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Abstract: X-ray grating interferometry (XGI) can provide multiple image modalities. It does so
by utilizing three different contrast mechanisms—attenuation, refraction (differential phase-shift),
and scattering (dark-field)—in a single dataset. Combining all three imaging modalities could
create new opportunities for the characterization of material structure features that conventional
attenuation-based methods are unable probe. In this study, we proposed an image fusion scheme
based on the non-subsampled contourlet transform and spiking cortical model (NSCT-SCM) to
combine the tri-contrast images retrieved from XGI. It incorporated three main steps: (i) image
denoising based on Wiener filtering, (ii) the NSCT-SCM tri-contrast fusion algorithm, and (iii) image
enhancement using contrast-limited adaptive histogram equalization, adaptive sharpening, and
gamma correction. The tri-contrast images of the frog toes were used to validate the proposed
approach. Moreover, the proposed method was compared with three other image fusion methods by
several figures of merit. The experimental evaluation results highlighted the efficiency and robustness
of the proposed scheme, with less noise, higher contrast, more information, and better details.

Keywords: Talbot-Lau interferometry; X-ray phase-contrast imaging; image fusion; non-subsampled
contourlet transform; spiking cortical model

1. Introduction

X-ray imaging techniques, such as mammography [1] and computed tomography
(CT) [2], have become indispensable diagnostic tools for investigating the inner structure of
materials. They can provide valuable information in many fields, from medical diagnosis
to industrial inspection and security screening. Traditionally, the image contrast of these
techniques depends on differences in X-ray attenuation. The attenuation contrast (µ) posi-
tively correlates with the material mass density (ρ) and atomic number (Z) (µ ∝ ρZ4), and
negatively correlates with the X-ray energy (E) (µ ∝ 1/E3) [3]. In principle, conventional
X-ray attenuation-based imaging is ideal for materials with high absorption properties.
However, the attenuation contrast becomes extremely poor without a significant increase
in dose deposition, while low-Z materials are under investigation with high-energy X-rays.

Recently, X-ray grating interferometry (XGI) has been introduced to mitigate the inher-
ent limitations of imaging low-Z materials using conventional X-ray imaging techniques.
Because XGI is compatible with conventional low-coherence X-ray sources and detectors,
it has become the most promising scheme for translating XGI into practice [4]. Moreover,
XGI is a multi-contrast imaging technique, able to provide three physically different signals
with complementary image contrast: attenuation contrast (AC), differential phase contrast
(DPC), and small-angle scattering, also known as dark-field contrast (DFC) [5]. The phase
signal can reveal differences between materials with similar absorption properties because
it is highly sensitive to the electron density variations in the object. The scattering signal
can access unresolved structural variations of the sample in the micrometer scale, which
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is beyond the system resolution. Many studies have demonstrated that both differential
phase and scattering modalities were able to offer valuable information in addition to con-
ventional attenuation contrast, including clinical applications such as mammography [6,7]
and lung imaging [8,9] in addition to non-destructive testing [10] and material science in
industrial settings [11]. The scattering signal, in particular, has piqued the attention of
researchers because of its effectiveness in offering quantitative or inaccessible structural
information in radiographic applications [12–14].

Adding two more informationally-complementary contrasts to the conventional at-
tenuation contrast can enrich the information access channels. However, the three output
images represent morphological features of an object with different physical properties,
which can significantly enhance the complexity of interpretation and burden a physician.
Image fusion could combine the tri-contrast modalities into a single integrated image,
making analysis and diagnosis less cumbersome. The simultaneous acquisition of the
tri-contrast images circumvents the preregistration process for image fusion because the
retrieved AC, DPC, and DFC images are temporally and spatially registered. This could be
particularly advantageous for reducing artifacts in the fusion procedure and conserving
the reliability of the acquired information.

Tri-contrast image fusion methods have been developing over the past few decades.
Ewald Roessl et al. presented, in 2012, an image fusion algorithm to combine AC and
DPC based on an assumption of a simple scaling law [15]. However, the DFC signal was
not considered for the procedure. Z. Wang et al. proposed a tri-contrast fusion method
based on multiple resolutions in 2013 [16]. It successfully transformed details from the
original images to the fusion results. However, the study lacked objective measurements to
evaluate the method’s performance. Felix Scholkmann et al. proposed an image denoising,
fusion, and enhancement scheme in 2014 [17]. It had pleasing results in both dental and
breast imaging applications because it introduced pre-denoising and after-enhancement.
However, the fusion rule of their scheme was unable to process three input images simulta-
neously, making it unsuitable for trimodal application. Eduardo Coello et al. introduced
a Fourier domain framework for XGI fusion in 2017 [18]. The fusion results contained
abundant diagnostic features and details, attributed to the full utilization of complementary
information from three XGI channels by the Fourier transform. However, they did not
compare it with other image fusion algorithms.

In this work, an XGI fusion scheme, based on the non-subsampled contourlet transform
(NSCT) and the spiking cortical model (SCM), was proposed to solve several drawbacks of
the current tri-contrast image fusion methods mentioned above. This scheme was able to
process tri-contrast images from three channels of XGI simultaneously. It incorporated the
pre-denoising processes of XGI outputs, the fusion process (based on NSCT-SCM), and the
post-enhancement process of the fusion results. The proposed fusion algorithm was able to
extract fine details and essential information from the tri-contrast images of XGI, presenting
them in a final fused image with high contrast and low noise. The similarity between
the fusion result and AC, DPC, and DPC channels of XGI was modulated by several
tannable parameters, facilitating the easy realization of prior knowledge and preferences
for particular channels.

Moreover, the proposed fusion scheme was compared with the three XGI fusion
methods mentioned above, i.e., the work of Felix Scholkmann et al. [17], the conventional
NSCT image fusion algorithm, and the conventional NSCT-pulse-coupled neural network
(PCNN) image fusion algorithm. The comparison was carried out in both subjective
and objective evaluations. Objective measures incorporated edge strength (ES), spatial
frequency (SF), standard deviation (SD), entropy (H), feature mutual information (FMI),
feature similarity index measure (FSIM), fusion factor (FF), structural similarity index
measure (SSIM), and power spectral density (PSD). Experimental results demonstrated
the robustness and effectiveness of the proposed multimodal image fusion scheme.

