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Abstract: It is crucial for an autonomous vehicle to predict cyclist behavior before decision-making.
When a cyclist is on real traffic roads, his or her body orientation indicates the current moving
directions, and his or her head orientation indicates his or her intention for checking the road situation
before making next movement. Therefore, estimating the orientation of cyclist’s body and head is an
important factor of cyclist behavior prediction for autonomous driving. This research proposes to
estimate cyclist orientation including both body and head orientation using deep neural network with
the data from Light Detection and Ranging (LiDAR) sensor. In this research, two different methods
are proposed for cyclist orientation estimation. The first method uses 2D images to represent the
reflectivity, ambient and range information collected by LiDAR sensor. At the same time, the second
method uses 3D point cloud data to represent the information collected from LiDAR sensor. The
two proposed methods adopt a model ResNet50, which is a 50-layer convolutional neural network,
for orientation classification. Hence, the performances of two methods are compared to achieve the
most effective usage of LIDAR sensor data in cyclist orientation estimation. This research developed
a cyclist dataset, which includes multiple cyclists with different body and head orientations. The
experimental results showed that a model that uses 3D point cloud data has better performance for
cyclist orientation estimation compared to the model that uses 2D images. Moreover, in the 3D point
cloud data-based method, using reflectivity information has a more accurate estimation result than
using ambient information.
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1. Introduction

Understanding the behavior of bicycle riders is one of the essential factors of au-
tonomous driving system. Non-motorized road users include pedestrians, cyclists, etc. [1].
However, while a lot of research has been conducted on pedestrian detection and behavior
analysis [2,3], there is a lack of discussion on the estimation of a cyclist’s behavior. As
cyclists have more dynamic behavior and higher speeds than pedestrians, cyclist safety is
also a critical issue that needs to be discussed. According to various traffic-related reports,
a significant number of traffic incidents involve cyclists. In 2021, 43.6% of traffic accidents
involved bicycle riders in Tokyo, Japan. This percentage of cyclists involved in accidents is
only increasing since 2016 [4]. Furthermore, the observatory in European Union countries
showed that cyclist safety is not being improved in various countries. In EU27 countries,
the number of fatalities in traffic crashes involving cyclists remained constant between
2010 and 2019, while the number of fatalities in crashes involving other road users has
decreased [5]. As the autonomous driving system is being developed for transportation
efficiency along with safer roads, estimating cyclist orientation could be a solution for
improvement on cyclist safety.
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In real traffic situations, various road users including automobiles, pedestrians and
bicycles move toward different directions. The easiest and most direct communication
method for cyclists is to use hand signals to indicate their moving intentions. Accordingly,
there are related regulations in some countries to encourage cyclist’s hand signals [6,7].
However, such hand signals could be informative, but they are not efficient enough to
be applied into real traffic interactions between bicycles and automobiles, as they require
time for both cyclists and drivers to process the signals [8]. Thus, the autonomous driving
system is expected to estimate cyclist’s behavior without signals sent intentionally by the
cyclist. In this research, estimation on a cyclist’s body and head orientation is proposed to
consider a cyclist’s natural behavior, instead of hand signals. The ongoing direction of a
cyclist can be represented by his or her body on a bicycle, as a cyclist rides in a fixed posture
on a bicycle. Moreover, a cyclist’s intention for changing direction can be represented by
his or her head direction, which is the most predictable cue for a cyclist’s turn [9,10]. Thus,
the head and body orientations are critical factors in cyclist behavior estimation, as they
indicate the future trajectory.

Most of previous research on pedestrian and cyclist orientation estimation are con-
ducted based on the RGB-camera sensor widely used in autonomous vehicles. Schulz
et al. developed a system to localize head and estimate the head orientation [11,12]. The
system has eight separate classifiers corresponding to eight different head orientations. The
head localization and head orientation estimation were realized by comparing the output
confidence values generated by all eight classifiers. Gandhi et al. used the famous Support
Vector Machines (SVM) and Histograms of Oriented Gradient (HOG) to estimate the pedes-
trian body orientation [13]. Gu et al. proposed using human physical model constraint
and temporal constraint to accurately estimate the joined body and head orientation of
pedestrians and cyclists in video [14,15]. Flohr et al. presented a probabilistic framework
for the joint estimation of pedestrian head and body orientation from a mobile stereo vision
platform using the pictorial structure approach [16].

