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Abstract: Bearing defects are a common problem in rotating machines and equipment that can lead to
unexpected downtime, costly repairs, and even safety hazards. Diagnosing bearing defects is crucial
for preventative maintenance, and deep learning models have shown promising results in this field.
On the other hand, the high complexity of these models can lead to high computational and data
processing costs, making their practical implementation challenging. Recent studies have focused on
optimizing these models by reducing their size and complexity, but these methods often compromise
classification performance. This paper proposes a new approach that reduces the dimensionality of
input data and optimizes the model structure simultaneously. A much lower input data dimension
than that of existing deep learning models was achieved by downsampling the vibration sensor
signals used for bearing defect diagnosis and constructing spectrograms. This paper introduces a
lite convolutional neural network (CNN) model with fixed feature map dimensions that achieve
high classification accuracy with low-dimensional input data. The vibration sensor signals used for
bearing defect diagnosis were first downsampled to reduce the dimensionality of the input data.
Next, spectrograms were constructed using the signals of the minimum interval. Experiments were
conducted using the vibration sensor signals from the Case Western Reserve University (CWRU)
dataset. The experimental results show that the proposed method could be highly efficient in terms
of computation while maintaining outstanding classification performance. The results show that the
proposed method outperformed a state-of-the-art model for bearing defect diagnosis under different
conditions. This approach is not limited to the field of bearing failure diagnosis, but could be applied
potentially to other fields that require the analysis of high-dimensional time series data.

Keywords: bearing fault diagnosis; convolutional neural networks; spectrogram; short-time Fourier
transform; CWRU dataset

1. Introduction

Considerable research has been conducted to develop variant and powerful deep
learning models which are also applied to various applications, and have contributed
significantly to developing many innovative, intelligent systems. Deep learning model
research is being actively conducted, mainly on image and voice understanding and
recognition, which has expanded to various application fields. In particular, remarkable
research results have been obtained in natural scene understanding, natural language
understanding, and human voice recognition. These developed models are being utilized
in the medical field, such as in diagnosing various diseases and diagnosing machine failures
in industry. This machine fault diagnosis function is making a significant contribution to
the smart factory in pursuit of the high efficiency of a group of connected machines. Among
the various machine faults, bearing faults are very common and critical. Several surveys
of induction machine failures have revealed bearing failures to be the most common,
accounting for 30–40% of all machine failures [1–3].
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In particular, in wind power generation, bearing fault diagnosis is becoming a critical
issue [4]. Recently, the construction of wind power plants has been expanding to help
achieve carbon neutrality and ensure safety from the dangers of nuclear energy. Accord-
ingly, in addition to strengthening the predictability of wind power generation for the
stable electricity production of wind power stations, the health monitoring of wind power
generators is becoming an important issue [5].

In recent years, considerable research has been conducted on utilizing deep learning
models for bearing failure diagnosis, with numerous studies published since 2016 [6–14].
These studies demonstrated the remarkable potential of deep learning models in accurately
diagnosing bearing defects using vibration sensor signals.

On the other hand, many studies have been conducted to improve the performance of
bearing failure diagnosis using more complex models applied to image or voice understand-
ing. Recently, research for developing lower complex models has been conducted for failure
diagnosis, using systems with limited hardware specifications such as edge computing. In
addition, research is being conducted to reduce the complexity of high-complexity models
with excellent classification performance by applying optimization techniques [15]. In
many studies using lightweight models, however, the classification performance is inferior
to that of models with high complexity.

Therefore, this paper proposes a bearing failure diagnosis model that can reduce
the model complexity and computation time significantly while maintaining excellent
classification performance by applying a low-complexity CNN model and low-dimensional
input data.

When an abnormality occurs in a specific part of the bearing, the characteristics of
the bearing vibration sensor signal are different from the vibration pattern in the normal
situation, which alters the frequency characteristic of the signal. Considering these char-
acteristics, the spectrogram is used as input data for the proposed deep learning model.
The spectrogram reflects the time–frequency features of signals and is generated through a
short-time Fourier transform of vibration sensor signal.