The rest of this study was organized as follows: the basic principles of XGI fusion,
NSCT, and SCM were presented in Section 2; the proposed NSCT-SCM XGI fusion scheme
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was illustrated in Section 3; the introduction of objective evaluation criteria was presented
in Section 4; the experimental analysis of the proposed method was presented, together
with the comparison with the other three algorithms for XGI fusion, in Section 5; and
conclusions were drawn in Section 6.

Contributions of this study:

(1) drawbacks of image fusion methods in the XGI were analyzed;
(2) an image fusion scheme based on NSCT-SCM for the XGI was proposed;
(3) a tunable sub-band coefficient selection strategy was proposed to serve special re-

quirements for the XGI fusion;
(4) the proposed NSCT-SCM image fusion scheme was applied to XGI data of frog

toes and compared with current fusion methods in the XGI fusion field, exhibiting
state-of-the-art performance.

2. Materials and Methods
2.1. Image Fusion for X-ray Grating Interferometry

X-ray grating interferometry simultaneously retrieves three complementary signals:
AC, DPC, and DFC channels. Among these signals, AC represents the attenuation of
the X-ray intensity; therefore, it provides the same information as conventional X-ray
imaging, presenting it in the form of an X-ray absorption coefficient. DPC, on the other
hand, is presented in the form of a refraction index, which relates to the X-ray’s local
deflection. Finally, DFC is defined by the small-angle X-ray scattering at sub-pixel structures,
presenting detailed information that would not be easily visible in the previous channels.

In XGI image fusion, high-frequency components of images from DPC and DFC are
selected to provide greater features and details. At the same time, low-frequency compo-
nents of the image from AC are preferred because of an intrinsic principle of conventional
X-ray methods: making images easy for doctors or radiologists to read [18]. In addition,
because the three pictures from XGI are retrieved simultaneously from the same direction
by the same sensor, there is no need for additional image registration.

2.2. Non-Subsampled Contourlet Transform

Minh N. Do and Martin Vetterli proposed the contourlet transform (CT) in 2005 [19].
The following analogy demonstrates the advantages of CT; imagine there are two painters,
one using a wavelet style and the other using a contourlet style. Both plan to paint a natural
scene. Each painter increases the resolution of their painting from coarse to fine, step by
step. When painting a smooth contour, as shown in Figure 1, the wavelet-style painter can
only use square-shaped brush strokes along the contour [20]. He uses different-sized brush
strokes, corresponding to the multiresolution structure of wavelets [21,22]. As the resolution
grows finer, it becomes apparent that this painter needs to use a significant number of fine
dots to describe the contour. However, the contourlet-style painter, in the same scenario,
effectively and efficiently maintains the smoothness of the contour, attributed to their using
brushstrokes with different elongated shapes, following the directions of the contour. This
analogy gives a clear view of the advantages of the CT compared with the wavelet: the CT
decomposes an image following its contour, which makes it less computationally complex
than the wavelet.

Derived from CT, NSCT is a multi-directional, multi-scale transform that can analyze
detailed information in an image [23,24]. It uses the non-subsampled pyramid filter bank
(NSPFB) and the non-subsampled directional filter bank (NSDFB), and thus, it achieves the
shift-invariance property. First, the input image is decomposed into two parts by NSPFB:
high-pass and low-pass sub-bands. Then, the high-pass sub-band is further decomposed
into serval directional sub-bands by the NSDFB. Meanwhile, the low-pass sub-band contin-
ues to implement the above decomposition as a new input. As shown in Figure 2, when
the decomposing process is done, one low-pass sub-band and serval high-pass directional
sub-bands are obtained from an original input image. Note that the size of each sub-band
is the same as that of the original image because there is no sampling operation. Moreover,
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NSCT has a redundancy, given by R = ∑
j
j=0 2lj , where 2lj is the number of directions at

scale j.
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2.3. Spiking Cortical Model

The spiking cortical model [25] is a modified model, based on Eckhorn’s neural
network, that uses physiology as inspiration [26]. It has fewer parameters and better
accuracy than the original model. Its time matrix can be recognized as a subjective, human
sense of stimulus intensity. As a result of these physiology-inspired neural networks’
outstanding ability to extract dynamic information inside multi-dimensional signals, they
have been widely used in numerous fields. Instances include feature extraction [27],
pulse shape discrimination [28–30], image encryption [31], and image segmentation and
fusion [32,33].

Considering a biological neuron in a resting state, the membrane potential of this
neuron is directly charged by external stimulus. Meanwhile, this membrane potential is
modulated by the postsynaptic action potential of its neighboring neurons. In comparison,
the membrane potential of SCM is similar to the aforementioned biological neural activity.
The membrane potential of neurons in the SCM is calculated by combining the external
stimulus and the neighboring modulation. A neuron in the SCM is fired and produces
a spike when its neural membrane potential rises over its threshold. The threshold is
dynamic, constantly changing under the influence of membrane potential states. Based on
the characteristics mentioned above, the mathematical formulae of the SCM [25] can be
written as follows:

Uij(n) = f Uij(n− 1) + Sij

(
1 + β ∑kl WijklYkl(n− 1)

)
, (1)

Yij(n) =

{
1, i f 1

1+exp(−(Uij(t+∆t)−θij(t+∆t)))
> 0.5

0, otherwise
, (2)

Θij(n) = gΘij(n− 1) + hYij(n), (3)
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where each neuron is denoted by a coordinate (i, j); coordinate (k, l) represents one of the
neighboring neurons of the central neuron located at (i, j); Uij(n) is the membrane potential
of a neuron located at (i, j) when the iterative count is n; Sij is the external stimulus; Θij
is the dynamic threshold; Yij(n) is the output action potential (spike); the convolution of
W and Y stands for the modulation on the center neuron, located at the (i, j) coordinate
by its neighborhood neurons; W is the synaptic weighted matrix; β is the linking strength
coefficient; f denotes the attenuation constant of the membrane potential which defines the
gathering speed of it; and g represents the threshold’s attenuation constant, controlling the
relative refractory period (i.e., the difficulty of activating peripheral neurons). Finally, h
indicates the absolute refractory period, which prevents a neuron that has just been fired
from immediately being reactivated again.