Recently, deep neural networks have been widely used for vision-based orientation es-
timation of pedestrians and cyclists. Raza et al. presented an appearance-based pedestrian
head-pose and full-body orientation prediction by using grayscale image and employing a
deep learning mechanism [17]. Abadi et al. proposed to estimate the cyclist head and body
orientation using joined head map information generated from Openpose [18], and then
used the joined head and body orientation to predict the crossing intention of cyclist [19,20].
In order to identify the cyclist heading and predict their intentions, Garcia et al. proposed
a multi-class detection with eight classes according to orientations and presented a per-
formance comparison for cyclist detection and orientation classification between the main
deep-learning-based algorithms reported in the literature, such as SSD, Faster R-CNN and
R-FCN [21].

However, there is a certain weakness in using a camera for pedestrian and cyclist
orientation estimation. As a camera is hugely dependent on light variation, the estimation
results from images taken by a camera can be unstable. Such a problem can be solved by
using LiDAR (Light Detection and Ranging) sensor. Different from the passive sensor cam-
era, LIDAR is an active sensor, and can emit pulsed light waves into surrounding objects
and receive the bounced-back wave to calculate the distance. Hence, a 3D structure of the
environment can be measured and presented as 3D point cloud [22] because the ranging
mechanism of LiDAR sensor is independent from light sources in surrounding environ-
ments. Therefore, LIDAR sensor is not affected by light variation such as direct sunlight
or night conditions where a camera struggles. Thus, pedestrian and cyclist detection has
been conducted by using LiDAR sensor [23-27]. The camera can capture higher-resolution
images of objects; on the other hand, LiDAR can acquire accurate 3D information of objects
and has better performance in extreme light variation. Therefore, an integration of camera
image and LiDAR information was proposed for pedestrian detection [28-31]. However,
there are a few discussions for cyclist orientation estimation using LiDAR sensor. The
autonomous vehicle needs to work in different light conditions. Accordingly, research
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on the use of a LIDAR-based perception system can support the current system that uses
a camera only, or be a redundancy in cases where the camera-based perception system
cannot work. As there has been research on camera-based cyclist orientation estimation,
this research focuses on the methods of LiDAR-based cyclist orientation.

The contribution of this research is to propose two different methods for cyclist
orientation estimation. The first method is to convert LIDAR data into three gray-scaled
images for cyclist orientation classification. The second method is to use 3D point cloud
data to represent LiDAR data for cyclist orientation estimation. Both of the proposed
methods use a model ResNet50 deep neural network for orientation classification. Finally,
the performances of the above two methods are compared in order to approach the most
effective usage of LIDAR sensor data for cyclist orientation estimation. In the research,
a cyclist dataset including multiple cyclists with different body and head orientation is
developed. The experimental results proved that the 3D point cloud data-based method
has a better performance for cyclist orientation estimation compared to the 2D image-based
method. Moreover, in the 3D point cloud data-based method, using reflectivity information
has a more accurate estimation result than using ambient information.

The rest of the paper is organized as follows: Section 2 describes the two proposed
methods. Section 3 presents the experimental result, and the paper is concluded in Section 4.

2. Cyclist Orientation Estimation Based on 2D and 3D Methods
2.1. Definition for Cyclist Body and Head Orientations

Following the conventional definition used in the research of camera-based orientation
estimation [19,20], cyclist body orientation is labelled in eight classes and head orientation
of body orientation is labelled in three classes in this research. The body orientation number
is defined along clockwise, starting from an orientation facing the LiDAR sensor. The
diagram for the eight body orientations of the cyclist in Bird’s Eye View (BEV) is shown
on Figure la. In this diagram, the cyclist is in orientation “0”, and the arrow indicates the
rotation direction for labeling. Figure 1b shows the example of 3D point cloud data for
each body orientation taken by LiDAR sensor. Assuming that a LIDAR sensor has been
equipped on a vehicle, the orientation “0” indicates that the cyclist is moving towards
a vehicle and that the cyclist is moving closer to the vehicle. On the opposite direction,
orientation “4” means that the cyclist is currently riding away from the vehicle. The
orientations “2” and “6” indicate the situations of the cyclist riding perpendicular to the
vehicle. The diagonal orientations “1” and orientation “7” indicates the situation where the
cyclist is moving closer to the vehicle and there is a 45-degree angle between their moving
directions. Similarly, the orientation “3” and orientation “5” refer to the behavior of the
cyclist moving away from vehicle.

