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Abstract: Semantic segmentation consists of classifying each pixel according to a set of classes.
Conventional models spend as much effort classifying easy-to-segment pixels as they do classifying
hard-to-segment pixels. This is inefficient, especially when deploying to situations with computational
constraints. In this work, we propose a framework wherein the model first produces a rough
segmentation of the image, and then patches of the image estimated as hard to segment are refined.
The framework is evaluated in four datasets (autonomous driving and biomedical), across four
state-of-the-art architectures. Our method accelerates inference time by four, with additional gains
for training time, at the cost of some output quality.

Keywords: semantic segmentation; deep learning; computer vision

1. Introduction

Neural networks for segmentation typically produce a probability, for each pixel,
of belonging to the region of interest [1–4]. The same number of arithmetic operations
is performed for all pixels, which seems computationally inefficient because there are
regions of the image that may be harder to segment than others. Intuitively, that does
not seem how humans would produce a manual segmentation. We would create a rough
draft and then refine the parts of the segmentation that require more detail. Furthermore,
many segmentation applications are imbalanced. The background predominates, and the
background is often easier to segment.

In applications with very high-resolution images, such as high-resolution digital
microscopes, a common practice is to split the image into patches and process each patch
separately [5]. However, such an approach does not solve the fact that resources are being
spent equitably when it makes sense to unevenly deploy these resources across the regions
of the images. Our proposal tries to be more selective on the patches it chooses. Other
areas that may also benefit from low-cost segmentation, even with some accuracy penalty,
include single-board computers, such as the Raspberry Pi microcontroller that are used for
smart houses, security, or in retail to estimate customers entering a store [6].

As illustrated by Figure 1, the proposal is to produce a sequential segmentation
method whereby Model 1 segments a lower-resolution version of the image. Based on the
probability scores from this first model, the harder-to-segment regions are identified. These
regions are then fed into Model 2 for further processing. Finally, the output of both models
is then combined.

Iterative segmentation methods already exist [7–10], but their focus is on improv-
ing the quality of the segmentation, not the speed. Our proposal is applicable to every
type of high-resolution image, but it is tested over two types of images (biomedical and
autonomous driving).

The paper expands on a previous conference paper [11] by introducing three crucial
improvements to the pipeline and an expansion of the experiments: (i) the second model is
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trained from the first model; (ii) the first model is connected to the second model to provide
context; and (iii) three sampling strategies are considered to choose the image patches for
the training of the second model.

In addition to this introduction, the paper is organized as follows: Section 2 better
explores the related work, Section 3 explains the proposed algorithm, Section 4 details the
experiments performed and discusses the results, and finally Section 5 concludes the paper.
The source code with the implementation used to produce the experiments of this paper
is publicly available at https://github.com/rpmcruz/faster-segmentation (accessed on
12 February 2023).
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Figure 1. Illustration of the proposal (BDD dataset).
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Figure 1. Illustration of the proposal (BDD dataset).

2. Related Work

In broad strokes, deep learning architectures for neural networks consist of two
encoder–decoder sequential blocks, as shown in the following Figure 2.
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Table 1. Amount of parameters and FLOPs per architecture.

FLOPs (106)
Architecture #params (106) 96×96 192×192 192×192 384×384 768×768
ResNet-50* 23.5 215 759 3,035 12,142 48,567
DeepLab v3 [4] 42.0 1,533 6,132 24,527 98,107 392,425
U-Net [3] 73.4 695 2,413 9,653 38,613 154,452
SegNet [2] 48.4 594 1,776 7,105 28,421 113,684
FCN [1] 35.3 1,316 5,265 21,060 84,238 336,952

*All our models use this ResNet-50 [12] as the encoder backbone.

Figure 2. Generic segmentation network.

The encoding phase reduces the image into a smaller and more compact, higher-level
representation, while the decoder projects that latent representation into a segmentation
with the same size as the original image. Four major architectures are considered in this
work: fully convolutional network (FCN) [1], SegNet [2], U-Net [3], and DeepLab [4]. FCN
is considered a pioneering approach to deep-based image segmentation. It uses successive
convolutions for the encoder, but a single dense layer for the decoder that is then reshaped
to the final shape [1]. SegNet also uses successive convolutions for the decoder [2]. U-Net
introduces extra “skip connections”, which consist in concatenating the activation map
produced by each encoder layer to the corresponding decoder layer; this improves gradient
fluidity and, typically, the output quality [3]. DeepLab tries to improve the checkerboard
effect, sometimes found on segmentation methods, by diluting the distinction between the
encoder–decoder through the application of atrous convolutions that avoid the need to
successively reduce the input image by instead enlarging the convolution kernels [4].