In this study, the vibration sensor signal was downsampled, and a small-sized spec-
trogram was constructed using the minimum interval. Furthermore, a model optimized
for low input data dimensions was designed by fixing the feature map dimensions. The
effectiveness of the proposed approach was verified by conducting experiments using the
well-known and widely used Case Western Reserve University (CWRU) dataset [16], which
contains various bearing fault conditions, including inner race, outer race, and roller defects,
as well as different motor speeds and load conditions. The experimental results showed
that the approach could reduce the computational and memory requirements significantly
while maintaining high diagnostic accuracy for bearing defects under all conditions.

When applied to actual industrial sites, bearing failures can be diagnosed with little
computing power. The sensor cost can be reduced using a sensor with low sample rate
characteristics in the data acquisition stage. This can be important for machines where it
can be critical to identify faults quickly and take plausible action on machine failures.

The remainder of the paper is outlined as follows. Section 2 introduces various
models related to bearing defect diagnosis. Section 3 describes the proposed bearing
defect diagnosis model and techniques for the dimensionality reduction of input data. The
experimental results of the proposed model are reported in Section 4. Finally, the conclusion
and further works are outlined in Section 5.

2. Related Works

Even if it is limited only to the bearing failure diagnosis problem, considerable re-
search has been conducted to solve this diagnosis problem. Research related to bearing
defect diagnosis has mainly focused on developing systems that acquire bearing condition
signals from vibration sensors and automatically diagnose bearing defects by applying
various machine learning techniques to the acquired vibration sensor signals [17]. Early
studies applying machine learning methods used a multilayer perceptron (MLP) and a
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support vector machine (SVM) using the original signal measured from the vibration
sensor or the frequency characteristic information of the vibration sensor signal. As a
result of this study, the multilayer perceptron model showed 80–90% defect diagnosis
performance [18], and the defect diagnosis using the support vector machine showed a
maximum of 98.5% [19]. Multilayer perceptron and support vector machines have various
feature extraction techniques from sensor signals to improve their performance, but they
have limitations in their defect diagnosis performance, which lacks robustness to changes
in input signal characteristics.

Research on implementing a bearing defect diagnosis system using a deep learning
model has been actively conducted to improve on these problems. Owing to the nature of
the deep learning model, both feature extraction and defect classification became possible
through learning without applying a special feature extraction technique in advance.
Chen et al. [6]. converted the spectrogram obtained from the vibration sensor signal of the
CWRU bearing dataset into a size of 224 × 224 and used it for learning. Chen et al. [6].
proposed a model for classifying bearing defects by applying transfer learning techniques
to the ResNet-50 model applied to the image classification of ImageNet. The classification
performance of the proposed model ranged from 99.90% to 100%. Regarding bearing defect
diagnosis performance, it is an excellent model compared to models applied with previous
machine learning techniques [6]. Deveci et al. [7]. proposed a study in which preprocessing
was performed by adding white Gaussian noise to consider the noise characteristics of the
vibration sensor of the CWRU bearing dataset.

Deveci et al. used AlexNet, GoogLeNet, and ResNet-50 models to diagnose bearing
defects, with 224 × 224 and 227 × 227 spectrogram data as the input data of the deep
learning model [7]. For each applied deep learning model, the classification performances
of the AlexNet, GoogLeNet, and ResNet-50 models were 97.08%, 97.60%, and 99.27%,
respectively [7]. Thus, the best bearing defect classification performance was shown when
ResNet-50 was applied. In the case of the ResNet-50 model, however, high computational
complexity is required because the number of parameters to be learned is high, so high-end
hardware is required to develop a defect diagnosis system capable of real-time processing
in an actual industrial site. Building a high-end, expensive system for machine defect diag-
nosis can be an economic burden. In the case of building a low-end, low-cost system, there
is a limitation in prompt defect diagnosis. When a machine needs to be stopped urgently
according to defect diagnosis, it can adversely affect the productivity of the machine.

Research on bearing defect diagnosis based on a CNN, rather than complex models
such as the ResNet-50 model and GoogLeNet model, is being actively conducted. Neu-
pane et al. proposed a CNN model for diagnosing bearing defects using 224 × 224 input
data by converting the CWRU bearing dataset from vibration sensor signals into scalo-
grams and spectrograms. The bearing defect classification performance of the CNN-based
model proposed by Neupane et al. is 99.88% [1], which is superior to the model using the
multilayer perceptron and support vector machine. On the other hand, the bearing defect
classification performance is slightly lower than that of the model using ResNet-50 [1].