3. NSCT-SCM Fusion Scheme

The proposed image fusion scheme incorporated three steps: (i) denoising all three
input images (AC, DPC, and DFC) using adaptive Wiener filtering, (ii) implementing
the NSCT-SCM based image fusion algorithm to the input images, and (iii) enhancing
the output fused image using contrast-limited adaptive histogram equalization (CLAHE),
adaptive sharpening (AS) and gamma correction (GC). The principle of the NSCT-SCM
XGI fusion scheme is introduced in Figure 3.
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Figure 3. Principle of the NSCT-SCM XGI fusion scheme. Step I: Images are denoised using Wiener
filtering. Step II: Images are decomposed into coefficient matrixes using NSCT. Then, the coefficient
matrixes are proposed by SCM, outputting ignition matrixes. Finally, band mixing is implemented
(three coefficient matrixes are fused into one coefficient matrix based on a coefficient selection algo-
rithm designed on the basis of ignition matrixes), and the fused image is obtained by reconstructing
the fused coefficient matrix. Step III: The fused image is enhanced to generate the final output image.

3.1. Step 1. Image Denoising Based on Wiener Filtering

To obtain better quality raw images, the adaptive Wiener filter was applied to re-
duce the noise from an image while preserving the high-frequency information and edge
features. The sizes of each input image are denoted by M× N; the AC, DPC, and DFC
images are represented by IAC = {IAC(i, j)}, IDPC = {IDPC(i, j)}, and IDFC = {IDFC(i, j)},
respectively, where i = 1, 2, · · · , M and j = 1, 2, · · · , N. The image ID obtained after Wiener
filter processing is expressed as follows [34]:

ID(i, j) = m +
σ2 − v2

σ2 (I(i, j)−m), (4)

m =
1

XY ∑X
i=1 ∑Y

j=1 I(i, j), (5)
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σ2 =
1

XY ∑X
i=1 ∑Y

j=1 I2(i, j)− µ2, (6)

where, m stands for the local mean, σ2 denotes the local variance, and v2 denotes the noise
variance; X and Y are manual parameters which define the processing window size in the
to-be-processed image I; and µ2 represents the average noise variance. After implementing
adaptive Wiener filtering to images AC, DPC, and DFC, the output images are presented as
ID
AC, ID

DPC and ID
DFC.

3.2. Step 2. NSCT-SCM XGI Fusion Algorithm

In this step, three images (ID
AC, ID

DPC and ID
DFC) were fused into one image, ID

F .

1. First, the NSCT was implemented to the ID
AC, ID

DPC and ID
DFC obtaining images’

high-frequency coefficients (HD,n
AC , HD,n

DPC and HD,n
DFC) and low-frequency coefficients

(LD
AC, LD

DPC and LD
DFC), where n denotes the index of high-frequency coefficients, be-

cause multiple high-frequency coefficients are decomposed from a single image. Note
that the size of each coefficient obtained from NSCT was the same as the input images,
M× N in this case. Additionally, although only one low-frequency coefficient could
be obtained from the NSCT process, multiple high-frequency coefficients could be
gained from the NSCT of a single image, depending on the decomposition levels of
NSDFB and NSPFB.

2. Second, high-frequency coefficients and low-frequency coefficients were fed into the
SCM, generating the state of the firing of each coefficient (TD,n

AC , TD,n
DPC, or TD,n

DFC for the
high-frequency coefficient and TD,L

AC , TD,L
DPC, or TD,L

DFC for the low-frequency coefficient),
i.e., the ignition matrix. Each ignition matrix has the same size as its input coefficient,
which was M× N in this case.

3. Two separate fusion rules were provided for high-frequency and low-frequency
coefficients because of the need to preserve details and features in the high-frequency
sub-band and keep the low-frequency part of the fused final image closer to the AC
image. It is easier for doctors or radiologists to analyze a fused tri-contrast image
when its low-frequency sub-band is close to that of the AC channel. Under this
condition, the final fusion results will generally resemble the effects of traditional
absorption-based tomography while containing complementary information of DPC
and DFC channels. For the low-frequency coefficients:

LD
F (i, j) =


LD

AC(i, j), a·TD,L
AC (i, j) > (1− a)·TD,L

DPC(i, j) and (1− a)·TD,L
DFC(i, j)

LD
DPC(i, j), (1− a)·TD,L

DPC(i, j) > a·TD,L
AC (i, j) and (1− a)·TD,L

DFC(i, j)
LD

DFC(i, j), (1− a)·TD,L
DFC(i, j) > a·TD,L

AC (i, j) and (1− a)·TD,L
DPC(i, j) ,

(7)

where LD
F is the fused low-frequency coefficient and a is a tunable parameter that deter-

mines the similarity between the fused image and the AC image; the larger the value
of a, the closer the fused image will be to the AC image. For the high-frequency coeffi-
cients: There were a total of 7 possible values for HD,n

F (i, j): (1) HD,n
F (i, j) = b·HD,n

AC (i, j)+
c·HD,n

DPC(i, j) + d·HD,n
DFC(i, j); (2) HD,n

F (i, j) = HD,n
AC (i, j), (3) HD,n

F (i, j) = HD,n
DPC(i, j); (4)

HD,n
F (i, j) = HD,n

DFC(i, j); (5) HD,n
F (i, j) =

(
HD,n

AC (i, j) + HD,n
DPC(i, j)

)
/2; (6) HD,n

F (i, j) =(
HD,n

AC (i, j) + HD,n
DFC(i, j)

)
/2; and (7) HD,n

F (i, j) =
(

HD,n
DPC(i, j) + HD,n

DFC(i, j)
)

/2. The pro-
gramming idea of the high-frequency fusion rule was such that we set a threshold T
for the comparison of ignition results TD,L

AC , TD,L
DPC, and TD,L

DFC. This comparison mea-
sured whether the information of a pixel coming from a single channel was significant
enough to replace the others or whether a weighted average of the information of
two or three channels was required. To be specific, when one channel was signifi-
cantly larger than others, we chose the coefficient from this channel as the value of
the HD,n

F (i, j) directly. When two were significantly larger than the rest, we took the
average as the value of the HD,n

F (i, j). When no channel was significantly larger than
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the others, we weighted averaged the value of all three channels as the value of the
HD,n

F (i, j) by the weight factors b, c, and d. A detailed fusion scheme of high-frequency
coefficients is presented in the Supplemental Information, Section S1.

