RF-EMF Exposure near 5G NR Small Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Equipment
2.2. Measurement Method
2.3. 5G NR Base Station Sites
2.4. Typical Exposures
2.4.1. The Worst-Case User
2.4.2. The Typical User
2.4.3. The Non-User
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 3rd Generation Partnership Project (3GPP). TS 45.022 V15.0.0 [2018-06], GSM/EDGE Radio Link Management in Hierarchical Networks. Available online: http://www.3gpp.org/ftp//Specs/archive/45_series/45.022/45022-f00.zip (accessed on 30 November 2022).
- IEC 62232:2022; Determination of RF Field Strength, Power Density and SAR in the Vicinity of Base Stations for the Purpose of Evaluating Human Exposure. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2022.
- Forge, S.; Horvitz, R.; Blackman, C.; Bohlin, E. Light Deployment Regime for Small-Area Wireless Access Points (SAWAPs), A Study Prepared for the European Commission; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Boursianis, A.; Vanias, P.; Samaras, T. Measurements for Assessing the Exposure from 3G Femtocells. Radiat. Prot. Dosim. 2012, 150, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Aerts, S.; Plets, D.; Thielens, A.; Martens, L.; Joseph, W. Impact of a Small Cell on the RF-EMF Exposure in a Train. Int. J. Environ. Res. Public Health 2015, 12, 2639–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aerts, S.; Plets, D.; Verloock, L.; Martens, L.; Joseph, W. Assessment and Comparison of Total RF-EMF Exposure in Femtocell and Macrocell Base Station Scenarios. Radiat. Prot. Dosim. 2014, 162, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, M.J.; Visser, J.C.; Le Roux, C.W. Measurement of EMF exposure around small cell base station sites. Radiat. Prot. Dosim. 2019, 184, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Australian Communications and Media Authority (ACMA). Electromagnetic Energy (EME) Measurements Near Small Cell Base Stations. 2020. Available online: https://www.acma.gov.au/sites/default/files/2020-07/EME-measurements-near-small-cell-base-stations.pdf (accessed on 30 November 2022).
- El-Hajj, A.M.; Naous, T. Radiation Analysis in a Gradual 5G Network Deployment Strategy. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020. [Google Scholar]
- Aerts, S.; Verloock, L.; Van Den Bossche, M.; Colombi, D.; Martens, L.; Tornevik, C.; Joseph, W. In-Situ Measurement Methodology for the Assessment of 5G NR Massive MIMO Base Station Exposure at Sub-6 GHz Frequencies. IEEE Access 2019, 7, 184658–184667. [Google Scholar] [CrossRef]
- Adda, S.; Aureli, T.; D’Elia, S.; Franci, D.; Grillo, E.; Migliore, M.D.; Pavoncello, S.; Schettino, F.; Suman, R. A Theoretical and Experimental Investigation on the Measurement of the Electromagnetic Field Level Radiated by 5G Base Stations. IEEE Access 2020, 8, 101448–101463. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; Lodovisi, C.; Franci, D.; Pavoncello, S.; Aureli, T.; Blefari-Melazzi, N.; Alouini, M.S. Massive Measurements of 5G Exposure in a Town: Methodology and Results. IEEE Open J. Commun. Soc. 2021, 2, 2029–2048. [Google Scholar] [CrossRef]
- Deprez, K.; Verloock, L.; Colussi, L.; Aerts, S.; Van den Bossche, M.; Kamer, J.; Bolte, J.; Martens, L.; Plets, D.; Joseph, W. In-situ 5G NR base station exposure of the general public: Comparison of assessment methods. Radiat. Prot. Dosim. 2022, 198, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Qahtan Wali, S. RF-EMF Measurement for 5G over C-Band and Mm-Wave Frequency Band: Exposure Assessment and Procedures. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1254, 012002. [Google Scholar] [CrossRef]
- Colombi, D.; Ghasemifard, F.; Joshi, P.; Xu, B.; Paola, C.D.; Tornevik, C. Methods and Practices for In Situ Measurements of RF EMF Exposure from 5G Millimeter Wave Base Stations. IEEE Trans. Electromagn. Compat. 2022, 64, 1986–1993. [Google Scholar] [CrossRef]
- Migliore, M.D.; Franci, D.; Pavoncello, S.; Aureli, T.; Merli, E.; Lodovisi, C.; Chiaraviglio, L.; Schettino, F. Application of the Maximum Power Extrapolation Procedure for Human Exposure Assessment to 5G Millimeter Waves: Challenges and Possible Solutions. IEEE Access 2022, 10, 103438–103446. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef] [PubMed]