In addition, research on fault diagnosis using a lite CNN model with reduced complex-
ity is being actively conducted to implement a fault diagnosis system using a system with
low hardware specifications. The lite CNN model proposed by Mukherjee et al. [15]. has a
simple structure, low computation, and small model size compared to existing models with
high complexity [15]. Nevertheless, it has a large input data dimension, and its classification
performance decreases significantly by ~50% under certain conditions.

Directly comparing the superiority of models based on the performance results alone
may be inappropriate because there are obvious limitations to comparing these models
under the same conditions. However, in a study using the CWRU dataset, the Chen et al. [6]
model showed the best performance regarding the quantitative defect diagnosis perfor-
mance. Therefore, this paper attempts to show that the proposed model generates superior
performance compared to the model proposed by Chen et al. [6].
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3. Proposed Bearing Fault Diagnosis Model

The proposed bearing defect diagnosis model in this work is a modified CNN model,
and the training data of the proposed model is the spectrogram obtained from short-time
Fourier transform (STFT) after downsampling the vibration sensor signal of a 12K/48K
sample rate to 6K. Figure 1 presents the bearing failure diagnosis of the proposed light
CNN model.
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Figure 1. Bearing fault diagnosis process using the proposed lite CNN model.

ResNet-based models show high classification accuracy in bearing failure diagnosis
but require a large amount of computation because of the large number of convolutional
layer structures and large dimensions of input data. Lite CNN-based models have a small
amount of computation owing to their low-complexity structure but have low classification
performance. With much lower complexity and less computation time, the proposed model
produces comparable performance to the ResNet-based state-of-art model.

3.1. Lite Convolutional Neural Network Model (Lite CNN)

The lite CNN model proposed for bearing defect diagnosis consists of a convolu-
tion layer and a fully-connected layer. Figure 2 shows the overall structure of the pro-
posed model.
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Figure 2. Architecture of the proposed lite CNN model for bearing fault diagnosis.

The convolutional layer applies 64 kernels, 3 × 3 in size, and 32 kernels, 1 × 1 in size,
to improve the classification performance. Generally, a pooling layer is placed after the
convolutional layer to reduce the computational cost by reducing the dimensions of the
feature map and the number of network parameters. In the proposed model, a pooling
layer was not applied to maintain the dimension of the input data. A convolution layer
applies a padding technique to maintain the size of the feature map of the hidden network
as the same size as the input data. The fully connected layer serves to classify the feature
map generated in the final feature extraction layer. The fully connected layer has two
hidden layers with 256 nodes for acceptable classification performance. Overfitting was
prevented by applying a dropout between fully connected layers, and a softmax function
was used as an activation function of the output layer. Adam was applied as an objective
function optimizer to improve classification performance.

3.2. Dimensionality Reduction of Input Data

The proposed lite convolutional neural network (CNN) model has a compact and
lightweight structure designed to achieve high classification performance comparable to
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ResNet-based models with higher complexity. Moreover, further reductions of the complex-
ity of the proposed lite CNN model have been considered by reducing the dimensionality
of the input data.

The CWRU dataset consists of vibration sensor data obtained by inducing damage to
the bearings of a rotating machine. Typically, damage to the bearings of rotating machines
results in periodic signals corresponding to one revolution of the drive shaft of a facility.
The CWRU dataset was recorded from a facility rotating at an average of 1750 RPM, and
the vibration sensor signals corresponding to 1 revolution are approximately 0.0344 s. The
vibration sensor signals have been transformed into spectrograms in the time–frequency
domain using the short-time Fourier transform (STFT) to generate the input data of the
proposed lite CNN model. The model was configured to diagnose the bearing fault using
the shortest sections of the signals, similar to 0.0344 s, reducing the dimension of the
input data.

