of transcripts for a complete view of the expression
dynamics of diseases.

ML, which is a branch of artificial intelligence, provides computers the ability to create
models from data. It has been used in many fields of healthcare [1–3]. In particular, using
health records in ML systems provides vast opportunities to answer clinical problems [4–6].

Another promising area in healthcare is omics technology [7]. Recent developments in
genomics, transcriptomics, proteomics, and metabolomics have opened new opportunities
for personalized and precision medicine. Omics have been used to understand disease
mechanism, treatment efficacy, and lifestyle interventions for diseases [8]. In the last decade,
the amount of data produced in omics technologies has increased exponentially. The idea of
integrating omics data with ML methods is to provide more comprehensive understanding
of biological systems. In particular, evaluation of clinical omics studies has opened a new
aspect in diagnosis and prognosis of diseases [9–11].

Transcriptomics is the analysis of global transcriptome, which is the complete set of
RNA transcripts [12]. It provides an opportunity to analyze the expression level of tran-
scripts for understanding physiological or pathological conditions. Transcriptomics have
become one of the most utilized approaches that analyze human diseases at molecular level
by using high-throughput methods (RNA array or RNA-seq) [13]. The expression analysis
of transcripts is used to find biomarkers and therapeutic targets for many diseases [14,15].
In recent years, ML methods have been applied to transcriptomics data in various clinical
studies, and results have provided essential information for future clinical approaches.
However, this integration is not easy because transcriptomics analysis is expensive and
ML systems require large sample sizes to thrive in prediction tasks. Therefore, previ-
ously published studies evaluated ML systems to obtain more information from biological
datasets.

In the present study, we focused on evaluation of transcriptomics analysis of circulating
EVs in ML systems to predict colorectal cancer and to classify cancer stage. EVs, such as
exosomes, play an important role in intercellular communications. They carry various
types of bioactive molecules, including membrane proteins, lipids, RNAs, and DNA [16].
Their components are highly variable depending on the cells of origin. In cancer research,
attention has been drawn to EVs because tumor-derived EVs contain unique materials
(such as RNA and protein) for diagnosis and prognosis of cancer [17]. Yuan et al. analyzed
RNA profile of plasma EVs in healthy and cancer patients [18]. Their aim was to find novel
RNA based biomarkers for diagnosis and prognosis of various cancer types. Their study
was one of the largest scale studies on various cancer types. Herein, we analyzed their
dataset using different ML and DL approaches and tested the capability of our proposed
approach to be used as a diagnostic and prognostic tool. We believe that our approach
could contribute to further studies regarding integration of omics data with ML methods.
The general framework of the study is given in Figure 1.
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The third hypothesis is that utilizing more informative exRNA transcripts selected 
by a feature selection algorithm rather than utilizing all attributes (exRNA transcripts) as 
inputs to feed the algorithms can improve the performance of the models. 

To summarize, the aim of the study is to develop canonical ML and DL models for 
predicting colon cancer and classifying the cancer stage. The experimental results reveal 
that both ML and DL models show promising performance. In addition, the results of 
McNemar’s test indicate that a statistically significant difference exists among models. The 
contribution of this study is fourfold. The first one is the comparison of canonical ML and 
DL algorithms. According to the experimental results, DL models have higher accuracy 
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miRNA category. The experimental results reveal that the RF algorithm fed by the most 
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Our first hypothesis is that DL algorithms will yield higher results in terms of accuracy
than canonical ML algorithms since DL algorithms have more parameters and higher
learning capacity than ML algorithms.

The second hypothesis is in regard to exRNA transcripts that are used to feed both DL
and canonical ML algorithms. Since miRNAs are the most abundant exRNA transcripts in
homo sapiens and it is known that they are relevant to various cancer types, it is expected
that miRNAs will be selected as more informative than other exRNA transcripts by a
feature selection algorithm.

The third hypothesis is that utilizing more informative exRNA transcripts selected
by a feature selection algorithm rather than utilizing all attributes (exRNA transcripts) as
inputs to feed the algorithms can improve the performance of the models.

To summarize, the aim of the study is to develop canonical ML and DL models for
predicting colon cancer and classifying the cancer stage. The experimental results reveal
that both ML and DL models show promising performance. In addition, the results of
McNemar’s test indicate that a statistically significant difference exists among models.
The contribution of this study is fourfold. The first one is the comparison of canonical
ML and DL algorithms. According to the experimental results, DL models have higher
accuracy than canonical ML models for both cancer prediction and cancer classification.
The second one is the development of DL architectures. In the study, instead of using
a pre-trained model, all DL models are constructed from scratch and hyper-parameters
are optimized by utilizing the GA, which is a meta-heuristic optimization technique. The
third one is the feature selection. According to the results, instead of using all attributes,
selecting some attributes that are more informative than others for the training phase can
increase the accuracy of a model. By reducing the dimension of the feature space, the
training time of a model is also shortened. The fourth contribution of the study is the
uncovering of exRNA transcripts that may be determinative in colon cancer. Among 493
exRNA transcripts/attributes, 49 of the most informative exRNA transcripts belong to
the mature miRNA category. The experimental results reveal that the RF algorithm fed
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by the most informative 30 and 40 exRNA transcripts outperformed other canonical ML
algorithms in terms of accuracy for classifying colon cancer stage.

The remainder of the article is organized as follows. Section 2 includes the literature
review. In Section 3, information about the data, the data augmentation method, min–max
normalization, the attribute selection method, the cross-validation technique, canonical ML
and DL algorithms, GA that is used for optimization, evaluation metrics, and statistical
tests are presented. Section 4 presents the experimental results, discussion, and practical
applicability. In Section 5, the article is concluded.

2. Related Works

The literature presents different usage of ML algorithms on transcriptomic data. Pan-
taleo et al. used blood transcriptomics data to train ML algorithms for early detection of
Parkinson’s disease (PD) [19]. In this study, a dataset of 550 samples is used to train and
test ML models. A feature selection mechanism, which includes RF, is used to reduce the
dimensionality. The selected features were used to train the eXtreme Gradient Boosting
(XGBoost) model with 10-fold cross validation method. This cross-validation phase is re-
peated 20 times with different seeds to obtain the best tuning parameters for RF algorithm.
The average accuracy of the XGBoost model was 69.3%.

Nalls et al. designed a model for early diagnosis of PD using Linear Regression [20].
The training dataset contained information of 532 individuals, 367 of which had PD and
165 of which were healthy. In that study, the test set included 1086 samples, 825 of which
had PD. They used area under the curve (AUC) and sensitivity as the evaluation metrics,
which were 0.923 and 0.834, respectively.

Hamey and Göttgens used different ML algorithms to evaluate the similarity of
single-cell transcriptomes to the hematopoietic stem cells [21]. In that study, kNN, Linear
Regression, Multilayer Perceptron (MLP), RF, and Support Vector Machines (SVM) models
were trained with fivefold cross validation. Among these models, MLP and SVM generated
the best results regarding hscScore, which defines similarity to gene expression profiles of
validated hematopoietic stem cells.

Akter et al. used ML models to diagnose endometriosis using RNA-seq and DNA
methylation [22]. In that study, the candidate biomarker genes were determined using
various techniques, and then four different supervised ML methods, namely Decision Tree
(DT), Partial Least Squares Discriminant Analysis (PLSDA), SVM, and RF, were trained.
The results were evaluated using different metrics, including accuracy, sensitivity, precision,
etc. DT was the overperforming technique among the four ML methods, with 89% accuracy.

Sharifi et al. employed tree-based ML methods with meta-analysis to identify tran-
scriptomic biosignature of mastitis disease [23]. These tree-based models, that included
RF, successfully detected the best combination of genes as biosignature which helped to
diagnose the disease early.

DL models have also been used in cancer diagnosis studies. Balaha et al. designed a
model for early diagnosis of breast cancer using ultrasound data [24]. The study presented
a hybrid model using both CNN and GA. The Transfer Learning method, which included
tuning popular pretrained CNN models, were employed. GA was used for parameter opti-
mization and learning. The dataset contained images of breast ultrasound and augmented
during the training process. For evaluation metrics, they used loss, accuracy, F1-score,
precision, recall, specificity, and AUC. Among the pretrained models, Xception showed the
best performance, achieving over 90% accuracy and F1-score.