As shown in Table 1, as the input doubles, the number of floating point operations
(FLOPs) quadruples. The memory required also increases. This makes applying deep-
based models to high-resolution images computationally expensive. In areas such as
computational pathology, one of the main limitations is related to the large file size due to
the high-resolution (and different magnifications) of the whole slide images. Patch-based
methods are therefore common. In these approaches, images are divided into several,
smaller patches that are possible for neural networks to process [5].

There is work that focuses on improving training and/or inference time, and it typi-
cally involves working with multiple scales, but not on semantic segmentation. Google
AI performs alpha matting on mobile devices (i.e., extracting a foreground object) by a
two-stage process, due to computational constraints, whereby a neural network performs
an initial step, and a secondary network is used only on areas that might require further
work [12]. Such an approach has been adapted to depth estimation [13]. For the purpose of
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image classification, ref. [14] has multiple inputs of varying scales, which are decided by
attention mechanisms. Another approach that has been used for classification and object
detection is to choose these patches recurrently by reinforcement learning [15,16].

Table 1. Number of parameters and FLOPs per architecture.

FLOPs (106)
Architecture #Params (106) 96 × 96 192 × 192 192 × 192 384 × 384 768 × 768

ResNet-50 * 23.5 215 759 3035 12,142 48,567

DeepLab v3 [4] 42.0 1533 6132 24,527 98,107 392,425
U-Net [3] 73.4 695 2413 9653 38,613 154,452
SegNet [2] 48.4 594 1776 7105 28,421 113,684
FCN [1] 35.3 1316 5265 21,060 84,238 336,952

* All our models use this ResNet-50 [17] as the encoder backbone.

3. Method

Conventional methods apply the computational effort uniformly across the input
space, which seems inefficient. Therefore, our proposal consists of the following steps,
which are made clearer by the pseudocode in Algorithm 1:

Step 1. Model 1 segments a low-resolution version of the image (line 1);
Step 2. the poorly segmented image patches are identified based on the probabilities

produced by Model 1 (line 2); and
Step 3. Model 2 refines these patches (line 3).

Algorithm 1: Pseudocode of the proposed method.

Input: two models, f (1) and f (2), and an image input x
1: p̂← s↑( f (1)(s↓(x)))
2: patches← {(i, j) | g(h(ci,j( p̂)))}
3: ci,j( p̂)← f (2)(ci,j(x)), ∀i, j ∈ patches.

where s↑ and s↓ are upscale and downscale interpolations, ci,j crops the (i, j) patch,
g is the selection function (Section 3.1), function h produces an uncertainty score
for a patch by calculating the average of the uncertainty associated with the
probability of each pixel, u(p) = −p log2 p, so that highly uncertain regions
correspond to those with probabilities closest to 0.5.

Notice that both models use the same architecture and receive the same image size,
except that Model 1 is a scaled-down version of the image, while Model 2 is a crop
of the image. For example, if Model 1 receives one image downscaled by 4×, then
Model 2 receives images cropped in 4 × 4 from the original so that the input shape of both
models is the same. The full pipeline is illustrated in Figure 3.

3.1. Selection Method

At each epoch, while the model is being trained, one patch of each image is sampled
by g by using one of the following strategies.

1. Random: uniform sampling.
2. Weighted: Sampling is weighted by the uncertainty produced by Model 1. Shannon

entropy is used as a measure of uncertainty by taking the probability map p produced
by Model 1, and computing an uncertainty h score. This uncertainty is then normalized
and used as the sampling probability.

3. Highest: The highest uncertainty patch is always selected. While this seems to be the
most obvious approach, it also removes some stochasticity and variability from the
training of Model 2.
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The three strategies are experimented with in Section 4.3. After the model has been
trained, a threshold is used to select the patches with uncertainty above a certain threshold
(typically 0.5).

Version March 8, 2023 submitted to Sensors 3 of 8
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Figure 3. Two-stage segmentation.
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Figure 3. Two-stage segmentation.