Furthermore, the dimensionality of the input data is reduced by adjusting the sample
rate of the vibration sensor signals. The CWRU dataset includes vibration signals measured
at high sample rates of 12K and 48K. This study investigated the optimal sample rate
that can achieve high classification performance for bearing failure diagnosis even with
signals having sample rates lower than 12K and 48K. Entropy change analysis of the input
spectrogram data was considered to analyze the adequacy of the degree of dimensionality
reduction applied to the proposed lite CNN model. The image entropy analysis technique
was used to analyze the entropy of the spectrogram.

Image entropy analysis is a technique used to measure the randomness or uncertainty
of an image. It quantitatively measures the amount of information or entropy present in an
image. The entropy of an image is calculated using Equation (1):

H = −∑ pilog2 pi (1)

where pi is the probability of the ith color level in the image. The color levels in an image
represent the intensity values of the pixels, and their probabilities are calculated based on
the number of pixels having each intensity value.

The procedure of spectrogram entropy analysis is as follows:

1. Divide the pixel values of the spectrogram into n bins.
2. Calculate the histogram of the spectrogram using n bins, which provide the number

of pixels with each gray level interval in its corresponding bin.
3. Normalize the histogram by dividing each bin count by the total number of pixels to

obtain the probability distribution.
4. Calculate the entropy of the spectrogram using Equation (1).

In the case of a bearing failure, certain frequencies are strongly expressed, known as
fault frequencies. For ball bearings, the ball pass frequency of the outer race (BPFO), ball
pass frequency of the inner race (BPFI), and ball spin frequency (BSF), depending on the
fault area, are the frequently occurring fault frequencies. These fault frequencies represent
damage to the outer ring, inner ring, and ball area of the bearing, respectively. The fault
frequencies can be calculated using Equations (2)–(4) [20]:

BPFO =
N
2

fo − fi

(
1 +

B
P

cosφ

)
(2)

BPFI =
N
2

fo − fi

(
1 − B

P
cosφ

)
(3)

BSF =
N
2B

fo − fi

[(
1 −

(
B
P

)2
cos2φ

)]
(4)
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where fi is the frequency of inner race rotation; fo is the frequency of outer race rotation; N
is the number of balls; φ is the contact angle; B is the diameter of balls; and P is the pitch
diameter of the basic load.

The fault frequency of a ball-bearing component is typically expressed as an impulse
signal in the vibration sensor signal when the component is damaged. Figure 3 presents a
spectrogram generated by the vibration sensor signal for a bearing with a faulty outer race
and a bearing under normal conditions.
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When generating a spectrogram in the time–frequency domain, the fault frequency
component is expressed strongly in the spectrogram of the defective bearing. Normal
bearings do not exhibit fault frequencies and generally have a flat spectrogram value.
Normal bearings have high certainty with low information, while bearings with defects
produce a spectrogram with relatively high information and low uncertainty because of
the fault frequency.

On the other hand, entropy analysis has difficulties in determining the various pa-
rameters used in the analysis [21,22]. Various signal analyses are required for parameter
optimization to efficiently classify bearing defects using entropy analysis [21]. Additionally,
entropy analysis has poorer overall performance than fault diagnosis using deep learning.

Therefore, in this study, the defect frequency component of the bearing was used
as an index to compare the amount of information expressed in the spectrogram. When
downsampling the vibration sensor signal to generate the spectrogram, it was used limit-
edly to select the optimal downsampling candidate that maintained a strong expression of
the defect frequency. The vibration sensor signal was downsampled using the candidate
regions obtained through entropy analysis. A spectrogram was generated from the down-
sampled vibration sensor signal and used as input data for the proposed lite CNN model
for experiments.

Downsampling the 12K and 48K sample rate signals to 6K can reduce the input data by
half and reduce the dimensionality of the data by half when generating a spectrogram. Figure 4
illustrates a downsampled vibration sensor signal and the corresponding spectrogram.
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The size of the spectrogram converted from the vibration sensor signal downsampled
to the proposed 6K was reduced by 50% on the vertical axis compared to the original signal
with a sample rate of 12K. The method of obtaining effective signal values every N times is
used during the downsampling process instead of relying on the high sample rate signal
data. This results in a significant loss of signal information. On the other hand, it still
enables the construction of data with a signal similar to that measured by a sensor with
an actual low sample rate. This makes it possible to use a vibration sensor signal with a
low sample rate characteristic for diagnosing bearing failures in actual facilities, thereby
reducing the cost of acquiring data used for this purpose. This is a critical issue in the
diagnosis of the conditions of complex equipment that requires the use of multiple sensors.