Anaraki et al. proposed a method which used CNNs and GA to classify different
stages of brain tumor [25]. The dataset contained brain MR images of individuals who were
healthy or suffered from different level of cancer. In that study, they designed an evolving
CNN structure rather than existing pretrained models. In the phase of data augmentation, a
straightforward method, which included rotation, translation, and scaling, was used. After
this step, a total of 16,000 MR images, which included 8000 healthy and 8000 with tumor,
were obtained. In the training step, different parameters were used to evolve the CNN with
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GA, including, but not limited to, number of convolutional, max pooling, fully connected,
and dropout layers. In addition, Bootstrap Aggregating was employed to decrease the
generalization error. This study showed average accuracy of 90% after seven generations
of GA.

Dweekat and Lam presented a hybrid system with GA, MLP, and Principal Com-
ponent Analysis (PCA) to predict cervical cancer [26]. In that study, PCA was used for
feature transformation, MLP used as classification model, and GA used to optimize the
hyperparameters of MLP. The proposed method outperformed existing techniques with
fivefold cross validation, with 96% accuracy.

Resmini et al. purposed an ensemble method with GA and SVM to diagnose breast
cancer using thermographic data [27]. The reason for using thermographic data in this
study was the low measurement cost. The classification system included three stages. In the
first stage, best model was selected using GA. In the next stage, GA was also employed to
select features. The classification was performed at the last stage. They achieved promising
experimental results, with 97% accuracy and 94% AUC.

Consiglio et al. used Fuzzy Rules with GA to separate ovarian cancer and other
ovarian diseases [28]. Here, GA was employed for the feature selection phase with if–then
rules. The purposed method can help to discover changes in the selected genes over the
distinguished classes. The dataset in that work contained 21 samples with 45,000 genes
that corresponded to the features. After the feature selection phase, a 9000-feature dataset
was obtained. The classification task was performed using a Fuzzy-Rule-Based System
which included a form of if–then rules. A different set of parameters was prepared for GA,
which included 100 to 400 individuals. They reported 100% accuracy on the dataset.

Ali and Saeed proposed a system that included hybrid filter and GA to reduce the
feature space of microarray data, which generally has high dimensions and causes slow
performance on ML algorithms [29]. In the initial step of the study, information gain,
information gain ratio, and Chi-square were used for feature selection of cancerous mi-
croarray datasets. The next step included employing GA to optimize the feature selection
process. The dataset with selected features was used to train different ML algorithms,
including DT, kNN, RF, and SVM. Accuracy, recall, precision, and f-measure were used as
evaluation metrics. Experimental results indicated that the proposed approach increased
the performance of all models regarding all evaluation metrics.

The literature presents many different approaches for diagnosis of colon cancer using
ML/DL methods. Jiang et al. designed CNN- and ML-based prediction systems for colon
cancer [30]. In that study, the system was designed only for stage III of colon cancer and
used hematoxylin-and-eosin-stained tissue slides.

Gupta et al. [31] demonstrated the prediction capabilities of different ML algorithms
using information that contained histopathology reports, intra-operative findings, history
taking, and chart records. The dataset was not augmented in the training stage and was
used as it was. The study focused mainly on stage prediction of the colon cancer and
used RF, AdaBoost, SVM, MLP, and kNN as classifiers. The Recursive Feature Elimination
method was used as the feature selection algorithm. The accuracy results for the RF, which
was the overperforming algorithm, were 74% and 90% when taking only the tumor size as
a prognostic factor and taking Tumor Aggression Score as a prognostic factor, respectively.

Masud et al. presented a framework to diagnose lung and colon cancer tissues using
DL [32]. In that study, a lung and colon cancer histopathological image dataset, which
contained 25,000 color images with 5 different classes was used. The classification was
performed using a CNN. The framework demonstrated a maximum accuracy of 96%.

As can be seen from previous studies, ML and DL algorithms were fed by thermo-
graphic, MRI, or CT images. We attempted to fill the gap in the literature by utilizing tran-
scriptomic data of individuals. Another gap in the literature is that the hyper-parameters of
DL architectures are not optimized. We attempted to contribute to the literature by building
DL architectures from scratch and optimizing DL hyper-parameters with the meta-heuristic
GA to be utilized in colon cancer prediction and classification. Furthermore, the collection
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of data is more straightforward and preserves the life quality of the patients compared
with classical methods. Our proposed approach offers the benefit of determining disease
progression simply by re-obtaining a patient’s exRNA transcript values, without subjecting
the patient to procedures that could impact them physically or mentally.

3. Materials and Methods
3.1. Study Subjects and RNA-seq Analysis

In this work, the dataset from Yuan et al.’s study is used, which has GEO database
accession number of GSE71008 [18]. This study contains 50 healthy subjects and 100 patients
with colorectal cancer (n = 25 for each of stages I-IV). The RNA-seq analytical pipeline eRNA
(v1.2) was used for the data analysis, including raw data extraction, trimming, sequence
alignment, and read count scaling. In Yuan et al.’s work [18], they used various databases,
including miRNA, piwiRNA, siRNA, and FLJ human cDNA. In addition, miRNA isoform
analysis and exRNA stability analysis tests were carried out. They used normalized RPM
values for comparison between healthy and cancer patients. In this work, similar workflow
was employed to analyze RNA-seq data. Normalized RPM level of RNA transcript was
utilized for ML systems. In addition, log2-transformed RPM cut off value was determined
as 5 for reliable analysis.

3.2. Data

A total of 150 subjects were separated as shown in Figure 2. As can be seen in Figure 2a,
100 of 150 subjects were cancer patients at a certain level. As seen in Figure 2b, 100 patient
individuals were equally divided in 4 stages of the disease.
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The ML methods generally require large datasets. The data we used in this study were
from 150 subjects and may be insufficient for this type of work, and an augmentation of
the data was required to achieve a satisfactory performance of ML classifiers [33]. For this
purpose, the data were augmented to include 300 samples. Later, considering the large
number of features compared with the sample number of the data, a certain number of
features were selected, considering that some features may be more important than others.
In addition, it is important to note that selecting features reduces the complexity of the data
and shortens the training time [34].

For data augmentation, the Synthetic Minority Over-sampling Technique (SMOTE) al-
gorithm was utilized in the study [35,36]. SMOTE was originally developed for imbalanced
datasets to oversample the minority class. However, it can also be used to oversample
the whole dataset. SMOTE oversamples the minority class by generating synthetic data
by working on feature space. This method oversamples by taking every minority class
example into account and presenting synthetic examples and joining nearest neighbors to
that class. The nearest neighbor count depends on the size of the oversampling process. The
first step of generating synthetic examples is calculating the difference between the feature
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vector of current example and its nearest neighbor. The second step includes multiplying
the calculated difference by a randomly generated number between 0 and 1. In the third
step, the calculated vector is added to the feature vector of the current example.

In our study, first, for a randomly selected healthy sample, 50 augmented healthy sam-
ples were generated, while 50 randomly selected cancerous samples were used. Therefore,
a total number of 100 healthy samples were obtained. Secondly, for a randomly selected
cancerous sample, 100 augmented cancerous samples were generated, while all healthy
samples were used. As a result, a total number of 200 cancerous samples were achieved. In
total, the size of the dataset was increased to 300 samples while keeping the imbalanced
ratio.

On the data, normalization was applied to reduce the effect of outliers and guarantee
that all attributes have the same scale for both canonical ML and DL algorithms. In
our study, min–max normalization was used for data normalization process. Min–max
normalization can be seen in the following Equation (1):

x′ =
x−min(X)

max(X)−min(X)
(new_max(X)− new_min(X)) + new_min(X) (1)

In the equation above, x′ and x represent the new normalized and the current values of
the attribute, respectively, whereas min(X) and max(X) represent the current minimum and
the current maximum values, respectively, in the related attribute column of all samples;
new_min(X) and new_max(X) represent the new minimum and the new maximum values,
respectively, in the new normalized range.