- Aerts, S.; Deprez, K.; Colombi, D.; Van den Bossche, M.; Verloock, L.; Martens, L.; Törnevik, C.; Joseph, W. In Situ Assessment of 5G NR Massive MIMO Base Station Exposure in a Commercial Network in Bern, Switzerland. Appl. Sci. 2020, 11, 3592. [Google Scholar] [CrossRef]
- Shikhantsov, S.; Thielens, A.; Aerts, S.; Verloock, L.; Torfs, G.; Martens, L.; Demeester, P.; Joseph, W. Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Appl. Sci. 2020, 10, 7631. [Google Scholar] [CrossRef]
- Belyaev, I.; Blackman, C.; Chamberlin, K.; DeSalles, A.; Dasdag, S.; Fernández, C.; Hardell, L.; Héroux, P.; Kelley, E.; Kesari, K.; et al. Scientific evidence invalidates health assumptions underlying the FCC and ICNIRP exposure limit determinations for radiofrequency radiation: Implications for 5G. Environ. Health 2022, 21, 92. [Google Scholar] [CrossRef]
Class | EIRP [dBm] | Product Installation Criteria |
---|---|---|
E2 | ≤33 | […] Compliance with the exposure limits is generally obtained at zero distance or within a few centimeters. |
E10 | ≤40 | […] the lowest radiating part of the antenna(s) is at a minimum height of 2.2 m above the general public walkway. |
E100 | ≤50 | […] (a) the lowest radiating part of the antenna(s) is at a minimum height of 2.5 m above the general public walkway; (b) the minimum distance to areas accessible to the general public in the main lobe direction is Dm; (c) there are no pre-existing RF sources with EIRP above 10 W installed within a distance of 5 Dm meters in the main lobe direction (as determined by considering the half power beam width) and within Dm meters in other directions. If Dm is not available, a value of 2 m can be used or 1 m if all product transmit frequencies are equal to or above 1500 MHz. |
E+ | >50 | […] |
Site #1 | Site #2 | |
---|---|---|
Frequency band | n78 (FR1) | n78 (FR1) |
Channel center frequency | 3.775 GHz | 3.430 GHz |
Channel bandwidth | 50 MHz | 40 MHz |
Subcarrier spacing | 30 kHz | 30 kHz |
Maximum number of resource blocks (NRB) | 133 | 106 |
Number of antenna elements (per polarization) | 96 | 4 |
MIMO | 64T64R | 4T2R |
Advanced Antenna System (AAS)? | Yes | No |
Transmit power | 49.7 dBm (92.5 W) | 43 dBm (20 W) |
Maximum gain (array gain + antenna element gain) | 25 dBi | 10.5 dBi |
EIRP | 74.7 dBm (29.5 kW) | 53.5 dBm (112 W) |
Height | 5.5 m | 4.5 m |
Size of radio unit | 795 mm × 470 mm × 190 mm | 295 mm × 270 mm × 20 mm |
Technology duty cycle factor (fTDC) | 0.743 | 0.743 |
Variable | Site #1 | Site #2 |
---|---|---|
Number of active users | 10 | 10 |
Typical usage (connection time) | 10 s | 10 s |
Number of antenna elements | 100 | 4 |
MaMIMO/beamforming scheme | Codebook ‘grid of beams’ | n/a |
DCsite,95 | 0.20 | 0.96 |
User Type | Electric-Field Level E (V/m) and Exposure Ratio R (-) | |||
---|---|---|---|---|
Workers | General Public | |||
AAS | E100 (1) | AAS | E100 | |
Worst-case user (maximum exposure, with base station at maximized downlink traffic capacity) | 21.6 (0.03) | 30.0 (0.05) | 12.8 (0.04) | 36.6 (0.36) |
Worst-case user (worst-case exposure, extrapolated Emax) | 27.5 (0.04) | 53.6 (0.15) | 13.1 (0.05) | 50.8 (0.68) |
Typical user (performing a video call) | 7.8 (0.003) | 16.5 (0.02) | 4.2 (0.005) | 15.5 (0.06) |
Non-user without other users (no induced downlink traffic, Eavg,min) | 3.9 (0.0008) | 5.7 (0.002) | 2.4 (0.002) | 5.0 (0.007) |
Non-user in mature network (based on maximum exposure, with base station at maximized downlink traffic capacity, and a 95th percentile spatiotemporal duty cycle to account for spatiotemporal dispersion of power) | 9.7 (0.005) | 29.4 (0.05) | 5.7 (0.009) | 35.9 (0.34) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aerts, S.; Deprez, K.; Verloock, L.; Olsen, R.G.; Martens, L.; Tran, P.; Joseph, W. RF-EMF Exposure near 5G NR Small Cells. Sensors 2023, 23, 3145. https://doi.org/10.3390/s23063145
Aerts S, Deprez K, Verloock L, Olsen RG, Martens L, Tran P, Joseph W. RF-EMF Exposure near 5G NR Small Cells. Sensors. 2023; 23(6):3145. https://doi.org/10.3390/s23063145
Chicago/Turabian StyleAerts, Sam, Kenneth Deprez, Leen Verloock, Robert G. Olsen, Luc Martens, Phung Tran, and Wout Joseph. 2023. "RF-EMF Exposure near 5G NR Small Cells" Sensors 23, no. 6: 3145. https://doi.org/10.3390/s23063145
APA StyleAerts, S., Deprez, K., Verloock, L., Olsen, R. G., Martens, L., Tran, P., & Joseph, W. (2023). RF-EMF Exposure near 5G NR Small Cells. Sensors, 23(6), 3145. https://doi.org/10.3390/s23063145