4. Finally, the inverse NSCT was implemented with respect to the low-frequency coefficients
LD

F , as well as the high-frequency coefficients HD,n
F , obtaining the fused image ID

F .

3.3. Step 3. Image Enhancement Using CLAHE, AS, and GC

Contrast-limited adaptive histogram equalization (CLAHE), adaptive sharpening
(AS), and gamma correction (GC) were introduced to improve the image quality by Felix
Scholkmann et al. [17]. This scheme was convenient to implement and was able to facilitate
the output of better-quality images. Although it could enhance the image contrast and
sharpness, it could not add further information to the fused image from the original AC,
DPC, and DFC channels. Its application incorporated the following steps:

1. The image ID
F was first processed by CLAHE [35], which divided it into small tiles

and changed the histogram of these tiles to enhance their contrast. Additionally,
a clipping limit needed to be applied to the aforementioned processing, aiming to
prevent excessive noise in the image. Bilinear interpolation was implemented on the
tiles to avoid image discontinuities. After the implementation, the processed image
IEn1
F was obtained.

2. Second, IEn1
F was sharpened by the AS method, mathematically given by:

IEn2
F (i, j) = IEn1

F (i, j)− C∇2 IEn1
F (i, j), (8)

∇2 IEn1
F (i, j) =

∂2 IEn1
F (i, j)
∂i2

+
∂2 IEn1

F (i, j)
∂j2

, (9)

where
∂2 IEn1

F (i, j)
∂i2

= IEn1
F (i + 1, j) + IEn1

F (i− 1, j)− 2IEn1
F (i, j), (10)

∂2 IEn1
F (i, j)
∂j2

= IEn1
F (i, j + 1) + IEn1

F (i, j− 1)− 2IEn1
F (i, j), (11)

where C is the weighting factor adaptively determined by calculating the image
entropies with many values of C and finding the Cmax value, i.e., when the maximum
entropy was obtained. The final C was calculated by C = Cmax(argmax(H))/α, where
α is a constant to preserve the image becoming over-sharpened, with a fixed value
of 3, empirically given by Felix Scholkmann et al. in their work [12]. After the
aforementioned process, the image IEn2

F was obtained.
3. Finally, in the GC step, the image IEn2

F was enhanced by a sigmoid function, denoted as:

IEn3
F =

1

1− exp
[
λ1

(
λ2 − IEn2

F

)] , (12)

where λ1 and λ2 are two manually tunable parameters.

4. Measures of the Fusion Performance

With regard to fusion performance evaluation, there are two kinds of evaluation strate-
gies: subjective and objective evaluations. Subjective evaluation is difficult to reproduce
and highly dependent on the evaluators’ experience, making the evaluation results unstable
and difficult to quantify. In this study, we chose the objective evaluation method as the
primary method by which to compare the results of the proposed fusion scheme with the
other fusion algorithms. Several performance measures were implemented for the fusion
results in our experiment, as follows:
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1. Edge strength (ES) [36] stands for the relative amount of edge information transferred
from the input images (IAC, IDPC, and IDFC) into the fused result IF, denoted as:

ES =
∑M

i=1 ∑N
j=1[ESAC, F(i, j)wAC(i, j) + ESDPC, F(i, j)wDPC(i, j) + ESDFC, F(i, j)wDFC(i, j)]

∑M
i=1 ∑N

j=1[wAC(i, j) + wDPC(i, j) + wDFC(i, j)]
, (13)

where wAC(i, j), wDPC(i, j), and wDFC(i, j) are the weights, assigned to edge preser-
vation values ESAC,F(i, j), ESDPC,F(i, j), and ESDFC,F(i, j) for IAC, IDPC, and, IDFC,
respectively. This edge preservation value was calculated through a Sobel edge opera-
tor, detailed information of which can be found in [36]. The larger the value of ES, the
better the image fusion performance.

2. Spatial frequency (SF) measures the number of details presented in a stimulus per
degree of visual angle, and can be given as follows:

SF =
√

RF2 + CF2, (14)

RF =

√
1

MN ∑M−1
i=0 ∑N−1

j=1 [Z(i, j)− Z(i, (j− 1))]2, (15)

CF =

√
1

MN ∑M−1
i=1 ∑N−1

j=0 [Z(i, j)− Z((i− 1), j)]2, (16)

where RF and CF represent the row frequency and column frequency, respectively,
and Z(i, j) denotes the gray-value intensity of the pixel located at (i, j) in the image.
A higher SF value of an image meant that it contained more details—and hence, led
to a better fusion result.

3. Standard deviation (SD) is the square root of the variance, which refers to the image
contrast. The higher the contrast, the greater the value of SD. SD was calculated
as follows:

SD =

√
1

MN ∑M
i=1 ∑N

j=1

(
Z(i, j)− .

µ
)2, (17)

where
.
µ stands for the mean intensity of the image.

4. Entropy (H) [37] measures how much information is contained in an image, calculated
as follows:

H = −∑L−1
l=0 pl log2(pl), (18)

where L represents the gray level of an image and pl stands for the probability of
the lth gray level in the image. A larger H value signified a better image fusion
performance.