LiDAR Sensor

(@)

(b) ©

Figure 1. Demonstration of the definition of body orientation (a,b) and head orientation (c).
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Detached from body orientation, the head orientation of a bicycle rider indicates the
sight of the cyclist. Based on the head orientation, the future decisions of the cyclist are
estimated. Considering the natural head rotation of a cyclist, the cyclist head orientation
following the cyclist’s sight is labelled in three classes, which are L (Left), S (Straight) and R
(Right). This head orientation is labelled in a cyclist’s perspective as well, meaning that the
cyclist turns the head to the left, looks straight and turns the head to right. Thus, three head
orientations are assigned to sub-classes for each of eight body orientations. This results in
24 classes that indicate the joined body and head orientation. Figure 1c demonstrates the
head orientations in the event of “0” body orientation only, and the joined body and head
orientations are labelled as “0_L"”, “0_S” and “0_R” for the three postures of bicycle riders
in body orientation “0” while looking on Left (L) side, looking Straight (S) and looking on
Right (R) side.

This research works under the assumption that the cyclist has been detected from
the LiDAR data. Some cyclist detection algorithms exist that can possibly fulfill this
requirement [21,32]. In this research, the data of the cyclist’s area is manually cropped from
the data collected by LiDAR sensor and used for orientation estimation.

2.2. 2D Image-Based Cyclist Orientation Estimation

The proposed 2D image-based cyclist orientation estimation aims for classification
of the cyclist head and body orientation based on the images generated from LiDAR
sensor data. The methodology of this system is to transform information taken by LiDAR
sensor into image format and classify cyclist images into different joined body and head
orientations. The flowchart of the image-based orientation estimation method is shown in
Figure 2, in which the red boxes represent the main stages of the method. Moreover, the
solid green boxes represent the input and output of each stage. Additionally, the images in
the dotted green boxes illustrate the examples of generated images in each main stage.

LiDAR Data PCAP: Ouster Packet Capture File
Coordinates, PCAP to Cyclist
reflectivity, 2D Image Segmentation
ambient, range Conversion
information of

each point Image with 3-Channel

(reflectivity channel, ambient
channel, range channel)

|

ResNet50

Images in
Cyclist Area

Image Classification
Model

Ambient Imaie
Ranie Imaie

Figure 2. Flowchart of 2D image-based cyclist orientation estimation.

Classification
Result

The first stage of the proposed method is a data preprocessing step that converts a raw
datum captured from the LiDAR sensor to image. The data format of the LiDAR sensor
varies depending on the LiDAR sensor manufacturer, and the LiDAR sensor used in this
research records a sequence of sensor packets to a PCAP (Packet Capture) file [33]. Each
sensor packet corresponds to one scan for the surrounding environment. The point cloud
data in each scan contains the coordinates (x, y, z) of each point with four data layers:
range, signal, reflectivity and ambient. Each data layer contains information that is not able
to be captured from an RGB camera, which is a key information for data analysis in 3D
space [34].
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The range information of the point represents the distance from the sensor by calculat-
ing the travel time of the laser light wave. The signal information represents the strength of
the light returned to the sensor for a given point. The reported reflectivity is a byproduct
of range and signal that gives the user an indication of the target reflectivity. The ambient
information denotes the strength of sunlight collected for a given point, also expressed in
the quantity of photons detected that were not produced by the sensor’s laser pulse. The
signal information varies with range (objects farther away return less light), and ambient
data varies with sunlight levels. On the other hand, the reflectivity data are consistent
across lighting conditions and range. Therefore, reflectivity is the only piece of data that
contains information about the properties of the object, which is not light [34]. To avoid
information redundancy, the signal information is not employed in the system, since the
signal varies with range information. Therefore, the coordinates, range, reflectivity and
ambient data of each point on the point cloud are utilized for the proposed image-based
cyclist orientation estimation system.