In this study, standard [0–1] min–max normalization is applied for canonical ML
algorithms, while [0–255] min–max normalization is preferred for DL algorithms. The
reason for this choice is that CNN architecture accepts images as input (in the experiments
1-D CNN is fed by gray scale images). In addition, LSTM and BiLSTM algorithms were fed
by input values having a range between 0 and 255.

In the dataset that is used in the study, there existed 493 attributes for each sample.
To observe the effect of the number of attributes that will be given as inputs to ML and
DL algorithms on the performance, a feature selection algorithm was applied. Feature
selection can help to reduce dimensionality and, therefore, reduce computational load of
ML frameworks. In addition, by selecting relevant features, accuracy of predictions can be
increased [37]. Simply, the algorithm calculated the information gain (IG) for each attribute.
IG can be defined as expectation of entropy reduction while splitting the samples according
to an attribute. In other words, IG determines how much information an attribute supplies
about a class. Therefore, the higher value of IG of an attribute, the more informative it is.
IG can be calculated as in the following Equations (2) and (3):

IG(C, X) = Entropy(C)− ∑
x∈X

Xx

X
∗ Entropy(Xx) (2)

Entropy = −
c

∑
i=1

P(xi)log2P(xi) (3)

In the equations above, C represents the target or class, X represents the attribute
vector, and x represents each value of the attribute vector X. While calculating entropy, c
represents the number of the cases of the target or briefly the number of classes. Finally,
P(xi) represents the probability of a value occurring in the target data.

For the experiments, n attributes with the highest IG values were selected to feed
the algorithm for training process. In our study 10, 20, 30, 40, and 50 attributes having
the highest IG scores were selected, and all experiments were conducted by using these
attributes. In addition, the experiments were repeated and compared on the basis of
performance by including all attributes.



Sensors 2023, 23, 3080 8 of 28

In all experiments, to calculate the performance of the models, based on the evaluation
metrics, the 10-fold cross validation technique was employed. According to this technique,
the dataset was split into 10 equal parts while maintaining the class ratio. In the next
step, the first part was excluded, while the remaining part was used to train the ML
or DL algorithm. After the training phase, the obtained model was validated with the
excluded part. These processes were repeated until all parts were used to validate the
models (Figure 3). To evaluate the final accuracy of a model after 10-fold cross validation,
the accuracy results of all folds were taken into consideration. The final accuracy was
calculated by averaging the accuracy results of the 10 folds.
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3.3. Machine Learning Analysis

The popularity of ML has tremendously increased over the last decade. This increase
has enabled ML to be applied to increasingly more areas. One of the most important
applications of ML is the prediction of diseases. By analyzing the data obtained from
individuals, the probability of disease can be predicted with high accuracy.

The literature presents different approaches of ML in medical domain and disease
prediction. In this study, we used 5 canonical ML approaches to predict whether an
individual has colon cancer. The selected methods are kNN, LMT, RT, RC, and RF. All
canonical ML algorithms were employed with default parameters (Table 1). In addition,
DL algorithms were utilized to predict the stage of the cancer and whether an individual
has colon cancer. 1-D CNN, LSTM, and BiLSTM DL algorithms were applied in the study
and optimized.

Table 1. Default parameters for ML algorithms. (Illustrations by the authors).

Canonical ML Algorithm Default Parameters

kNN Euclidean distance is used, and k is determined as 7 by
grid search.

LMT Minimum number of instances at which a node can be split is 15.

RT No limit is determined for maximum depth of the tree.

RC Number of iterations is 10.

RF Number of trees is 100.

kNN is the one of the most used approaches of ML. This supervised learning method
was presented in 1967 by Cover and Hart [38]. This approach classifies a sample by
looking at its previously classified neighbor samples and is independent of the hidden
joint distribution on other samples and their classification. The literature has different
applications of kNN on cancer diagnosis, particularly in breast cancer [39–42].

LMT is a supervised classification algorithm, which is the combination of two learn-
ing approaches with complementary superiority and weakness: DT and Logistic Regres-
sion [43]. The LogitBoost algorithm is used to generate a logistic regression model at each
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node of these classification trees with logistic reduction functions on their leaves. In this
way, it is ensured that the child nodes contain information about the main nodes and that
probability estimates are formed for each class. The resulting model is simplified by divid-
ing it according to C4.5 criteria. LMT algorithm is used for disease classification [44,45] and
predicting cancer and cancer proteins [46,47].

RT is a DT-based supervised classifier that randomly selects the k number of attributes
at each node [48]. The algorithm has no pruning to decrease the error and is very effective
on classification and regression tasks. The classifier depends mainly on the single model
tree and Random Forest [49]. Previous studies demonstrate that RT classifier is easy to
implement, effective, and does not overfit [50,51].

RC is an ensemble classifier which uses base classifiers with the same data but a
different number of seed values to make a predictions separately [52]. The algorithm forges
final prediction by averaging the results of these individual base classifiers [53]. In the
literature, RC is used in disease prediction tasks [54].

RF is another widely used classifier that utilizes a group of unpruned DTs and is
accurate on large volumes of data in classification and regression tasks [55]. This group of
DTs is built from a training data set and determines the output. Each DT in this group is a
separate classifier and has its own predictions from a sample. This algorithm combines all
the results from DTs to decide the final prediction [56]. The RF classifier is used to predict
different cancer types, such as esophageal [57], breast [58,59], prostate [60], colorectal [56],
lung [61], and cervical [62].

LSTM networks are an upgraded version of recurrent neural networks (RNN) [63].
In recent years, they output better classification results when compared with other DL
networks on various research areas, such as time series and genome data [64,65]. In order
to comprehend LSTM structure, RNN structure needs to be defined. RNNs are neural
networks that also have memory and are able to recall all the information that is sequentially
captured in the previous element. In other words, RNNs are an efficient way to use data
from relatively long series since they perform similar tasks for each element in the series,
with output dependent on all previous computations. A network with a feed-forward
architecture and an extra cyclic loop is considered as RNN. By using this cyclic loop, RNN
carries information throughout the network one time step to the next one. A form of
short-term memory, cyclic loops are used to store and retrieve historical data throughout
time steps.

An RNN that learns temporal patterns estimates the current time-step by using the
prior state and the present state. However, RNN architectures come with a disadvantage—
vanishing gradients. The issue of vanishing gradients arises when recurrent neural net-
works are required to learn long-term relationships in time steps. For this requirement,
the gradient vector increases or decreases exponentially as it propagates through multiple
layers of the RNN to learn long-term dependencies over time steps. LSTM aims to solve this
issue. In order to tackle vanishing gradient problem, LSTM uses memory blocks instead
of traditional RNN units [65]. Its main advantage over RNNs is that it incorporates a cell
state to store long-term states. An LSTM network can remember and connect information
from the past to current information [64]. An updated version of LSTM called BiLSTM has
emerged in recent years [66]. This architecture enables LSTM to analyze input data both
forward and backwards. It actually adds two layers of memory cells to analyze data on
both ways. The binding process of hidden states of backward and forward layers creates
the representation of input data [67].

1-D CNN is a modified version of CNN DL model [68]. In this version, one dimen-
sional convolutional layers and sub-samplings are used to build feature space [69]. The
one-dimensional convolution patch is handled by a number of convolution and pooling lay-
ers in the model, which extract features from one-dimensional input using a local receptive
field and shared weights. These shared weights adjust the number of training parameters
to be less than traditional CNN architectures. Through the use of several convolution fil-
ters, feature maps in the convolution and sub-sampling layers derive discriminant feature
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representations from many input vector segments. The 1-D CNN classifier is constructed
with sample class information in the training process, and the gradient descent algorithm
is utilized for adjusting network parameters [70].

The general structure of CNN consists of convolution, pooling, and a fully connected
layer [69]. In the convolution layer, several convolution filters are employed to extract
representative information from the raw data. Neurons are connected locally, thus reducing
calculation load. In pooling layer, a process called sub-sampling is used to obtain more
detailed feature maps at a lower resolution. The fully connected layer generally comes
before the output layer to forward features to final classification phase [71].