In this study, the input data dimension was kept, small using the spectrogram as input
data for a short duration and utilizing the downsampled vibration sensor signal. Typically,
ResNet-based models require a fixed size of 224 × 224 or large inputs due to multiple
dimensionality reductions that occur during numerous convolution operations. On the
other hand, using a lite CNN model that is designed to use a smaller feature map size, it is
possible to maintain high classification performance while still utilizing relatively small
input data.

3.3. Spectrogram Using Short-Time Fourier Transform (STFT)

A vibration sensor measures the acceleration, velocity, or displacement of a machine
component, and converts this mechanical motion into an electrical signal that can be
analyzed. The signal typically contains information about the frequency, amplitude, and
phase of the vibration.

After converting the vibration sensor signals in the CWRU dataset into spectrograms
using the short-time Fourier transform (STFT) operation, they were input into the proposed
model. The use of spectrograms in the time–frequency domain obtained through STFT
transformation is a common technique because it allows for an effective observation of the
time–frequency characteristics of time series data.

STFT is a time–frequency analysis technique that decomposes a signal into its fre-
quency components by applying the Fourier transform to overlapping signal segments.
The basic idea behind the STFT is to divide a time domain signal into multiple overlapping
segments, also known as windows, and then perform the Fourier transform on each win-
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dow to obtain the frequency information. The frequency information of each window is
then represented as a spectrogram, which is a two-dimensional representation of the signal
in the time–frequency domain.

Formally, the STFT of a signal x(t) with a window function w(t) can be represented
using Equation (5):

X(ω, t) =
∫

x(τ)w(τ − t)e−jωτdτ (5)

where ω is the frequency and t is the time. The choice of the window function can affect
the resolution of the spectrogram in the time and frequency domains. The resulting
spectrogram can then be visualized as an image, where each row represents a frequency
component, and each column represents a time window. The intensity of each pixel in the
spectrogram represents the magnitude of the frequency component at a particular time
window [23].

Figure 5 shows the process of transforming the vibration sensor signals into spectro-
grams in the time–frequency domain through STFT.
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The vibration sensor signal is divided into sections with a hop size equal to the window
size, and a Fourier transform is continuously applied. This study determined the optimal
spectrogram generation parameters experimentally based on the characteristics of the
vibration sensor signal in the CWRU dataset. Figure 6 shows the vibration sensor signal
recorded by the drive end sensor for a 12K drive end bearing defect. Figure 7 presents
the converted spectrograms of the corresponding vibration sensor signals in Figure 6.
As shown in Figure 7, the characteristics of the type and size of the defects were more
clearly distinguishable in the time–frequency domain spectrogram form than in the original
vibration sensor signal shown in Figure 6.
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3.4. Evaluation Metrics

Accuracy, parameter, floating-point operations (FLOPs), and computation time as
evaluation metrics were used. Accuracy is an evaluation metric widely used to assess
the classification performance of deep learning models. The metric represents the ratio of
correctly classified samples to the total number of samples. The equation for calculating
accuracy is expressed as Equation (6):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP, TN, FP, and FN refer to the true positive, true negative, false positive, and false
negative, respectively. Evaluation metrics, such as the number of parameters and FLOPs,
were used to compare the complexity of deep learning models. The number of parameters
represents the weights, node count, and dimensions of input and output data of the deep
learning model. FLOPs indicate the number of matrix operations performed repeatedly for
computation in the deep learning model. Computation time is the sum of the training and
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classification times of the model. The formulae for calculating the number of parameters
and FLOPs are expressed as Equations (7) and (8):

Parameters = k ∗ k ∗ ci−1 ∗ ci (7)

FLOPs = k ∗ k ∗ mi ∗ mi ∗ ci−1 ∗ ci (8)

where k is the filter size; mi is the current feature map size; ci is the number of filters in
the current layer; and ci−1 is the number of filters in the previous layer. The total number
of parameters and FLOPs are calculated by summing up the number of parameters and
FLOPs computed at each layer. The classification performance of the proposed model was
evaluated using Accuracy, and its complexity was compared using the Parameter and FLOP
evaluation metrics. Computation time refers to the total time required for the training and
classification of a deep learning model.