For the image conversion, the 3D data are projected into 2D. The 3D point cloud
captured from LiDAR sensor is perfectly 1:1 spatial correspond [35]. Hence, the images can
be generated by analyzing the coordinates of each point and assign values to each pixel.
This implies that each point on the point cloud is projected as each pixel on the images.
Since the LiDAR sensor used in this research has a vertical resolution of 64 and a resolution
of 2048 for 360-degree, there are 131,072 points captured on each scan, which is the same as
the length of returned lists of data layers. These returned lists are combined into a 3D array
with a size of (2048 x 64 x 6). This array represents a single frame of the captured sequence,
and each element contains values of x, y, z, range, ambient and reflectivity. Hence, this
array is divided into three arrays that each represents an image of a frame. As the spatial
correspondence of the points is perfect, it can be directly projected onto a 2D array with
a size of (2048 x 64) based on the position on the 3D array. Each converted pixel of a 1D
array contains range, ambient and reflectivity values for arrays of range image, ambient
image and reflectivity image, respectively. Since the converted image arrays contain only
one value per pixel, the generated images are gray-scale images with one channel. Figure 2
shows the examples of generated range, ambient and reflectivity images.

The second stage of the proposed method is to segment the cyclist area from the
range, ambient and reflectivity images. This research focuses on the cyclist orientation
estimation, and assumes that cyclists have been detected by other methods, for example,
applying YOLO [36] on generated gray scale images [35]. Thus, the cyclist area is manually
cropped in this research. Figure 3a shows the example reflectivity images of cyclists with
different body orientations, and Figure 3b demonstrates the reflectivity images for three
head orientations in the case of “0” body orientation.

The ultimate goal of the 2D image-based cyclist orientation estimation system is to
predict and classify the body and head orientation of cyclists based on images generated
from LiDAR sensor data. In this research, a Residual Neural Network (ResNet) model with
50 convolution layers is used for this goal. Compared to traditional CNNs, ResNet can
overcome the “vanishing gradient” problem. Therefore, it can construct networks with
thousands of convolutional layers, and outperform shallower networks. Since ResNet has
deep architecture and good performance for image recognition, it is widely used in the
task of image classification. The input images of the image classification model are the
range image, ambient image and reflectivity image of a cyclist from LiDAR sensor data.
The desired input size of the model is (224 x 224) [37]. Therefore, the images are resized to
be in the same size of (224 x 224). In addition, the three images are concatenated to be in
one data array, which has array size of (224 x 224 x 3), and sent to the ResNet50 model to
estimate the joined body and head orientation of cyclist. The experimental result of the 2D
image-based method will be represented in Section 3.
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Figure 3. Reflectivity images of cyclist with different body orientations (a) and head orientations (b).
(In addition to the reflectivity information, ambient and range are also used in 2D image-based cyclist
orientation estimation).

2.3. 3D Point Cloud-Based Cyclist Orientation Estimation

The basic methodology of the 3D point-cloud-based cyclist orientation estimation is
similar to the 2D image-based method. However, this point-cloud-based method represents
the information of a cyclist using 3D point cloud data instead of a 2D image. The flowchart
of the proposed 3D point-cloud-based cyclist orientation estimation is illustrated in Figure 4.
In Figure 4, the important stages are indicated in a red box. Moreover, the input and output
data of each stage are indicated in green color.

. PCAP: Ouster Packet Capture File
LiDAR Data PCD: Point Cloud Data

Coordinates, PCAP to Cyclist
reflectivity, PCD Conversion Segmentation
ambient
information of

each point

ResNet50
Classification
Model

Classification
Result

Figure 4. Flowchart of 3D point-cloud-based cyclist orientation estimation.

In order to process the point cloud data in each scan, it is necessary to convert it from
a packet file of the LiDAR sensor, PCAP, to a Point Cloud Data format, PCD. The point
clouds stored in PCD file contains a collection of 3D coordinates (x, y, z) with other data
layers. In this proposed system, the data layers of reflectivity information and ambient
information are chosen to be utilized, while excluding range information. This is because
the range information represents the 3D shape of an object using the distance of the points
from the sensor to the object, with the 3D shape of the object also able be represented by
coordinates (x, y, z). Therefore, using a range data layer is a redundancy in the information.
Thus, reflectivity and ambient information are used in the proposed system. Hence, there
are two types of input to the system, which are two arrays containing 3D coordinates with



Sensors 2023, 23, 3096

7 of 15

reflectivity and ambient each, respectively. After each array is used as an input to the
orientation classification model, the results of each case can be compared to understand
the best data layer for this 3D point-cloud-based method. Finally, the arrays are saved as a
PCD file by the point cloud library [38].

After the PCD conversion stage, cyclist segmentation is performed to acquire point
cloud data in the cyclist area. This research also assumes that cyclists have been detected
by other methods. For example, it is possible to convert a 3D point cloud into RGB-map
in Bird’s Eye View (BEV) and implement image object detection algorithm, YOLO, on the
BEV image [21]. Following this idea, the point cloud data of the cyclist is segmented from
BEV in the software CloudCompare. Figure 4 shows the BEV of point cloud data and the
front view of the segmented cyclist area.