The experimental setup for canonical ML algorithms can be seen in Tables 1–4, which
indicate the hyper-parameters of the proposed 1-D CNN architecture. Tables 5 and 6 show
hyper-parameters to build LSTM and BiLSTM architectures from scratch. Therefore, the
results can be reobtained for each model by utilizing the optimized hyper-parameters.

All canonical ML and DL algorithms have some advantages and disadvantages. Their
performances are closely related to the utilized dataset. The advantages and disadvantages
of the algorithms utilized in this study are explained briefly. In our study, kNN is chosen
since it is easy to implement and it makes no assumptions about the data. However, it has
a disadvantage in dealing with imbalanced data. LMT algorithm is expected to provide
accurate results since it combines decision tree and logistic regression algorithms. In
contrast, due to its high computational cost, it is not a preferred algorithm. The advantage
of RC is that it takes into account the results of different classifiers. Likewise, this situation
can lead to a disadvantage. If the majority of the classifiers make an incorrect prediction,
the algorithm’s prediction will also be incorrect. RF’s advantage is that it is composed
of uncorrelated decision trees. In other words, the trees that form the forest are not
similar. Therefore, the algorithm has a high generalization capacity and handles imbalanced
data. Nevertheless, if a dataset does not have some informative attributes, prediction
performance of RF will suffer. As with RF, the performance of the RT algorithm directly
depends on whether there are some informative attributes in the dataset. Consequently, if
a dataset is an imbalanced one and some of the attributes have importance, it will be more
likely expected that RF yields better accuracy than other ML algorithms.

CNN is chosen because it exhibits high performance when classifying images. Since an
image is a matrix, we can build a model using CNN architecture if we express each sample
as a 1-D matrix. LSTM and BiLSTM are efficient in processing sequential data. In addition,
if we have 1-D matrices as inputs, we can feed these algorithms. All DL algorithms utilized
in the study suffer from the training time to build a model.

To compare the algorithms, some evaluation metrics are needed. One metric is not suf-
ficient to reveal the superiority of an algorithm. To support the accuracy of the algorithms,
statistical tests are applied on the results. In this study, the Kappa statistic and McNemar’s
test were utilized to validate the results.

While experimenting with DL algorithms, values of some hyper-parameters needed
to be optimized. Therefore, for each DL algorithm, GA, a meta-heuristic approach, was
utilized for optimization.

GA is a meta-heuristic search algorithm that mimics the evolutionary process, hav-
ing the principle of the survival of the fittest. Especially in cancer diagnosis, GA has a
wide range of use [27,72]. In this study, GA was utilized to optimize hyper-parameters
of DL algorithms. Each possible solution was represented by a chromosome in GA. A
chromosome is composed of genes that represent the hyper-parameters to be optimized of
a DL architecture. All chromosomes form a population where the optimal chromosome,
which satisfies the fitness function, is attempted to be found. Firstly, a population is initial-
ized randomly. Secondly, fitness value of all chromosomes is evaluated in the population.
Thirdly, the parent chromosomes that will form the next generation are chosen. Crossover
and mutation operations are applied on chosen chromosomes. The third step is repeated
until a stopping criterion is met. Some of the chromosomes pass on the next generation
directly; these chromosomes are called elites. In our study, the number of generations was
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selected as 100, and it was used as the stopping criterion. The percentage of elites was
selected as 5% of the population. The crossover operation that determines the fraction
of the next generation was applied on 80% of the population. The rest of the population
was mutated while surviving to the next generation. Since GA does not guarantee the
global minimum, a large population size of 200 was selected to reduce the probability of
obtaining a local minimum while increasing the run time of the algorithm. To produce
children chromosomes, scattered crossover was utilized for crossover operation (Figure 4).
In scattered crossover, after selecting the parent chromosomes, a randomly created binary
vector determines the genes of the child chromosome (Equation (4)).

gi(Cc) =

{
gi
(
Cp2
)
, bi = 0

gi
(
Cp1
)
, bi = 1

(4)

In Equation (4), gi represents the ith gene in the child chromosome (Cc) and parent
chromosomes (Cp1 and Cp2), while bi represents the ith value in the random binary vector.
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For 1-D CNN DL, hyper-parameters, such as filter size and number of filters, were
optimized for each convolutional layer by applying GA. General structure of the 1-D CNN
architecture is shown in Figure 5.



Sensors 2023, 23, 3080 12 of 28Sensors 2023, 23, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 5. Proposed 1-D CNN architecture. (Illustrations by the authors). 

The number of convolutional layers to be added in the 1-D CNN architecture was 
determined by the size of the input (attributes). Therefore, for each number of attributes 
(10, 20, 30, 40, 50, and all attributes that form the feature vector) different numbers of con-
volutional and max pooling layers existed in the related 1-D CNN architecture (Table 2). 
For each convolutional layer, the stride parameter was selected as 1 and zero padding was 
applied, when necessary, to make the output as the same size as the input. After each 
convolutional layer, there existed a max pooling layer in the architecture. Max pooling 
layers halve the size of the input to perform down sampling. To ensure that, the stride 
parameter and pool size parameter were selected as 2 and 3, respectively, and zero pad-
ding was applied, when necessary. Consequently, different numbers of convolutional and 
max pooling layers were added according to the size of the input in the architecture until 
the output size was 1.  

Table 2. 1-D CNN architecture according to the size of the input. (Illustrations by the authors). 

Number of Attributes  Number of Convolutional and Max Pool-
ing Layers 

10 4, 4 
20 5, 5 
30 5, 5 
40 6, 6 
50 6, 6 

493 (All) 9, 9 

Optimized values by applying GA for 1-D CNN architecture can be seen in Table 3 
and Table 4 for both cancer prediction and cancer stage classification.  

Table 3. Filter parameters of each convolutional layer for cancer prediction. (Illustrations by the 
authors). 

Number of Attrib-
utes 

Filter size in Convolutional Layers 
Number of Filters in Convolutional Layers 

10 
3 5 3 2 

17 28 32 96 
20 11 7 3 3 2 
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The number of convolutional layers to be added in the 1-D CNN architecture was
determined by the size of the input (attributes). Therefore, for each number of attributes
(10, 20, 30, 40, 50, and all attributes that form the feature vector) different numbers of
convolutional and max pooling layers existed in the related 1-D CNN architecture (Table 2).
For each convolutional layer, the stride parameter was selected as 1 and zero padding was
applied, when necessary, to make the output as the same size as the input. After each
convolutional layer, there existed a max pooling layer in the architecture. Max pooling
layers halve the size of the input to perform down sampling. To ensure that, the stride
parameter and pool size parameter were selected as 2 and 3, respectively, and zero padding
was applied, when necessary. Consequently, different numbers of convolutional and max
pooling layers were added according to the size of the input in the architecture until the
output size was 1.

Table 2. 1-D CNN architecture according to the size of the input. (Illustrations by the authors).

Number of Attributes Number of Convolutional and Max Pooling Layers

10 4, 4

20 5, 5

30 5, 5

40 6, 6

50 6, 6

493 (All) 9, 9

Optimized values by applying GA for 1-D CNN architecture can be seen in Tables 3
and 4 for both cancer prediction and cancer stage classification.
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Table 3. Filter parameters of each convolutional layer for cancer prediction. (Illustrations by the
authors).

Number of Attributes
Filter Size in Convolutional Layers

Number of Filters in Convolutional Layers

10
3 5 3 2

17 28 32 96

20
11 7 3 3 2

94 56 124 46 88

30
21 5 3 2 3

46 84 93 104 76

40
13 12 9 3 2 4

96 123 111 74 86 52

50
3 7 8 1 3 1

38 65 24 19 76 112

All
15 21 18 9 11 5 4 7 3

124 111 76 68 45 102 49 88 96

Table 4. Filter parameters of each convolutional layer for cancer stage classification. (Illustrations by
the authors).