4. Experimental Results

In this study, the CWRU dataset was used to evaluate the classification performance
and complexity of the proposed lite CNN model using low-dimensional input data. The
classification accuracy and complexity of the proposed model were compared with various
deep learning models of different complexities. Experiments were conducted by reducing
the dimensionality of the input data using the proposed model. Python 3.7, with libraries
such as Tensorflow, Keras, Scikit-learn, and Librosa, was used to implement the proposed
framework. The computer used in this study was equipped with an Intel i7-11700K
processor, 128GB of memory, and an NVIDIA GeForce RTX 3080Ti graphics card, running
on the Windows 10 operating system.

4.1. Dataset Description

The CWRU bearing dataset is one of the most widely utilized datasets in bearing
research, made available by the Bearing Data Center at Case Western Reserve Univer-
sity [16]. It features vibration sensor data for normal and defective bearings, including
normal, drive-damaged, and fan-damaged bearings, collected using vibration sensors. The
CWRU Bearing dataset is commonly used to evaluate and compare the performance of
bearing defect diagnosis models [23].

Figure 8 presents the experimental setup used to obtain the CWRU bearing dataset.
The setup consists of a two horsepower motor, token converter, encoder, dynamometer,
and control device, which are assembled in a bearing test device. A typical bearing consists
of an inner race, an outer race, balls, and a cage that holds the balls in place. The bearing
supports the motor shaft in the test setup, and torque is transmitted to the shaft through
the dynamometer and electronic control system.
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The CWRU bearing dataset collects vibration sensor signals for normal and defective
bearings. The vibration sensors are located at three different places: the drive end, fan end,
and basement of the experimental setup. The sensors were classified into BA, DE, and FE
based on their location. The artificial defects in the test bearings were divided into three
types: inner race, outer race, and ball, with defect diameters of 0.007”, 0.014”, 0.021”, and
0.028”. The outer race was measured in three directions (3 o’clock (90◦), 6 o’clock (180◦),
and 12 o’clock (0◦)) based on the load direction. The vibration sensor data was collected
under different motor speeds (1797, 1772, 1750, and 1730 rpm) and motor loads (0, 1, 2, and
3 horsepower) based on the damage size and site. The drive end bearing defect data was
collected with two samplers (12 KHz and 48 KHz), and the fan end bearing defect data
were collected only at 12 KHz. Normal data were collected only at 48 KHz.

4.2. Fault Diagnosis Using the Proposed Model (Lite CNN)

This study compared the performance of various deep learning models with different
levels of complexity. The performance of ResNet50 was compared with the proposed
lite CNN with adjusted convolution layers—CNN0, CNN2, and CNN3—to determine
the optimal lightweight model. Figure 9 shows the structures of the models used in
the comparison.
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This study conducted experiments using the vibration sensor signals in normal condi-
tions measured at 12K and 48K sample rates, and vibration sensor signals measured at the
drive end sensor in the case of drive end bearing faults. The faults were classified into 12
classes based on the type of damage to the bearings. This study used 65 × 50 spectrograms
as input data for the comparison models. Table 1 lists the parameters used to generate the
65 × 50 spectrograms. Different segmentations, windows, and hop sizes were applied to
generate spectrograms of the same size using different raw vibration signals.
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Table 1. Parameters for each spectrogram with different sizes and corresponding time intervals.

Sample Rate 12K 48K

Spectrogram Size 65 × 50

Time 0.1413 s

Segmentation Size 1600 6400

Window Size 128 512

Hop Size 32 128

Figure 10 shows examples of spectrograms generated using the experimental parameters.
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Table 2 lists the results of ten consecutive experiments. Three hundred training data,
100 validation data, and 200 test data were used for each class, resulting in 3600 training
data, 1200 validation data, and 2400 test data for 12 classes. The proposed lite CNN model
showed the best classification performance and required a short computation time owing
to its low complexity. The proposed model has a similar total number of parameters to the
CNN0 model without a convolution layer and has fewer parameters than other CNN-based
comparison models. In addition, it achieved superior classification performance with only
2.465% of the computation cost compared to ResNet50.