5. Feature mutual information (FMI) [38,39] refers to how much feature information is
successfully transferred from the original images (IAC, IDPC, and IDFC) to the fused
image IF, mathematically defined as follows:

FMI = FI(IAC, IF) + FI(IDPC, IF) + FI(IDFC, IF), (19)

where FI (IA, IB) stands for the amount of feature information transferred from image
IA to image IB; FI, in Formula (19), can be calculated as follows:

FI(IAC, IF) = ∑IAC ,IF

[
pIAC ,IF (i, j, k, l)log2

pIAC ,IF (i, j, k, l)
pIAC (i, j)pIF (k, l)

]
, (20)

FI(IDPC, IF) = ∑IDPC ,IF

[
pIDPC ,IF (i, j, k, l)log2

pIDPC ,IF (i, j, k, l)
pIDPC (i, j)pIF (k, l)

]
, (21)

FI(IDFC, IF) = ∑IDFC ,IF

[
pIDFC ,IF (i, j, k, l)log2

pIDFC ,IF (i, j, k, l)
pIDFC (i, j)pIF (k, l)

]
, (22)
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where pA,B is the joint distribution function between image A and image B, and
(i, j) and (k, l) denote the pixel coordinates in image A and image B, respectively.
Should the value of FMI be more significant, the fusion scheme fused three images
successfully, preserving more feature information from each image.

6. The feature similarity index measure (FSIM) [40,41] related to the similarity between
two images based on the low-level features—specifically, the phase congruency (PC)
and the image gradient magnitude (GM). The FSIM of two images, IA(i, j) and
IB(i, j), were calculated by:

FSIM(A, B) =
∑M

i=1 ∑N
j=1 SAB(i, j)max[PCA(i, j), PCB(i, j)]

∑M
i=1 ∑N

j=1 max[PCA(i, j), PCB(i, j)]
, (23)

where PCA and PCB are the PC values of IA and IB, respectively, and SAB(i, j) refers
to the local similarity, denoted as follows:

SAB(i, j) = [SPC;AB(i, j)]α[SGM;AB(i, j)]β, (24)

SPC;AB(i, j) =
2PCA(i, j)PCB(i, j) + T1

2PCA
2(i, j)PCB2(i, j) + T1

, (25)

SGM;AB(i, j) =
2GMA(i, j)GMB(i, j) + T2

2GMA
2(i, j)GMB2(i, j) + T2

, (26)

where SPC;AB(i, j) and SGM;AB(i, j) are similarity measurements for IA(i, j) and IB(i, j),
based on PC and GM respectively; α and β are two parameters; and T1 and T2 are two
constants, all of which were defined in [36]. To measure the performance of the XGI
fusion, the overall FSIM was calculated by averaging FSIM(IAC, IF), FSIM(IDPC, IF),
and FSIM(IDFC, IF), where IF denoted the fusion result. The higher the FSIM value,
the better the fusion performance.

7. The fusion factor (FF) is based on mutual information (MI), which originally measures
the statistical dependence between two random variables as a concept in information
theory. It is capable of measuring how much information was transferred from the
input image to the fused image, and was defined as follows:

FF = MI(IAC, IF) + MI(IDPC, IF) + MI(IDFC, IF), (27)

where

MI(IAC, IF) = ∑IAC ,IF

=
P(IAC, IF)log

=
P(IAC, IF)

=
P(IAC)

=
P(IF)

, (28)

MI(IDPC, IF) = ∑IDPC ,IF

=
P(IDPC, IF)log

=
P(IDPC, IF)

=
P(IDPC)

=
P(IF)

, (29)

MI(IDFC, IF) = ∑IDFC ,IF

=
P(IDFC, IF)log

·
P(IDFC, IF)
·
P(IDFC)

·
P(IF)

, (30)

where MI(IAC, IF), MI(IDPC, IF), and MI(IDFC, IF) refer to the mutual information

between images IAC and IF, IDPC and IF, and IDFC and IF, respectively;
=
P(IA, IB) is the

joint probability density function of two images; and
=
P(IA) is the probability density

function of an image. A larger FF value means a better image fusion performance.
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8. The structural similarity index measure (SSIM) [42] measures how much structural
information was transferred from one image into another based on the human eye’s
sensitivity to the structural information, given as follows:

SSIM(IA, IB) =
∑W

j=1 SSIM
(

IA j, IB j
)

W
, (31)

where SSIM(IA, IB) represents the SSIM value of images IA and IB; W is the number
of windows that come from the division of an image; and SSIM

(
IA j, IB j

)
denotes

the structural similarity between images IA and IB in the jth window. This was
calculated by:

SSIM
(

IA j, IB j
)
=

(
2µIA j µIB j + k1

2L2
)(

2σIA j IB j + k2
2L2
)

(
µIA j

2 + µIB j
2 + k1

2L2
)(

σIA j
2 + σIB j

2 + k22L2
) , (32)

where µIA j , µIB j , σIA j
2, and σIB j

2 are the local means and the local variances of the jth
windows in images IA and IB, respectively; σIA j IB j

2 is the cross-covariance for the jth
windows between IA and IB. An overall SSIM value for the XGI fusion was defined
as follows:

SSIM =
SSIM(IAC, IF) + SSIM(IDPC, IF) + SSIM(IDFC, IF)

3
, (33)

where IAC, IDPC, IDFC, and IF denote the three input images and the fused image,
respectively. Note that larger SSIM values corresponded to better fusion performance.

9. Power spectral density (PSD) [43,44] measures the power at each signal frequency.
The estimate of the PSD Pj at frequency j was denoted as follows:

Pj =

(∣∣Cj
∣∣

n

)2

, (34)

where Cj are the Fourier terms and n is the number of samples. The total area enclosed
by the PSD curve and the coordinate axis denoted the information contained in an
image. The PSD curve of one image within one frequency band was higher than
that of the other image, which meant that the former image had more information in
this frequency band. A generally higher PSD curve indicated a better image fusion
performance [42].

5. Experiment
5.1. Image Fusion Parameters and Results

The fusion parameters used in this work were given by the order of the fusion steps.
For step 1, the sizes of the neighborhood samples for adaptive Wiener filtering were set at
[5, 5]. For step 2, the decomposition levels of NSCT were [4, 4, 4, 4]. With regard to the
parameters of the SCM, defined in Equations (4)–(6), we empirically set f = 0.8, g = 0.7,
h = 20, W = [0.1091, 0.1409, 0.1091; 0.1409, 0, 0.1409; 0.1091, 0.1409, 0.1091], and the
total iterative counts k = 200. Weight factor for low-frequency band: a = 0.55. Weight
factors for high-frequency bands: b = 0.41, c = 0.29, d = 0.30, and Tth = 1. For step 3, the
number of tiles, by row and column, used for CLAHE was [5, 5], the contrast enhancement
limit parameters for CLAHE were [0, 1] and 0.00125, and the CLAHE histogram’s number
of bins was 500. Finally, λ1 and λ2 for contrast optimization were 4.8 and 0.49, respectively.