After segmentation process, the point cloud data are no longer in a vertical size of 64
and a horizontal size of 2048. Instead, the size of the point cloud data is dependent on the
posture of the cyclist, especially the body orientation. On the other words, the number of
points on the point cloud is also inconsistent across the body orientation. As the point cloud
data is an input to the classification model, the size of the data should be equal. Therefore,
the point cloud data are normalized in a vertical size of 224, a horizontal size of 224 and
depth of 50, followed by the input configuration of classification model.

The segmented and normalized point cloud data of a cyclist is returned as an output
from the previous data preprocessing stages. Hence, they are input to the point cloud
data classification model for cyclist body and head orientation estimation. The purpose of
this research is to compare the cyclist orientation estimation results between converting
LiDAR data to a 2D image and using the 3D point cloud data from the sensor. Hence, the
same classification model for the image-based method is used in the point-cloud-based
method, which is ResNet50. The point cloud data in 3D array is input to ResNet50 in a
size of (224 x 224 x 50). Since elements of points on the point cloud data indicate their
reflectivity or ambient value, the values of points are processed as a value of a pixel in the
case of images. For a clear comparison between the two different usages of LIDAR sensor
data, the same architecture is used with a slight modification on input configuration for
the 3D point-cloud-based method. The experimental result of the 3D point-cloud-based
method will be represented in Section 3.

3. Experiments
3.1. Data Collection

In this research, the LiDAR sensor data of a cyclist with different body and head
orientations is required. The LiDAR sensor that is used for the experiment is Ouster OS1-64.
The LiDAR sensor used in the experiment has 64 channels of resolution, which indicates
the number of beams that are sent at once. Moreover, it has a horizontal resolution of 2048,
which means that the 64 channel beams are sent 2048 times per frame. Thus, it records
131,072 points per frame, and it can capture 10 frames per second. The data are collected
indoor with a bicycle in a fixed position. The LiDAR sensor is installed about 7 m away
from the bicycle’s position. Hence, the bicycle is rotated clockwise within the target body
orientation. In the data collection, a total of 12 students participated as cyclists. Participants
are asked to ride a bicycle by pedaling on a bicycle in a fixed position.

Twelve participants are asked to do the pedaling, and they are asked to turn their head
three times per body orientation. To capture a clear posture, the cyclists are supposed to
turn their head completely to each direction and maintain a solid head orientation while
the data are taken. The cyclists’ data are taken for 5 s per head and body orientation,
which indicates 50 frames per joined body and head orientation. Finally, there are about
14,000 frames taken for joined body and head orientation in total. Table 1 is shown below
to represent the number of frames taken for each joined body and head orientation with
the total number of each body orientation.



Sensors 2023, 23, 3096

8 of 15

Table 1. Number of frames in dataset for joined body and head orientation.

Body Orientation
Head Orientation Total
0 1 2 3 4 5 6 7
Left 590 591 591 592 589 591 589 592
Straight 589 589 589 589 592 590 594 591
Right 589 592 590 589 591 592 591 592
Sub-total 1768 1772 1770 1770 1772 1773 1774 1775 14,174

The datasets of cyclists are divided into training datasets and validation datasets for
cross validation. The 4-fold cross validation is used in evaluation. The training process
has an epoch of 40, and the validation process compares the predicted labels of a cyclist’s
orientation with the ground truth labels for evaluation. For the experiments, a computer
with an Intel Core i9-9900K CPU running at 3.60 GHz, an NVIDIA GeForce RTX 2070-Super
GPU, and a RAM memory of 16 GB is adopted.

3.2. Experimental Results

This research presents three classification results which are the results of the 2D image-
based method, the 3D point cloud with reflectivity-value-based method and 3D point
cloud with ambient-value-based method. The main evaluation method of the classifica-
tion model is prediction accuracy, as it is a direct and quantitative measurement of the
classification. However, such an evaluation method by comparing accuracy can lead to
unclear classification errors between the classes. Therefore, a confusion matrix is addition-
ally used to present the performance of the classification. The confusion matrix is a table
that records the correctness of predicted labels with true labels in percentage. Since there
are multiple numbers of orientation classes, the multi-class confusion matrix is used as a
performance indicator.