Number of Attributes
Filter Size in Convolutional Layers

Number of Filters in Convolutional Layers

10
7 5 3 3

22 34 31 77

20
7 5 5 2 2

41 52 64 103 90

30
13 5 2 3 1

66 45 78 82 126

40
11 7 3 5 1 2

71 99 102 111 87 103

50
22 8 5 4 3 3

102 59 76 84 105 125

All
19 23 11 7 5 4 4 6 2

93 84 114 122 105 77 70 95 106

In order to make a consistent comparison, the number of layers obtained for 1-D CNN
was also used for LSTM and BiLSTM models. For LSTM and BiLSTM DL algorithms, the
number of hidden units in each LSTM and BiLSTM layers was optimized by applying GA
(Tables 5 and 6). The general structure of the LSTM and BiLSTM architectures is shown in
Figure 6.
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Table 5. Optimized number of hidden neurons for cancer prediction. (Illustrations by the authors).

Number of Attributes
Number of Hidden Neurons (LSTM)

Number of Hidden Neurons (BiLSTM)

10
102 125 147 122

151 107 134 128

20
125 106 140 137 105

100 134 106 102 117

30
139 104 104 182 177

106 145 121 110 129

40
129 124 118 103 109 141

144 107 112 135 144 126

50
174 153 101 129 182 168

150 109 112 165 178 190

All
172 195 190 108 134 137 195 183 177

188 192 146 200 200 125 147 154 169

Table 6. Optimized number of hidden neurons for cancer stage classification. (Illustrations by the
authors).

Number of Attributes
Number of Hidden Neurons (LSTM)

Number of Hidden Neurons (BiLSTM)

10
107 130 132 125

101 142 134 131

20
152 161 139 128 111

122 150 145 142 126

30
157 144 135 164 182

118 127 139 144 162

40
133 121 127 200 181 196

177 172 148 162 154 160

50
199 190 174 155 163 171

182 176 170 143 181 193

All
194 155 167 153 144 162 170 168 188

175 187 200 149 141 190 166 155 178
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For each of the DL algorithms, adaptive moment estimation (Adam) optimizer was
utilized, and early stopping was applied to prevent overfitting. In addition, data shuffling
was enabled before each training epoch.

3.4. Evaluation Criteria

In this study, different evaluation methods were used to test the performance of ML
and DL models over the data.

The first metric of this study was classification accuracy, which was calculated by the
ratio of the number of correct predictions to the total number of samples/predictions (5).
The accuracy will be high if most of the samples are correctly predicted.

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

(5)

The second metric that was used in this study is the Root Mean Square Error (RMSE),
which is a widely used method to measure the gap between classification predictions and
actual classes [73]. The equation to calculate RMSE can be seen in (6):

RMSE =

√
∑N

n=1(r̂n − rn)
2

N
(6)

In Equation (6), r̂n is predicted values, rn is observed values, and N is the number of
observations. The results of RMSE are lower when the correct classification is employed.

The Kappa statistic, which was presented by J. Cohen [74], is another metric that was
used to evaluate the results of this study. Kappa statistic is a measure of the degree of
agreement between two evaluations in a dataset [75]. Thus, it is expected that the classifiers
with more overlapping prediction will generate higher Kappa values [76]. These values
can be interpreted considering Table 7 according to Landis and Koch [77].

Table 7. The interpretation of Kappa values [77].

Kappa Statistic Strength of Agreement

<0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost Perfect

3.5. Statistical Tests

In this study, a statistical test—McNemar’s test—is employed to measure the statistical
significance of the results. McNemar’s test [78] is a nominal variant of the Chi-square test
which is utilized to analysis matched pairs of data. In this test, two different methods result
in four possible outputs, which can be seen in Table 8.

Table 8. Possible results of algorithms. (Illustrations by the authors).

Algorithm A Failed Algorithm A Succeeded

Algorithm B failed N f f Ns f

Algorithm B succeeded N f s Nss

In Table 8, the number of times both algorithms failed or succeeded are represented
by N f f and Nss, respectively. These parameters are insignificant when comparing two
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algorithms performance in McNemar’s test. On the other hand, N f s and Ns f indicate the
number of times one algorithm succeeded and the other failed. These two parameters
were used to calculate the z score (Equation (7)), which is the numerical representation of
difference between performance of two algorithms.

z =

(∣∣∣Ns f − N f s

∣∣∣− 1
)

√
Ns f + N f s

(7)

If the z score is 0, then it can be interpreted as the two algorithms showing similar per-
formance, which denotes insignificance. When the z score is a positive value, performances
of algorithms differ from each other. In addition, it is important to note that z scores have
corresponding confidence scores which can be seen in Table 9.

Table 9. Confidence levels corresponding to z scores for one- and two-tailed predictions [62].

z Score One-Tailed Prediction Two-Tailed Prediction

1.645 95% 90%

1.960 97.5% 95%

2.326 99% 98%

2.576 99.5% 99%

4. Results and Discussion
4.1. Experimental Results

The synopsis of the proposed approach included the following steps:

(1) The obtained data that was composed of exRNA profiles/samples for healthy indi-
viduals and cancer patients was augmented by utilizing the SMOTE algorithm.

(2) Normalization was applied on the data to reduce the effect of outlier samples.
(3) A feature selection algorithm that calculates the information gain of each feature/attribute

forming the data was applied. The algorithm ranked each attribute in descending
order of value according to how informative it was.

(4) The samples with the different numbers of attributes according to their ranks were
utilized as inputs to feed the canonical ML and DL algorithms to build models.

(5) The 10-fold cross-validation technique was utilized when building each model.
(6) To optimize the hyper-parameters of the DL architectures, the GA was utilized.
(7) The performance that each model achieved in terms of accuracy, RMSE, and Kappa

statistic was determined.
(8) To reveal whether the performances of the models were statistically significant, Mc-

Nemar’s test was applied.

In our present study, publicly available RNA-seq data of healthy individuals and
colon cancer patients were downloaded and analyzed. We determined approximately 10
million raw sequence reads. Of these raw reads, approximately 40% were mapped into
the reference RNA sequences. The data have been tested with five canonical ML and
three DL algorithms mentioned before. All results are given as graphs in Figures 7–10. In
these figures, the x-axis corresponds to number of attributes, and the y-axis corresponds to
achieved accuracy. The results of canonical ML algorithms can be seen in Figures 7 and 8
for predicting cancerous samples and stage of the cancer, respectively.

As seen in Figure 7, all five canonical ML methods yielded adequate results when
predicting cancerous or healthy samples. All methods returned over 92% accuracy, which
was the lowest result generated by RT method when 10 attributes were selected. Attribute
selection was utilized to reduce the complexity of the models and shorten the training time.
In general, selecting certain attributes did not improve the accuracy results. The RC, LMT,
and RF methods provided the best results when all the attributes were used, while selecting
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attributes resulted in reduced accuracy of the LMT and RF methods. On average, RC and
RF were the most successful methods when predicting the existence of cancer.