3.2. Extension

This paper is an expansion from our conference paper [11] and introduces three crucial
improvements on the pipeline and expands the experiments: (1) transfer learning is used
so that Model 2 is trained on top of Model 1 (black dashed lines in the figure); (2) Model 1
provides context to Model 2 by elementwise addition between the penultimate layer of
both models (blue dashed lines); (3) during training for step 2, one patch of each image is
selected for Model 2 by using one of three sampling strategies.

4. Experiments and Results
4.1. Datasets

Four datasets were used: two from the autonomous driving literature (BDD [18] and
KITTI [19]), and two from the biomedical literature (BOWL [20] and PH2 [21]), all of which
are detailed in Table 2. The biomedical datasets consist of binary classification (BOWL
for cell recognition, while PH2 is skin lesion recognition), and the autonomous driving
datasets were also used for binary classification (to recognize vehicles). The train–test split
was 70-30, except for BDD, which already comes partitioned by the authors.

Table 2. Datasets for semantic segmentation.

Dataset Category N Avg Res % Fg Example

BDD [18] Autonomous
driving

8000 720× 1280 9.7

KITTI [19] Autonomous
driving

200 375× 1271 6.6

BOWL [20] Biomedical 670 328× 369 13.5

PH2 [21] Biomedical 200 575× 766 31.8

4.2. Experimental Setup

The four semantic segmentation models from the literature discussed in Section 2 are
experimented with: FCN [1], SegNet [2], U-Net [3], and DeepLab v3 [4]. All these models
share the same backbone (ResNet-50 [17]), which is pretrained in ImageNet [22]. The
implementations that came with Torchvision [23] are used for FCN and DeepLab v3, while



Sensors 2023, 23, 3092 5 of 8

SegNet and U-Net are implemented by us, also making use of the backbone ResNet-50
from Torchvision.

As typically done in segmentation tasks, focal loss is used for training [24], while the
evaluation metric is the Dice coefficient, the segmentation equivalent of the F1-score used
for classification, which takes class imbalance into account. The optimizer is Adam with a
learning rate of 10−4 that is trained for 20 epochs.

For data augmentation of the aforementioned datasets, the transformations are hori-
zontal flipping, jittering of brightness and contrast by 0.1, and a random translation shift
of 10% the size of the image performed by an upscale followed by a crop. All images are
resized to 768× 768.

4.3. Results

The main results are presented in Table 3. The four architectures are contrasted and
evaluated in the four datasets. The baseline (using a single model in the entire image) is
contrasted against the pipeline (using 16 patches, weighted sampling, and an uncertainty
threshold of 0.25). The quality of the output is measured by the Dice metric, while time
latency is provided for both training (in GPU) and inference (in CPU).

The proposal presents considerable gains in latency time—on average, training time is
reduced by 42.0%, and inference time by 74.7%—at the cost of slightly reducing the quality
of the segmentation maps produced by 6.3%, on average.

The italicized values in the table will now be subject to four ablation studies.

Table 3. Results across the several architectures. The proposal presents considerable gains in latency
time at the cost of some quality of the segmentation output (best results in bold). The italic values
will be subject to the subsequent ablation study.

Architecture Dataset

Baseline Proposal

Time (s) Time (s)

Dice (%) Train Inference Dice (%) Train Inference

Average 87.6 181.0 5407.0 82.1 105.0 1369.9

DeepLab

BDD 86.4 661.7 23,191.8 79.8 227.0 5416.6
KITTI 92.4 15.9 1363.7 85.6 11.5 257.5
BOWL 87.0 94.0 4622.2 81.7 81.2 1772.0
PH2 91.9 15.8 1384.3 94.5 11.0 544.9

U-Net

BDD 82.7 536.8 11,166.0 81.2 356.7 2338.7
KITTI 88.5 13.3 687.7 72.6 10.8 133.4
BOWL 82.9 93.3 2201.5 83.2 79.7 966.7
PH2 90.5 13.0 682.3 91.1 10.4 251.6

SegNet

BDD 85.9 529.9 9090.0 76.9 354.4 2287.3
KITTI 81.2 13.3 549.9 71.1 10.7 203.9
BOWL 78.9 91.1 1868.9 67.1 79.1 1185.1
PH2 92.1 13.0 538.5 89.5 10.3 266.1