Table 2 shows the accuracy of classification for the cyclist joined body and head
orientation estimation of the two proposed methods. The confusion matrix in Figure 5
illustrates the classification results of the 2D-based method for joined body and head
orientation estimation. In Figures 6 and 7, the classification results of the 3D-based method
with ambient and reflectivity as input are shown, respectively. Obviously, the classification
accuracy of joined body and head orientation is higher in the 3D point-cloud-based method
in general. Moreover, using reflectivity resulted in better accuracy than using ambient.

Table 2. Cyclist Joined Body and Head Orientation Estimation Accuracy of Different Usage of
LiDAR data.

3D Point Cloud Based Methods

2D Image Based Method
Ambient Reflectivity

Accuracy 47.69% 50.96% 60.52%
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Figure 5. Confusion matrix of cyclist joined body and head orientation estimation using 2D images.

0.00% 0.00%

0.00% 0.00%

LRI 0.00% 0.00%

0.34%

0.34% 15.76%

7.30% 0.85%

0.00% 0.17% 1.87%

0.00% 0.00% 0.51%

0.51% 0.00% 0.51%

0.17% 0.34% 7.47%

0.00% 1.69% 4.92%

0.00% 4.41% 0.00%

6.45% 0.00% 0.17%

0.68% 0.00% 0.00%

0.00% 0.00% 0.34%

0.00% 0.17% 1.36%

0.00% 0.00% 1.53%

0.00% 0.00% 1.53%

0.00% 0.00% 0.00%

0.00% 0.00% 0.00%

0.00% 0.00% 0.00%

0.00% 0.00% 0.00%

0.00% 0.00% 0.00%

0.00% 0.00% 0.17%

OR 1L 15

33.56% 43.80%|

23.09%

0.00%

0.00%

0.00%

5.41%

8.61%

3D Point Cloud with Ambient Based Joined Body and Head Orientation Estimation

0.00%

0.00%

0.00%

0.17%

1.69%

4.75%

2.04%

0.00%

1.02%

6.96%

ELWw»E 1.18% 6.62%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.34%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

1R

0.17%

0.34%

0.17%

0.00%

0.00%

0.00%

0.00%

0.00%

0.34%

0.17%

0.17%

0.68%

19.35% 18.64% 0.00%

11.36%

20.81% EENEN W/

0.00%
0.17%
0.68%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

2L

3.23%
2.55%
1.02%
0.00%
2.21%
3.23%
0.00%
0.00%
0.00%
0.34%
1.19%
1.70%
0.00%
0.00%
0.00%

2s

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

2R

0.00%

0.00%

57.60

2.38%

2.89%

0.00%

4.07%

4.75%

1.36%

0.00%

0.00%

0.34%

23.26%

22.47%EEEE

5.24%
0.00%
0.17%
0.51%
0.00%
0.17%
0.34%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

3L

43.46%

0.51%

1.02%

1.19%

0.51%

0.17%

0.17%

0.00%

0.00%

0.00%

2.89%

5.43%

2.89%

A4S

0.00% 0.17%

0.68% 0.34%
0.00%
1.19% 0.00%
0.17% 0.00%
0.17% 1.02%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
2.04% 0.00%
10.02% 0.00%
PIXPEA 0.00%
0.00% EPRPIA
5.09% 3.90%
0.00% 7.47%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
0.00% 0.00%
3Rl
Predicted Class

10.53% 2.36%

0.68% 20.14% 0.00% 0.17% 0.00% 0.00%

4.39% 15.91% 1.02% 0.00% 0.00% 0.51%

9.14% 0.00% 0.17% 0.00% 0.00%

0.17% 0.00% 2.71% 1.69% 0.00% 0.17%

0.00% 0.00% 1.52% 1.86% 0.00% 0.34%

0.00% 0.00% 0.34% 2.37% 0.00% 0.34%

0.00% 0.00% 0.00% 0.00% 0.00% 3.74%

0.00% 0.00% 0.00% 0.00% 0.00% 1.19%

0.00% 0.00% 0.00% 0.00% 0.00% 1.19%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.72% 11.34% 0.00% 0.00% 0.00% 0.51%

EEECEYA110.32% 2.20% 0.00% 0.00% 5.77%

1.18% 0.00% 0.00% 0.00% 0.17%

0.00% 0.00% ERR:ZEZELEIRA 0.51% 2.21%

0.00% 0.00% 6.77% §Q 8.61% 0.51%

0.00% 0.00% 0.00% 17.29%[3 g 0.00%

0.00% 0.00% 0.00% 0.00%

0.00%

0.00% 0.00% 0.00% 0.00% 0.17% 4.41%

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 1.53% 0.34% 0.00%

0.00% 0.00% 0.00% 3.05% 0.00% 0.68%

0.00% 0.00% 0.00% 3.90% 0.00% 0.85%

4Ss 4R 5L 55 S5R 6L

42.28%!