The results of the second test, which included predicting stages of cancer, can be seen
in Figure 8. In this part of the study, the data included samples from healthy individuals
and cancer patients at certain stages. The results wwere very promising, considering all
five methods successfully classified at least 91% of the samples. Although there was no
direct or inverse effect of attribute selection, the best result was achieved using RF when 30
and 40 attributes were selected out of 493 exRNA transcripts. Here, we can say that using
the most informative 30 attributes was sufficient to classify the stage of the cancer. The
most 50 informative attributes according to our feature selection method were: tRNA-Glu
(also known as TRNAE3), hsa-miR-873-3p, hsa-miR-132-5p, hsa-miR-335-5p, hsa-miR-
219a-5p, hsa-miR-139-3p, hsa-miR-22-5p, hsa-miR-409-3p, hsa-miR-152-3p, hsa-let-7e-5p,
hsa-miR-425-5p, hsa-miR-543, hsa-miR-411-5p, hsa-miR-501-3p, hsa-miR-874-3p, hsa-miR-
140-5p, hsa-miR-26a-1-3p, hsa-let-7i-3p, hsa-miR-660-5p, hsa-miR-378c, hsa-miR-19b-3p,
hsa-miR-29c-3p, hsa-miR-370-3p, hsa-miR-130a-3p, hsa-miR-30c-5p, hsa-miR-363-3p, hsa-
miR-30a-3p, hsa-miR-676-3p, hsa-miR-23b-3p, hsa-miR-767-5p, hsa-miR-145-3p, hsa-miR-
1246, hsa-miR-885-5p, hsa-miR-125b-2-3p, hsa-miR-10b-5p, hsa-miR-1298-5p, hsa-miR-
125a-3p, hsa-miR-339-3p, hsa-miR-23b-3p, hsa-miR-129-2-3p, hsa-miR-206, hsa-miR-34c-5p,
hsa-miR-105-5p, hsa-miR-760, hsa-miR-330-5p, hsa-let-7d-5p, hsa-miR-10a-5p, hsa-miR-
204-3p, hsa-miR-28-3p, and hsa-miR-99b-3p. As can be seen from the most informative
50 attributes, all attributes, except the first one, belong to the mature microRNA category.
In general, the different methods had varying performances for changing numbers of
attributes. RC achieved better performance if the number of attributes was relatively
low, and as the selected number of attributes was increased, RF yielded the best results.
Additionally, the LMT stood out as the best method when all attributes were used for
evaluation.
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Figure 7. The accuracy results of the ML models on cancer prediction with different numbers of
attributes. (Illustrations by the authors).
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Figure 8. The accuracy results of the ML models on cancer stage classification with different numbers
of attributes. (Illustrations by the authors).

The results of DL algorithms can be seen in Figures 9 and 10 for predicting cancer
and stage of the cancer, respectively. According to the Figure 9, the highest accuracy was
obtained by 1-D CNN model, while 50 attributes were utilized to train the convolutional
neural network. In the LSTM model, the highest accuracy was obtained by including all
attributes in the training, while in the BiLSTM model, the highest score was achieved by
using both 50 and all attributes. It can be said that 50 attributes having the highest IG
values were distinctive for binary classification with 1-D CNN model.

According to Figure 10, for predicting the stage of the cancer, the highest accuracy
was obtained by BiLSTM model with 98%, while all attributes were utilized to feed the
classifier for predicting the stage of the cancer. The second highest accuracy rate of 97%
was obtained with 1-D CNN model by enabling all attributes as the input of the classifier.
However, the lowest accuracy rate of 88% was achieved with LSTM model by handling 10
attributes. Considering the utilization of all attributes, it was revealed that LSTM had the
lowest accuracy rate once again. Nevertheless, LSTM model exceeded the 90% accuracy
rate with all numbers of attributes, except when 10 attributes were selected as input.

The Kappa statistics and RMSE results of two experiments for canonical ML algorithms
can be seen in Tables 10 and 11. The results were obtained by using the dataset with all
attributes. LMT algorithm showed the best performance regarding Kappa, but RC was
the best algorithm considering RMSE on the state dataset. In Table 11, it can be clearly
seen that LMT was superior on both the Kappa statistic and RMSE. These results support
the accuracy graphs by showing the dominance of LMT on the dataset with all features.
In addition, it is important to mention that all Kappa statistic values presented “Almost
Perfect” agreement, considering Table 7.



Sensors 2023, 23, 3080 19 of 28

Sensors 2023, 23, x FOR PEER REVIEW 18 of 28 
 

 

The results of DL algorithms can be seen in Figures 9 and 10 for predicting cancer 
and stage of the cancer, respectively. According to the Figure 9, the highest accuracy was 
obtained by 1-D CNN model, while 50 attributes were utilized to train the convolutional 
neural network. In the LSTM model, the highest accuracy was obtained by including all 
attributes in the training, while in the BiLSTM model, the highest score was achieved by 
using both 50 and all attributes. It can be said that 50 attributes having the highest IG 
values were distinctive for binary classification with 1-D CNN model.  

 
Figure 9. The accuracy results of the DL models on cancer prediction with different numbers of 
attributes. (Illustrations by the authors). 

According to Figure 10, for predicting the stage of the cancer, the highest accuracy 
was obtained by BiLSTM model with 98%, while all attributes were utilized to feed the 
classifier for predicting the stage of the cancer. The second highest accuracy rate of 97% 
was obtained with 1-D CNN model by enabling all attributes as the input of the classifier. 
However, the lowest accuracy rate of 88% was achieved with LSTM model by handling 
10 attributes. Considering the utilization of all attributes, it was revealed that LSTM had 
the lowest accuracy rate once again. Nevertheless, LSTM model exceeded the 90% accu-
racy rate with all numbers of attributes, except when 10 attributes were selected as input. 

10 20 30 40 50 All
1-D CNN 0.93 0.9167 0.9367 0.92 0.9767 0.9367
LSTM 0.9033 0.9133 0.92 0.9333 0.92 0.9367
BiLSTM 0.9233 0.9333 0.9333 0.9233 0.9433 0.9433

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
CC

U
RA

CY

NUMBER OF ATTRIBUTES

1-D CNN LSTM BiLSTM

Figure 9. The accuracy results of the DL models on cancer prediction with different numbers of
attributes. (Illustrations by the authors).

Sensors 2023, 23, x FOR PEER REVIEW 19 of 28 
 

 

 
Figure 10. The accuracy results of the DL models on cancer stage classification with different num-
bers of attributes. (Illustrations by the authors). 

The Kappa statistics and RMSE results of two experiments for canonical ML algo-
rithms can be seen in Tables 10 and 11. The results were obtained by using the dataset 
with all attributes. LMT algorithm showed the best performance regarding Kappa, but RC 
was the best algorithm considering RMSE on the state dataset. In Table 11, it can be clearly 
seen that LMT was superior on both the Kappa statistic and RMSE. These results support 
the accuracy graphs by showing the dominance of LMT on the dataset with all features. 
In addition, it is important to mention that all Kappa statistic values presented “Almost 
Perfect” agreement, considering Table 7. 

Table 10. Kappa statistics and RMSE values of algorithms on cancer prediction with all attributes. 
(Illustrations by the authors). 

Method Kappa Statistic RMSE 
Random Forest 0.9388 0.2185 

Random Committee 0.9388 0.1683 
Random Tree 0.867 0.2449 

k-Nearest Neighbor 0.8788 0.2304 
Logistic Model Tree 0.9397 0.1821 

Table 11. Kappa statistics and RMSE values of algorithms on cancer stage classification with all 
attributes. (Illustrations by the authors). 

Method Kappa Statistic RMSE 
Random Forest 0.9311 0.1747 

Random Committee 0.9057 0.1258 
Random Tree 0.8976 0.1789 

k-Nearest Neighbor 0.9230 0.1542 
Logistic Model Tree 0.9528 0.1247 

The Kappa statistics and RMSE results of two experiments for DL algorithms in order 
to predict cancer and classify cancer stage can be seen in Tables 12 and 13, respectively. 
The results were obtained by using the dataset with all attributes. According to Table 12, 
among the DL models, the best performance was achieved by BiLSTM. Compared with 

10 20 30 40 50 All
1-D CNN 0.9267 0.9533 0.96 0.96 0.9333 0.97
LSTM 0.8833 0.92 0.9433 0.9433 0.93 0.9233
BiLSTM 0.9333 0.94 0.93 0.9333 0.94 0.98

0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
CC

U
RA

CY

NUMBER OF ATTRIBUTES

1-D CNN LSTM BiLSTM

Figure 10. The accuracy results of the DL models on cancer stage classification with different numbers
of attributes. (Illustrations by the authors).
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Table 10. Kappa statistics and RMSE values of algorithms on cancer prediction with all attributes.
(Illustrations by the authors).

Method Kappa Statistic RMSE
Random Forest 0.9388 0.2185

Random Committee 0.9388 0.1683

Random Tree 0.867 0.2449

k-Nearest Neighbor 0.8788 0.2304

Logistic Model Tree 0.9397 0.1821

Table 11. Kappa statistics and RMSE values of algorithms on cancer stage classification with all
attributes. (Illustrations by the authors).