The data used for the fusion process came from the grating-based X-ray phase contrast
imaging of frog toes [45]. These images (a total of four sets of images) were fused by our
algorithm using the parameters above. These experiments were carried out on MATLAB
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and half the results (of two sets of images) are shown in Figure 4. The remaining results of
the other two sets of images are given in the Supplemental Information Section S2.
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Figure 4. Source images and fusion results. (a,e) Source images from the AC channel; (b,f) source
images from the DPC channel; (c,g) source images from the DFC channel; (d,h) fusion results by
NSCT-SCM. The orange arrows point out distinct differences between tri-contrast modalities.

As shown in Figure 4, many features that only appeared in the DPC or DFC channels
were successfully transported to the final fusion results. The soft tissue around the bone and
meshwork structure of the bone trabecula (which can only be observed in the DPC channel),
as well as the high signal of the bone cortex (which is only visible in the DFC channel), were
successfully transferred into the fusion results. These well-preserved features demonstrated
the efficiency of the proposed fusion scheme.

5.2. Objective Evaluation and Discussion

In this section, we implemented the other three image fusion schemes on the same
datasets as those in Section 5.1. These methods included the algorithm based on the shift-
invariance discrete wavelet transform (SIDWT) [17], the traditional NSCT image fusion
algorithm, and the conventional NSCT-PCNN image fusion algorithm [46]. Then, the perfor-
mance results of all four methods were evaluated by the measures mentioned in Section 4.
Half of the results (of two sets of images) are displayed in Figure 5 and Tables 1 and 2, while
the remaining results of the other 2 datasets are given in the Supplemental Information,
Section S2.
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criteria. The orange arrows point out distinct differences between results of image fusion methods.
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Table 1. The evaluation results of the ROI in Figure 5a–d.

Measures NSCT NSCT-PCNN SIDWT Proposed Method (NSCT-SCM)

ES 2.6297 2.2885 0.6527 1.8847
H 5.8758 5.6990 6.5755 7.0350

SD 0.0962 0.0830 0.1229 0.1615
SF 12.1136 14.0702 40.3987 40.6443

FMI 0.9524 0.9524 0.9181 0.9321
FF 13.1018 13.0406 12.9649 13.4200

SSIM 0.9973 0.9970 0.9974 0.9961
FSIM 0.9390 0.9381 0.9304 0.9234

Table 2. The evaluation results of the ROI in Figure 5e–h.

Measures NSCT NSCT-PCNN SIDWT Proposed Method (NSCT-SCM)

ES 1.2587 1.1371 0.3937 1.1191
H 6.0928 6.2928 6.9253 7.2230

SD 0.1077 0.1077 0.1471 0.1821
SF 8.3268 8.3268 30.0311 24.2106

FMI 0.9336 0.9936 0.8545 0.8943
FF 13.7133 13.7133 13.5084 14.2617

SSIM 0.9974 0.9974 0.9964 0.9968
FSIM 0.9368 0.9368 0.9214 0.9318

With regard to the parameter settings of SIDWT, the size of the neighborhood sam-
ples used for adaptive Wiener filtering was [5, 5]; the decomposition levels of the first
and second fusion steps were 4 and 5, respectively; the numbers of tiles by row and
column used for CLAHE were [5, 5]; the limit of CLAHE contrast enhancement was
[0, 1] : 0.0017; the CLAHE histogram’ number of bins was 500; and λ1 and λ2, for he
contrast optimization, were 3.9 and 0.59, respectively. The parameter settings of the NSCT
used in the NSCT-PCNN method and NSCT method were the same as those we men-
tioned in Section 5.1. In addition, the parameters of the PCNN were empirically set as
follows: αL = 0.06931, αθ = 0.2, VL = 1, Vθ = 20, θ = 0.2, N = 200, and linking weight
W = [0.707, 1, 0.707; 1, 0, 1; 0.707, 1, 0.707] [46].

As shown in Figure 5, we marked areas with red squares, called the regions of interest
(ROI), to reduce the impact of noise on evaluation and focus on the part of the image in
which we were most interested. We observed that the soft tissue around the bone was
better presented by the NSCT-SCM methods than others. Our proposed method also
preserved the texture inside the bones and the details at the bone joint junctions. In contrast,
the details and texture of the other methods were not satisfactory, with images that were
blurrier and less sharp in comparison, indicating those methods’ tendency to compromise
on information preservation. The objective evaluation criteria were further carried out on
these fusion results, and the evaluation results of the ROI are given in Tables 1 and 2. The
best results for each measure are marked in bold.

As shown in Tables 1 and 2, the results of FMI, FF, SSIM, and FSIM of all methods
were at the same level, with some slight fluctuations. This indicated that all methods
demonstrated the ability to output fusion results that were similar enough to the source
images. However, regarding the outcomes of ES, H, SD, and SF, the proposed method
generally outperformed the others, showing that NSCT-SCM was able to transfer more
information and details from the source images to the fusion result than other methods.
Specifically, NSCT-SCM had higher values regarding H, SD, and SF in Table 1 and H and
SD in Table 2. The NSCT method also led to the best ES results, as shown in in Table 1. The
NSCT-PCNN method outperformed others, with regard to ES, and the SIDWT showed the
best SF value.

In addition, we calculated the PSD of each fusion result and drew the PSD curves of
the fusion images, given in Figure 6.
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As shown in Figure 6, the PSD curve of our proposed scheme was generally higher
than the others, meaning that the fusion results of NSCT-SCM contained more information
and were of better quality. In addition, although the power spectral density of the SIDWT
remained at the same level as that of the proposed method in high spatial frequencies,
it was significantly outperformed by the NSCT-SCM in low spatial frequencies. This
result was consistent with the evaluation results of the above eight measures and the
subjective evaluation results, i.e., that the fusion image of NSCT-SCM had higher contrast
and finer details.