22.07%

2.02%

0.51%

3.03%

0.00%

0.00%

0.17%

3.54%

3.03%

1.01%

4.04%

0.51%

2.19%

6.23%

1.35%

0.00%

1.85%

5.22%

5.22%

0.85%

0.34%

1.02%

0.00%

0.00%

0.00%

0.00%

0.00%

0.17%

0.00%

0.00%

0.00%

0.68%

0.85%

0.00%

0.00%

0.00%

0.00%

65.

6.57%
2.36%

0.17%

65

.15%

0.85%
0.17%

0.00%

6R

38.58%

4.73%

3.21%

0.68%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.51%

0.68%

0.00%

0.34%

1.01%

27.95% 23.18% 0.17%

23.69% 0.00%

0.00%

10.81%
1.18%

7L

1.18%

2.88%

1.69%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

1.86%

2.54%

5.41%

5.58%

5.58%

6.09%

45.44% 39.42%|

0.00%

1.52%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

2.03%

3.72%

1.69%

0.17%

0.00%

0.00%

8.45%

6.42%

2.20%

0.17%

0.00%

0.00%

1.18%

0.60

0.45

0.30

-0.15

-0.00

Figure 6. Confusion matrix of cyclist joined body and head orientation estimation using 3D point

cloud data with ambient.
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Figure 7. Confusion matrix of cyclist joined body and head orientation estimation using 3D point
cloud data with reflectivity.

Furthermore, the results of the 3D-based method are accumulated from 24 joined
body and head orientation classes into 8 body orientation classes in Figures 8 and 9. Once
the estimation result of joined body and head orientation estimation is summarized into
a body orientation estimation result, it is obvious that there are much higher correction
rates and stability than in joined body and head orientation estimation. Since the joined
body and head orientation estimation aims for more detailed behavior of cyclists, the
head orientation is added as a sub-class to the body orientation. Hence, there are more
classes for classification, numbering 24 in total. This increase in number of classes for more
detailed posture analysis resulted in a decrease in estimation accuracy. Moreover, the head
orientation is not well estimated since the accuracy dropped when head orientation is
added as a sub-class to the body orientation. More specifically, for the estimation accuracy
calculated after the accumulation for eight body orientation, the 3D point cloud data with
ambient have 81.62% accuracy and 3D point cloud data with reflectivity have 90.34%
accuracy. In this research, all experiments were performed in an indoor environment
with artificial illumination, which is better than the illumination condition during night
in an outdoor environment. However, using ambient information cannot have a better
performance than using reflectivity information for body orientation estimation.

In order to have analysis on head orientation specifically, the results of the 3D-based
method are accumulated from 24 joined body and head orientation classes into 3 head
orientation classes in Figure 10. The confusion matrix of three head classes shows more
unstable estimation results than when they are accumulated into eight body orientation
classes. The head orientation estimation correction rate of 3D point cloud data with ambient
shows 56.79% accuracy, while 3D point cloud data with reflectivity shows a correction
rate of 63.42%. The estimation resulted in better accuracy when the head orientation is
eliminated from the joined body and head orientation estimation. Therefore, there is a
challenge for head orientation estimation with both the proposed 2D image-based method
and the 3D point-cloud-based method.
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Accumulated 3D Point Cloud with Ambient Based Body Orientation Estimation
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Figure 8. Confusion matrix of body orientation estimation accumulated from joined body and head
orientation estimation using 3D point cloud data with ambient.
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Figure 9. Confusion matrix of body orientation estimation accumulated from joined body and head
orientation estimation using 3D point cloud data with reflectivity.
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Accumulated 3D Paint Coud with Reflectivity Based Head Orientation Estimation

3D Point Coud with Ambient Based Head Orientation
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Figure 10. Left: Confusion matrix of head orientation estimation accumulated from joined body and
head orientation estimation using 3D point cloud data with ambient. Right: Confusion matrix of
head orientation estimation accumulated from joined body and head orientation estimation using 3D
point cloud data with reflectivity.