FCN

BDD 86.1 679.2 21,977.2 79.9 335.5 3902.6
KITTI 92.9 16.3 1336.0 84.7 10.8 219.9
BOWL 87.0 93.2 4507.4 79.4 80.9 1633.9
PH2 94.7 16.1 1343.8 94.8 10.3 538.0

4.4. Ablation Studies

In Table 4, we attempt to estimate the effect of changing several aspects of the pipeline.
The architecture has been fixed as DeepLab, and the other parameters are changed. Not
surprisingly, some columns predominate (almost fully bold) for reasons now discussed.
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1. The number of patches used to divide the image: There is a general reduction of
quality as the number of patches is increased. However, it should be noted that this
comes with a gain in latency because the more patches used, the smaller the input
sizes, which means lower FLOPs, as previously detailed in Table 1.

2. The sampling strategy used to select the patches during the training of Model 2: The
results of varying the way that patches are selected during the training of Model 2 are
based on the uncertainty produced by Model 1. The differences are not considerable,
albeit always choosing the highest uncertainty patch or sampling weighted by the
normalized uncertainty seem like the best strategies.

3. The impact of changing the uncertainty threshold with which patches are selected
for Model 2 during inference: The threshold chooses the patches from Model 1 to be
refined by Model 2. The lower the uncertainty threshold, the more patches will be
selected. Clearly, the more patches that are refined by Model 2, the better the final
segmentation, naturally at a proportional time cost.

4. Whether certain additional features from the proposal are relevant: The dashed lines
illustrated in the pipeline from Figure 3 are disabled depending on whether Model 1
is used to pretrain Model 2 (fine tune) or whether an activation map is given from
Model 1 to Model 2 (context). In both cases, both of these aspects of the pipeline
clearly aid in improving the output quality, because disabling them lowers quality.

Table 4. Ablation studies for several parts of the proposed method (best results in bold). DeepLab is
used as the architecture.

(1) Dice (%) per #patches

Dataset 4 16 † 64 128

BDD 84.4 79.8 80.1 68.1
KITTI 89.3 85.6 80.3 53.4
BOWL 85.5 81.7 78.9 75.1
PH2 91.5 94.5 93.1 88.6

(2) Dice (%) per patch selection

Dataset Random Weighted† Highest

BDD 79.3 79.8 79.9
KITTI 84.4 85.6 86.1
BOWL 80.7 81.7 81.4
PH2 93.9 94.5 94.6

(3) Dice (%) per uncertainty threshold

Dataset ≥1 ≥0.75 ≥0.5 ≥0.25 † ≥0

BDD 75.3 75.5 76.0 79.8 84.4
KITTI 80.4 80.4 80.7 85.6 90.4
BOWL 76.5 76.7 78.0 81.7 87.2
PH2 93.9 93.9 94.0 94.5 94.4

(4) Dice (%) per disabled feature

Dataset Disable fine tune Disable context Full-featured †

BDD 77.1 79.0 79.8
KITTI 80.2 82.2 85.6
BOWL 80.4 78.9 81.7
PH2 94.2 94.2 94.5

† This column uses the same parameters as in the previous experiments (italicized values in Table 3).

5. Conclusions

It seems wasteful for the semantic segmentation model to perform the same computa-
tional effort across the pixel space of the image. The current work proposes a two-stage
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pipeline whereby a rough segmentation is produced by a first model using a low-resolution
image, followed by another model that refines the most intricate regions of the image by
using patches of the original high-resolution image. These regions are selected based on
uncertainty estimates produced by the first model. In the end, both outputs are combined
to form the final segmentation.

The approach is validated on four datasets and four architectures. While the proposal
reduces output quality by 6%, it reduces training time by 42% and inference time by 75%.
This shows that the proposal may show a path for considerable efficiency gains, while
work is still required to bridge the gap in terms of output quality. The large gains in
efficiency may justify the accuracy penalty for certain applications, such as when using
resource-limited microcontrollers for noncritical applications.

In this work, the image is divided into uniformly distributed contiguous patches. In
future work, it would be interesting to allow more flexibility in how the image is divided
into patches to avoid cases in which an object is cut in half between patches. Further-
more, training both models from end to end would have been desirable, possibly with an
attention mechanism.
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