Table 2. Comparison of the bearing fault diagnosis accuracy performance and computational com-
plexity measures (computation time, number of parameters, and FLOPs) of models using 65 × 50
size input data.

Model
Accuracy Computation Time (s) # of Parameters (K) FLOPs

(G)Min Max Mean Std Train Predict Total Total Dense

ResNet50 99.92 100 99.97 0.036 147.393 1.307 148.700 47,187 23,606 0.718

CNN3 99.87 100 99.94 0.055 34.234 0.243 34.477 944 901 0.285

CNN2 99.75 100 99.95 0.07 27.544 0.24 27.785 924 901 0.151

Lite
CNN 99.96 100 99.97 0.026 21.008 0.144 21.152 903 901 0.0177

CNN0 96.46 100 98.66 1.315 12.981 0.112 13.094 901 901 0.0018

4.3. Fault Diagnosis Using the Less Input Dimension

Spectrograms were generated using the minimum length of the vibration sensor signal
and downsampling to reduce the dimensionality of the input data used in the lite CNN
model. The generated spectrograms were used as input data for the lite CNN model in
the experiments.
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The optimal signal length that maintains the classification performance of the lite
CNN model was determined by constructing spectrograms using four signal lengths. The
vibration sensor signals measured at 12K and 48K sample rates were used for drive end
bearing damage from sensors located at the drive end. Table 3 lists the parameters used
to construct the spectrograms for the four signal lengths used in the experiment, with the
parameters in parentheses used for the 48K signal.

Table 3. Parameters for each spectrogram with different sizes corresponding to the time intervals.

Spectrogram Size 65 × 50 65 × 30 65 × 10 65 × 5

Time 0.1413 s 0.0880 s 0.0346 s 0.0213 s

Segmentation Size 1600(6400) 960(3840) 320(1280) 160(640)

Window Size 128(512) 128(512) 128(512) 128(512)

Hop Size 32(128) 32(128) 32(128) 32(128)

Figure 11 shows examples of spectrograms constructed using four different signal lengths.
The same window and hop size were used to maintain consistent time and frequency intervals,
while the segmentation size was adjusted to vary the size of the spectrograms.
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Table 4 lists the results of 10 consecutive repeat experiments. A total of 300 train data,
100 validation data, and 200 test data were used for each class, resulting in 3600 train data,
1200 validation data, and 2400 test data for 12 classes. The 65 × 10-sized spectrogram
generated using a signal interval of 0.0346 s maintained excellent classification performance
despite its small size, indicating the appropriateness of using vibration sensor signals
corresponding to a single rotation cycle of the rotating machine for bearing fault diagnosis.
In addition, the proposed method demonstrated the potential to further reduce the model
parameters, computational complexity, and operation time.

Table 4. Comparison of bearing fault diagnosis accuracy, performance, and computation complexity
measures (computation time, number of parameters, and Flops) of models using each different input
data size.

Input Data Size
Accuracy Computation Time (s) # of Parameters

(K) FLOPs
(G)Min Max Mean Std Train predict Total Total Dense

65 × 50 99.96 100 99.97 0.027 21.008 0.144 21.152 903 901 0.0177

65 × 30 99.92 100 99.98 0.027 20.391 0.134 20.525 570 568 0.0107

65 × 10 99.92 100 99.96 0.031 19.632 0.120 19.752 238 235 0.00365

65 × 5 99.25 99.95 99.75 0.187 19.605 0.120 19.725 154 152 0.0019
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Figure 12 represents the classification accuracy derived from the experiments. The
classification performance of the 65 × 5 size spectrogram generated using a signal segment
of 0.0213 s, which is shorter than 1 rotation cycle of the machine, decreased significantly.
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Figure 12. Comparison of the bearing fault diagnosis accuracy of lite CNN models with different
input data sizes according to each different length of signal interval.