3.3. Discussions

In this research, the cyclist head orientation is labeled into three classes: L (Left), S
(Straight) and R (Right). The three classes correspond to the three cases: cyclist turns
head to the left, looks straight and turns head to the right. In fact, head movement is the
most reliable indicator for detecting cyclist intention when they are about to make a turn.
Figure 11 demonstrates one of the most dangerous scenarios in the real traffic situation. The
cyclist is planning to turn right and cross the road, as indicated by the green arrow trajectory
line. Usually, cyclists maximally turn their heads (about 90 degrees, as indicated by the red
arrow) to check the situation behind them before they turn their bicycle. To simulate this
situation, head orientations L and R are defined as a 90-degree difference from the body
orientation. The head orientation S means that the body and head orientations are the same
(0-degree difference). In fact, there are more complicated cases in real traffic situations. This
research uses three cases to test the feasibility of head orientation estimation.

Figure 11. Demonstration of a scenario where a cyclist is turning his or her head before crossing
the road.

The experimental result indicates that the accuracy of the head orientation is relatively
low and needs to be improved. Recently, the deep-learning-based super-resolution tech-
nique is not only used for image processing, but also extended for point cloud processing.
It is possible to employ the super-resolution [39,40] techniques to increase the resolution of
a cyclist to improve the accuracy of the head orientation estimation.

As we can see from Figures 8 and 9, misclassification often happens between body
orientation 0 and body orientation 4. This is because the LIDAR data of these two classes
are similar. However, when the body orientation estimation is performed based on an RGB
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camera in the ideal light condition, the misclassifications between body orientation 0 and
orientation 4 are few [20] because the cyclist’s face can be clearly represented in an RGB
image and used as the main feature to distinguish the two classes. However, the resolution
of LiDAR sensor is low and cannot represent the face clearly. In fact, distinguishing these
two classes is significant for cyclist safety; one possible solution is to use super-resolution
techniques [39,40] to increase the resolution of LiDAR data. Another way is to track the
trajectory of the cyclist in order to understand whether the cyclist is moving towards the
vehicle or riding away from the vehicle.

In the experiment, the distance between cyclists and LiDAR sensor is around 7 m.
Theoretically, when cyclists go far from the sensor, the classification capability of the
developed system should decrease. This problem can be solved by increasing the resolution
of LiDAR sensor data, e.g., using super-resolution [39,40] techniques.

The paper proposes two different methods for cyclist orientation estimation, aiming
to illustrate the comparison between the two proposed methods. The dataset used in this
research only contains cyclists without carrying bags. However, cyclists sometimes may
carry bags or other objects in real traffic situations. When the proposed method is used
in real applications, the dataset for training should be enriched to include different types
of cyclists, e.g., those carrying backpacks or sling bags. By adding the different types of
sample data, the retrained model is expected to recognize the orientation of cyclists with
carrying bags.

4. Conclusions

In this research, a system for cyclist body and head orientation estimation using
LiDAR sensor data is proposed. The ultimate goal of the proposed system is to approach
the most effective usage of LiDAR sensor data for cyclist body orientation estimation. The
first method suggested an approach to convert LiDAR sensor data into three different
gray-scaled images by utilizing the data layers of range, ambient and reflectivity. Hence,
the method used the images together as a three-channel image as an input to orientation
classification model. On the other hand, the second method proposed using the LiDAR
sensor as a 3D point cloud data with each point containing an ambient layer or a reflectivity
layer for the orientation classification. The evaluation of the proposed system is based on
the classification accuracy and confusion matrix. The results of the experimentation proved
that the proposed 3D point-cloud-based cyclist orientation system leads to better prediction
results for the cyclist joined body and head orientation estimation than the 2D image-based
method. The 2D image-based method resulted in 47% accuracy, the 3D point cloud data
with ambient in 51% accuracy and the 3D point cloud data with reflectivity in 60% accuracy.
Therefore, the best usage of LIDAR data for cyclist orientation estimation is to utilize the
data into 3D point cloud data with a reflectivity layer of each point. Moreover, there is a
challenge regarding joined body and head orientation estimation which resulted in much
less prediction accuracy than body orientation alone.

In the future, the super-resolution technique will be adopted to improve the accuracy
of orientation estimation, especially for the head orientation estimation.
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