6. Conclusions

In the present work, an NSCT-SCM-based image fusion scheme was proposed for
X-ray grating interferometry. It incorporated three major steps: denoising, the NSCT-SCM
fusion algorithm, and enhancement. A new coefficient selection strategy was proposed
for the fusion algorithm step, which selected coefficients in different ways concerning
high-frequency and low-frequency coefficients. This strategy met a unique requirement of
XGI: that the low-frequency coefficient should derive primarily from the AC channel in
order to achieve final fusion results similar to traditional CT, and that the high-frequency
coefficient should be selected in a way preserves the details and features in the DPC and
DFC channels.

Furthermore, the proposed method and three other image fusion methods were im-
plemented on X-ray grating interferometry data of frog toes to demonstrate the feasibility
and robustness of the NSCT-SCM image fusion scheme. The fusion results were evaluated
using both subjective and objective measures. As observed and demonstrated, the pro-
posed method was competitive with the other image fusion methods, both visually and
quantitatively. The proposed image fusion scheme output images with high contrast and
explicit details, and demonstrated the potential for real-time application. In our future
research, a feature-based fusion scheme will be studied to process images more similarly to
human eyes and achieve better computational efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23063115/s1.

https://www.mdpi.com/article/10.3390/s23063115/s1
https://www.mdpi.com/article/10.3390/s23063115/s1


Sensors 2023, 23, 3115 14 of 15

Author Contributions: Study conception and design were performed by H.L., X.J., J.L., Y.S. and X.C.
Material preparation, data collection and analysis were performed by H.L., M.L. and G.Z. The first
draft of the manuscript was written by H.L., and all authors commented on previous versions of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant num-
bers U19A2086.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank Yuxin Cheng from Shanghai Institute of Applied Physics,
Chinese Academy of Sciences, for valuable discussions and technical support.

Conflicts of Interest: The authors have no competing interests to declare that are relevant to the
content of this article.

References
1. Cozzi, A.; Magni, V.; Zanardo, M.; Schiaffino, S.; Sardanelli, F. Contrast-enhanced Mammography: A Systematic Review and

Meta-Analysis of Diagnostic Performance. Radiology 2022, 302, 568–581. [CrossRef]
2. Nguyen, T.N.; Abdalkader, M.; Nagel, S.; Qureshi, M.M.; Ribo, M.; Caparros, F.; Haussen, D.C.; Mohammaden, M.H.; Sheth, S.A.;

Ortega-Gutierrez, S.; et al. Noncontrast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance
Imaging Selection in Late Presentation of Stroke With Large-Vessel Occlusion. JAMA Neurol. 2022, 79, 22–31. [CrossRef] [PubMed]

3. Martz, H.E.; Logan, C.M.; Schneberk, D.J.; Shull, P.J. X-ray Imaging: Fundamentals, industrial techniques and applications; CRC Press:
Boca Raton, FL, USA, 2016.

4. Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray
sources. Nat. Phys. 2006, 2, 258–261. [CrossRef]

5. Zan, G.; Vine, D.J.; Yun, W.; Lewis, S.J.Y.; Wang, Q.; Wang, G. Quantitative analysis of a micro array anode structured target for
hard x-ray grating interferometry. Phys. Med. Biol. 2020, 65, 035008. [CrossRef] [PubMed]

6. Wang, Z.; Hauser, N.; Singer, G.; Trippel, M.; Kubik-Huch, R.A.; Schneider, C.W.; Stampanoni, M. Non-invasive classification of
microcalcifications with phase-contrast X-ray mammography. Nat. Commun. 2014, 5, 3797. [CrossRef]

7. Arboleda, C.; Wang, Z.; Jefimovs, K.; Koehler, T.; Van Stevendaal, U.; Kuhn, N.; David, B.; Prevrhal, S.; Lång, K.; Forte, S.; et al.
Towards clinical grating-interferometry mammography. Eur. Radiol. 2020, 30, 1419–1425. [CrossRef]

8. Meinel, F.G.; Schwab, F.; Yaroshenko, A.; Velroyen, A.; Bech, M.; Hellbach, K.; Fuchs, J.; Stiewe, T.; Yildirim, A.Ö.; Bamberg, F.; et al.
Lung tumors on multimodal radiographs derived from grating-based X-ray imaging—A feasibility study. Phys. Med. 2014,
30, 352–357. [CrossRef]

9. Gradl, R.; Morgan, K.S.; Dierolf, M.; Jud, C.; Hehn, L.; Günther, B.; Möller, W.; Kutschke, D.; Yang, L.; Stoeger, T.; et al. Dynamic
In Vivo Chest X-ray Dark-Field Imaging in Mice. IEEE Trans. Med. Imaging 2019, 38, 649–656. [CrossRef]

10. Glinz, J.; Thor, M.; Schulz, J.; Zabler, S.; Kastner, J.; Senck, S. Non-destructive characterisation of out-of-plane fibre waviness in
carbon fibre reinforced polymers by X-ray dark-field radiography. Nondestruct. Test. Eval. 2022, 37, 497–507. [CrossRef]

11. Sarapata, A.; Ruiz-Yaniz, M.; Zanette, I.; Rack, A.; Pfeiffer, F.; Herzen, J. Multi-contrast 3D X-ray imaging of porous and composite
materials. Appl. Phys. Lett. 2015, 106, 154102. [CrossRef]

12. Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A. On the origin of visibility contrast in x-ray Talbot interferometry. Opt. Express
2010, 18, 16890–16901. [CrossRef] [PubMed]

13. Bech, M.; Bunk, O.; Donath, T.; Feidenhans’l, R.; David, C.; Pfeiffer, F. Quantitative x-ray dark-field computed tomography. Phys.
Med. Biol. 2010, 55, 5529. [CrossRef] [PubMed]

14. Michel, T.; Rieger, J.; Anton, G.; Bayer, F.; Beckmann, M.W.; Durst, J.; Fasching, P.A.; Haas, W.; Hartmann, A.; Pelzer, G.; et al. On
a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys. Med. Biol. 2013, 58, 2713.
[CrossRef] [PubMed]

15. Ewald, R.; Thomas, K.; van Udo, S.; Gerhard, M.; Nik, H.; Zhentian, W.; Marco, S. Image fusion algorithm for differential phase
contrast imaging. In Proceedings of the SPIE Medical Imaging 2012, San Diego, CA, USA, 4–9 February 2012.