Method Kappa Statistic RMSE
Random Forest 0.9311 0.1747

Random Committee 0.9057 0.1258

Random Tree 0.8976 0.1789

k-Nearest Neighbor 0.9230 0.1542

Logistic Model Tree 0.9528 0.1247

The Kappa statistics and RMSE results of two experiments for DL algorithms in order
to predict cancer and classify cancer stage can be seen in Tables 12 and 13, respectively. The
results were obtained by using the dataset with all attributes. According to Table 12, among
the DL models, the best performance was achieved by BiLSTM. Compared with canonical
ML models, DL models showed low performance in terms of Kappa value and RMSE. For
both evaluation metrics, the best model among DL models showed 7% less performance
than the best model among canonical ML models. However, the results were consistent
with the accuracy performance and Kappa statistic values that indicated “Almost Perfect”
agreement, considering Table 7.

Table 12. Kappa statistics and RMSE values of deep learning algorithms on cancer prediction with all
attributes. (Illustrations by the authors).

Method Kappa Statistic RMSE
CNN 0.8564 0.2517

LSTM 0.8579 0.2517

BiLSTM 0.8709 0.2380

According to the Table 13, the highest values for both Kappa and RMSE were achieved
by BiLSTM model. These achievements endorsed the accuracy performance by revealing
the superiority of BiLSTM on classifying the stage of the cancer. In addition, it is important
to mention that all Kappa statistic values indicated “Almost Perfect” agreement, considering
Table 7. In addition, BiLSTM outperformed LMT in terms of Kappa but did not gain an
advantage over RC and LMT in terms of RMSE.

Table 13. Kappa statistics and RMSE values of deep learning algorithms on cancer stage classification
with all attributes. (Illustrations by the authors).

Method Kappa Statistic RMSE
CNN 0.9320 0.1732

LSTM 0.8313 0.2769

BiLSTM 0.9548 0.1414
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The results of McNemar’s test for canonical ML algorithms to predict cancer and clas-
sify cancer stage can be seen in Tables A1 and A2, respectively. The results of McNemar’s
test for DL algorithms to predict cancer and classify cancer stage can be seen in Tables A3
and A4, respectively. In these tables the arrowheads show the superior classifier on the
related dataset. The selected number of features are 10, 20, 30, 40, 50, and all respective
attributes. Bold numbers (>1.96) indicate more than 95% confidence level for two-tailed
predictions. The aforementioned tables show the statistical significance of the results by
comparing two classifiers. In all tables, every sub-column represents the results for different
numbers of attributes. In addition, the values over 1.96, which corresponds to the 95%
confidence level for two-tailed predictions, are marked bold in the tables.

In Table A1, which shows the z scores of algorithms on the state dataset, it can be clearly
seen that RF and RC outperformed other algorithms by having 18 and 17 arrowheads,
respectively. In addition, there are three values exceeding 2.576, that represent a 99.5%
confidence level. Two of these three values belong to RC, and the other one belongs to RF,
which indicates the superiority of these classifiers.

Z scores of algorithms on the stage dataset can be seen in Table A2. In this table, the
RF classifier has 20 arrowheads, demonstrating more dominant performance than previous
table. In addition, by having 14 arrowheads, the RC classifier performed second best
algorithm on this dataset. In the table, seven values are marked in bold for RF classifier,
which also indicates the superiority of this classifier. Another remarkable result is that RF
classifier has four values representing 99.5% confidence level. It is also worth mentioning
that LMT classifier has only seven arrowheads, and two of them have a confidence level of
99.5%.

According to Table A3, it is revealed that 1-D CNN model outperformed other models
by having nine arrowheads. Three of them are marked in bold representing 97.5% and 95%
confidence levels for one-tailed and two-tailed predictions, respectively. In addition, one of
them indicates 99.5% and 99% confidence levels for one-tailed and two-tailed predictions,
respectively. Among these DL models, BiLSTM comes second with five arrowheads,
whereas LSTM is the last with two arrowheads. It is worth mentioning that the 1-D CNN
model showed a statistically significant difference versus the LSTM model for 10, 40, and
all attributes to predict cancer.

In Table A4, the 1-D CNN model outperformed other DL models by having nine
arrowheads to classify cancer stages. Four of them are marked in bold, representing
97.5% and 95% confidence levels for one-tailed and two-tailed predictions, respectively.
In addition, one of them indicates 99.5% and 99% confidence levels for one-tailed and
two-tailed predictions, respectively. Among these DL models, BiLSTM comes second with
seven arrowheads, whereas LSTM is the last with one arrowhead. It is useful to emphasize
that the 1-D CNN model showed a statistically significant difference with the highest
confidence level versus the LSTM model while utilizing all attributes to classify cancer
stage.

Our first hypothesis is validated according to the accuracy performance of canonical
ML and DL models. For colon cancer prediction, the best accuracy was obtained by
the 1-D CNN DL model with 97.67%, which outperformed other canonical ML models.
Furthermore, for cancer stage classification, the best accuracy was obtained by the BiLSTM
DL model with 98%, which outperformed other canonical ML models.

The second hypothesis is also validated by the feature selection algorithm that sim-
ply ranked the attributes according to the value of IG. It is revealed that 49 of the most
informative 50 exRNA transcripts were miRNAs, and they belonged to the mature miRNA
category.

The third hypothesis is validated for colon cancer prediction and cancer stage classifi-
cation by canonical ML models. RC and RF models with 97.33% accuracy performance, fed
by the most informative 10 and 50 exRNA transcripts, respectively, outperformed other ML
models in cancer prediction. It is clearly seen that performance improvement could not
be achieved when the number of exRNA transcripts used was increased. In cancer stage
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classification, RF model achieved the best accuracy performance with 97.33% by utilizing
the most informative 30 and 40 exRNA transcripts. According to the accuracy performance
of DL models for colon cancer prediction, the third hypothesis is also validated. The
best accuracy performance was achieved with 97.67% by the 1-D CNN model utilizing
only the most informative 50 exRNA transcripts. However, in cancer stage classification,
the third hypothesis is invalidated by the accuracy performance of DL models. The best
accuracy performance was achieved with 98% by the BiLSTM model utilizing all exRNA
transcripts. On the other hand, this result is consistent with the findings of Yuan et al.’s
study [18]. According to that study, as the stage of the disease progresses, the number of
small non-coding RNAs (including miRNA, piwiRNA, and siRNA) increases. Therefore,
the best accuracy performance can be expected by utilizing all exRNA transcripts that
include other miRNAs, piwiRNAs, and siRNAs to classify cancer stage.

4.2. Practical Applicability

Our proposed approach can have an applicability in practice. It can be utilized for
both diagnosis and prognosis. Our approach alone should not be considered to diagnose
colon cancer. The main goal is to assist medical doctors as a second opinion during
diagnosis/prognosis and to speed up the process of treatment planning (Figure 11).
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A scenario for the practical applicability of the approach can be as follows:

- An individual with health complaints applies to a health institution.
- A diagnosis is made after a medical doctor’s examination and modern medical tests

(healthy or colon cancer).
- The medical doctor may misdiagnose or seek a second opinion, as the symptoms will

not be the same in every individual.
- The medical doctors may disagree on a diagnosis, as they may also come from different

medical traditions.
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- At this stage, the approach we propose can become a part of the medical process.
- After the exRNA profile of the individual is obtained, it is given to the canonical ML

and DL models as input.
- According to the results of the different models, the medical doctors can agree on a

diagnosis or confirm their diagnosis.
- It becomes important to determine the stage of the disease after the diagnosis.
- Our approach can be utilized not only for diagnosing colon cancer but also for deter-

mining the stage of the cancer.
- If the disease has not progressed to the final stages, early detection of the cancer

accelerates treatment planning and improves the patient’s likelihood of recovery and
quality of life.

The advantage of our proposed approach is that re-obtaining a patient’s exRNA
transcript values—without requiring procedures that affect the patient physically and
psychologically—is sufficient to determine whether the disease is progressing.

Our approach can be applied to other types of cancer as well. All that is required
is to obtain the exRNA profiles from healthy individuals and patients with a specific
cancer. Later, canonical ML and DL models can be obtained and optimized from the data.
Additionally, the models can be retrained with new inputs and become more robust and
less error-prone.