16. Wang, Z.; Clavijo, C.A.; Roessl, E.; van Stevendaal, U.; Koehler, T.; Hauser, N.; Stampanoni, M. Image fusion scheme for
differential phase contrast mammography. J. Instrum. 2013, 8, C07011. [CrossRef]

17. Scholkmann, F.; Revol, V.; Kaufmann, R.; Baronowski, H.; Kottler, C. A new method for fusion, denoising and enhancement of
x-ray images retrieved from Talbot–Lau grating interferometry. Phys. Med. Biol. 2014, 59, 1425–1440. [CrossRef]

18. Coello, E.; Sperl, J.I.; Bequé, D.; Benz, T.; Scherer, K.; Herzen, J.; Sztrókay-Gaul, A.; Hellerhoff, K.; Pfeiffer, F.; Cozzini, C.; et al.
Fourier domain image fusion for differential X-ray phase-contrast breast imaging. Eur. J. Radiol. 2017, 89, 27–32. [CrossRef]

19. Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image
Process. 2005, 14, 2091–2106. [CrossRef]

20. Skodras, A.; Christopoulos, C.; Ebrahimi, T. The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 2001,
18, 36–58. [CrossRef]

http://doi.org/10.1148/radiol.211412
http://doi.org/10.1001/jamaneurol.2021.4082
http://www.ncbi.nlm.nih.gov/pubmed/34747975
http://doi.org/10.1038/nphys265
http://doi.org/10.1088/1361-6560/ab6578
http://www.ncbi.nlm.nih.gov/pubmed/31874460
http://doi.org/10.1038/ncomms4797
http://doi.org/10.1007/s00330-019-06362-x
http://doi.org/10.1016/j.ejmp.2013.11.001
http://doi.org/10.1109/TMI.2018.2868999
http://doi.org/10.1080/10589759.2022.2063860
http://doi.org/10.1063/1.4918617
http://doi.org/10.1364/OE.18.016890
http://www.ncbi.nlm.nih.gov/pubmed/20721081
http://doi.org/10.1088/0031-9155/55/18/017
http://www.ncbi.nlm.nih.gov/pubmed/20808030
http://doi.org/10.1088/0031-9155/58/8/2713
http://www.ncbi.nlm.nih.gov/pubmed/23552903
http://doi.org/10.1088/1748-0221/8/07/C07011
http://doi.org/10.1088/0031-9155/59/6/1425
http://doi.org/10.1016/j.ejrad.2017.01.019
http://doi.org/10.1109/TIP.2005.859376
http://doi.org/10.1109/79.952804


Sensors 2023, 23, 3115 15 of 15

21. Stéphane, M. Chapter 6—Wavelet Zoom. In A Wavelet Tour of Signal Processing, 3rd ed.; Stéphane, M., Ed.; Academic Press:
Cambridge, MA, USA, 2009; pp. 205–261.

22. Donoho, D.L.; Vetterli, M.; DeVore, R.A.; Daubechies, I. Data compression and harmonic analysis. IEEE Trans. Inf. Theory 1998,
44, 2435–2476. [CrossRef]

23. Yan, C.-M.; Guo, B.-L.; Yi, M. Fast Algorithm for Nonsubsampled Contourlet Transform. Acta Autom. Sin. 2014, 40, 757–762.
[CrossRef]

24. Cunha, A.L.D.; Zhou, J.; Do, M.N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. IEEE Trans.
Image Process. 2006, 15, 3089–3101. [CrossRef]

25. Zhan, K.; Zhang, H.; Ma, Y. New Spiking Cortical Model for Invariant Texture Retrieval and Image Processing. IEEE Trans. Neural
Netw. 2009, 20, 1980–1986. [CrossRef] [PubMed]

26. Liu, H.; Liu, M.; Li, D.; Zheng, W.; Yin, L.; Wang, R. Recent Advances in Pulse-Coupled Neural Networks with Applications in
Image Processing. Electronics 2022, 11, 3264. [CrossRef]

27. Zhou, G.; Tian, X.; Zhou, A. Image copy-move forgery passive detection based on improved PCNN and self-selected sub-images.
Front. Comput. Sci. 2021, 16, 164705. [CrossRef]

28. Liu, H.; Cheng, Y.; Zuo, Z.; Sun, T.; Wang, K. Discrimination of neutrons and gamma rays in plastic scintillator based on
pulse-coupled neural network. Nucl. Sci. Tech. 2021, 32, 82. [CrossRef]

29. Liu, H.; Zuo, Z.; Li, P.; Liu, B.; Chang, L.; Yan, Y. Anti-noise performance of the pulse coupled neural network applied in
discrimination of neutron and gamma-ray. Nucl. Sci. Tech. 2022, 33, 75. [CrossRef]

30. Liu, H.; Liu, M.; Xiao, Y.; Li, P.; Zuo, Z.; Zhan, Y. Discrimination of neutron and gamma ray using the ladder gradient method and
analysis of filter adaptability. Nucl. Sci. Tech. 2022, 33, 159. [CrossRef]

31. Liu, M.; Zhao, F.; Jiang, X.; Zhang, H.; Zhou, H. Parallel binary image cryptosystem via spiking neural networks variants. Int. J.
Neural Syst. 2021, 32, 2150014. [CrossRef]

32. Lian, J.; Yang, Z.; Liu, J.; Sun, W.; Zheng, L.; Du, X.; Yi, Z.; Shi, B.; Ma, Y. An Overview of Image Segmentation Based on
Pulse-Coupled Neural Network. Arch. Comput. Methods Eng. 2021, 28, 387–403. [CrossRef]

33. Tan, W.; Thitøn, W.; Xiang, P.; Zhou, H. Multi-modal brain image fusion based on multi-level edge-preserving filtering. Biomed.
Signal Process. Control 2021, 64, 102280. [CrossRef]

34. Lim, J.S. Two-Dimensional Signal and Image Processing; Englewood Cliffs: Englewood Cliffs, NJ, USA, 1990.
35. Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld,

K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [CrossRef]
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