Considering the workload on medical doctors in the COVID-19 pandemic, the efficacy
of our approach can be better understood. If our approach is utilized, it can be provided
that doctors make consistent decisions supported by artificial intelligence and shorten the
time they spend per patient. Therefore, medical doctors can have time to spare for resting
and preparing for other patient appointments.

5. Conclusions

In this study, five canonical ML and three DL models were utilized to predict whether
an individual has colon cancer and to classify the stage of the cancer. We used RNA-seq
data of EVs, which was deposited at NCBI. EVs have drawn attention for early diagnosis
of cancer. They carry DNA, RNA, protein, and metabolites between cancer cells for cellular
communication. Therefore, evaluation of molecular components in vesicles provides
detailed information about cancer progression. In recent years, transcriptome structure of
vesicles has been analyzed frequently to find biomarkers. We focused on total transcriptome
structure with ML and DL models to find new perspectives which could be used in clinical
practice.

One of the remarkable results of the study is that although hyper-parameters of
canonical ML models were not optimized, they showed as high accuracy performance as
DL models did for predicting cancer and classifying cancer stage. However, DL models
achieved the best accuracy results by applying a meta-heuristic search algorithm, namely
GA, resulting in a longer model training duration.

Input data were normalized between 0 and 255 to create the 1-D CNN model in cancer
prediction. The highest accuracy rate was obtained with this method. From this point of
view, we consider that this method can also be used in the prediction of other cancer types.

Another important aspect of the study is that BiLSTM model outperformed both
canonical ML models and other DL models in terms of accuracy of classifying cancer stages.
This can be explained by the learning ability of bidirectional long-term dependencies in
sequence data through the layers in the BiLSTM architecture. Therefore, we determined
that BiLSTM can reveal the relationships among various types of RNA within samples.

Despite the limited amount of data available, DL and ML architectures achieved
promising results. This situation proves that the proposed approach has potential for
building an efficient prediction framework for colon cancer studies. Several shortcomings
exist in the study. Only GA is considered for hyper-parameter estimation of DL models.
In future studies, other meta-heuristic optimization algorithms, such as particle swarm
optimization, ant colony, and gray wolf optimization, could be employed to compare the
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performances. This will increase validity and impact of the proposed approach. Since
DL architectures have a high computational need to train data, this need can hinder the
implementation performance of the proposed approach. In future studies, this issue can
be investigated by using parallel computing tools and advanced Graphics Processor units.
Finally, the results can be improved furthermore with a larger volume of data and by
integrating canonical ML models with DL models to obtain ensemble classifiers.

Author Contributions: Conceptualization, E.B. and E.K.; methodology, E.B.; validation, T.A., K.A.,
and M.S.G.; formal analysis, M.U.; investigation, E.B.; resources, E.K.; data curation, M.U.; writing—
original draft preparation, E.B., T.A., and K.A.; writing—review and editing, T.A., K.A., and E.K.;
visualization, E.K.; supervision, E.B. and M.S.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article. The data presented in this study
are available in [18].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ML Machine Learning
RNA-seq RNA sequence
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
BiLSTM Bidirectional Long Short-Term Memory
DL Deep Learning
EV Extracellular vesicle
GEO Gene Expression Omnibus
RPM Reads per million
SMOTE Synthetic Minority Over-Sampling Technique
Min–max normalization x′ = x−min(X)

max(X)−min(X)
(new_max(X)− new_min(X))

formula +new_min(X)
min(X) The current minimum value
max(x) The current maximum value
new_min(x) New minimum value
new_max(y) New maximum value
IG Information gain
Information gain formula IG(C, X) = Entropy(C)−∑x∈X

Xx
X ∗ Entropy(Xx)

Entropy formula Entropy = −∑c
i=1 P(xi)log2P(xi)

C Target or class
X Attribute vector
x Each value of the attribute vector X
c The number of the cases of the target or briefly the number of classes
P(xi) The probability of a value occurring in the target data.
kNN k-Nearest Neighbors
LMT Logistic Model Tree
RT Random Tree
RC Random Committee
RF Random Forest
RNN Recurrent Neural Networks
SVM Support Vector Machine
AUC Area Under Curve
DT Decision Tree
PD Parkinson’s disease
PLSDA Partial Least Squares Discriminant Analysis
XGBoost eXtreme Gradient Boosting
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MLP Multilayer Perceptron
1-D CNN One-dimensional Convolutional Neural Network
GA Genetic algorithm
PCA Principal Component Analysis

Crossover formula gi(Cc) =

{
gi
(
Cp2
)
, bi = 0

gi
(
Cp1
)
, bi = 1

gi The ith gene
Cc Child chromosome
Cp1 and Cp2 Parent chromosomes
bi The ith value in the random binary vector.
Adam Adaptive moment estimation
Accuracy formula Accuracy = Number of Correct Predictions

Total Number of Predictions
RMSE Root Mean Square Error

RMSE formula RMSE =

√
∑N

n=1

(
^
rn−rn)

2

N
^
rn Predicted values
rn Observed values
N Number of observations

z score formula z =
(|Nsf−Nfs|−1)√

Nsf+Nfs

Nfs, Nsf Number of times one algorithm succeed and other failed

Appendix A

Table A1. Z scores of ML algorithms on cancer prediction. (Illustrations by the authors).

RC RT kNN LMT

RF ↑
1.58

↑
0.7

←
0.31 0 ←

1.58 0 ←
2.4

←
2.02

←
0.86

←
1.75

←
2.02

←
2.12

←
0.31

←
1.5

←
2.66

←
1.94

←
2.4

←
2.02

←
1.37

←
1.06

←
1.1 0 ←

0.75 0

RC ←
3.75

←
2.4

←
0.31

←
1.56

←
0.23

←
2.4

←
2.02

←
2.04

←
1.54

←
1.94

←
0.86

←
2.47

←
2.91

←
2.04

←
0.45 0 ↑

0.23 0

RT ↑
1.75

↑
0.75

←
1.03 0 ←

0.23
↑

0.23
↑

0.48
↑

0.75 0 ↑
1.56

↑
0.75

↑
1.91

kNN ←
0.97 0 ↑

0.7071
↑

1.74
↑

1.06
↑

2.02

Table A2. Z scores of ML algorithms on cancer stage classification. (Illustrations by the authors).

RC RT kNN LMT

RF ↑
0.31 0 ←

1.06
←
2.47

←
1.33

←
1.58 0 ←

1.58
←
3.75

←
3.47

←
2.4

←
1.75

←
0.40

←
0.86

←
2.75

←
1.75

←
1.58

←
0.31

←
1.33

←
1.58

←
2.21

←
3.06

←
1.33

↑
1.03

RC ←
0.31

←
1.58

←
2.75

←
1.58

←
1.5

←
0.31

←
1.06

←
0.75

←
1.75 0 0 ↑

0.86
←
1.75

←
2.04

←
1.10

←
1.33 0 ↑

2.77

RT ←
0.40

←
0.23

↑
1.06

↑
2.04

↑
0.86

↑
1.33

←
1.58 0 ↑

1.66 0 ↑
0.75

↑
2.75

kNN ←
0.86

←
0.26

↑
0.48

←
1.17 0 ↑

1.3

Table A3. Z scores of DL algorithms on cancer prediction. (Illustrations by the authors).

1-D CNN LSTM BiLSTM

1-D CNN ←
2.75

←
0.92

←
0.46

←
2.41

←
1.81

←
2.00

←
0.35

↑
0.92 0 0.60 ←

1.77
←

1.79

LSTM ↑
2.43

↑
1.03

←
0.29

←
0.24

↑
0.92

↑
1.66
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Table A4. Z scores of DL algorithms on cancer stage classification. (Illustrations by the authors).

1-D CNN LSTM BiLSTM

1-D CNN ←
1.67

←
2.01

←
1.66

←
2.02

←
1.55

←
3.47

↑
1.03

←
0.29

←
2.12

←
1.81

↑
0.35

↑
1.16

LSTM ↑
2.31

↑
2.09 0 ←

0.29
↑

1.65
↑

3.18
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