The lite CNN, with a lightweight structure, was used to determine the minimum
length of the vibration sensor signal required for bearing fault diagnosis. The vibration
sensor signal was downsampled to reduce the dimensionality of the input data further.
The vibration sensor signals measured at 12K and 48K sample rates from the sensor located
at the drive end were used to diagnose bearing damage in the drive end. Table 5 lists
the parameters used to downsample the vibration sensor signal and transform it into a
spectrogram. The time–frequency domain spectrograms were constructed to have the
same time interval by adjusting the segmentation, window, and hop size. The constructed
spectrograms showed differences in the interval of the frequency domain.

Table 5. Parameters for each spectrogram with different sizes corresponding to different downsam-
pling rates.

Spectrogram Size 65 × 10 32 × 10 16 × 10 8 × 10

Sample rate 12K 6K 3K 1.5K

Time 0.0346 s 0.0346 s 0.0346 s 0.0346 s

Segmentation Size 320(1280) 160(640) 80(320) 40(160)

Window Size 128(512) 64(256) 32(128) 16(64)

Hop Size 32(128) 16(64) 8(32) 4(16)

Figure 13 presents examples of spectrograms generated using the experimental parameters.
Entropy analysis was performed using a spectrogram generated from vibration sensor

signals to select the optimal downsampling candidate. Fifteen arbitrary segments were
divided, and the spectrogram values corresponding to each segment were measured for
entropy analysis. This analysis allows for a relative comparison of the information content
of frequency components that strongly manifest when bearing faults occur. Figure 14 shows
the results of entropy analysis performed on spectrograms of various sizes generated from
vibration sensor signals measured on a 0.007 diameter damage in the ball region. As the
size of the spectrogram decreased due to downsampling, the entropy value increased. In
particular, the entropy increased significantly in the 16 × 10 spectrogram generated by
downsampling at a 3K sample rate. Therefore, the 32 × 10 spectrogram generated by
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downsampling at a 6K sample rate might be suitable as the input for the lite CNN model
for diagnosing bearing faults.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 12. Comparison of the bearing fault diagnosis accuracy of lite CNN models with different 
input data sizes according to each different length of signal interval. 

The lite CNN, with a lightweight structure, was used to determine the minimum 
length of the vibration sensor signal required for bearing fault diagnosis. The vibration 
sensor signal was downsampled to reduce the dimensionality of the input data further. 
The vibration sensor signals measured at 12K and 48K sample rates from the sensor lo-
cated at the drive end were used to diagnose bearing damage in the drive end. Table 5 
lists the parameters used to downsample the vibration sensor signal and transform it into 
a spectrogram. The time–frequency domain spectrograms were constructed to have the 
same time interval by adjusting the segmentation, window, and hop size. The constructed 
spectrograms showed differences in the interval of the frequency domain. 

Table 5. Parameters for each spectrogram with different sizes corresponding to different downsam-
pling rates. 

Spectrogram Size 65 × 10 32 × 10 16 × 10 8 × 10 
Sample rate 12K 6K 3K 1.5K 

Time 0.0346 s 0.0346 s 0.0346 s 0.0346 s 
Segmentation Size 320(1280) 160(640) 80(320) 40(160) 

Window Size 128(512) 64(256) 32(128) 16(64) 
Hop Size 32(128) 16(64) 8(32) 4(16) 

Figure 13 presents examples of spectrograms generated using the experimental pa-
rameters. 

 
Figure 13. Examples of input spectrogram data of 65 × 10, 32 × 10, 16 × 10, and 8 × 10 sizes. Figure 13. Examples of input spectrogram data of 65 × 10, 32 × 10, 16 × 10, and 8 × 10 sizes.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20 
 

 

Entropy analysis was performed using a spectrogram generated from vibration sen-
sor signals to select the optimal downsampling candidate. Fifteen arbitrary segments were 
divided, and the spectrogram values corresponding to each segment were measured for 
entropy analysis. This analysis allows for a relative comparison of the information content 
of frequency components that strongly manifest when bearing faults occur. Figure 14 
shows the results of entropy analysis performed on spectrograms of various sizes gener-
ated from vibration sensor signals measured on a 0.007 diameter damage in the ball re-
gion. As the size of the spectrogram decreased due to downsampling, the entropy value 
increased. In particular, the entropy increased significantly in the 16 × 10 spectrogram 
generated by downsampling at a 3K sample rate. Therefore, the 32 × 10 spectrogram gen-
erated by downsampling at a 6K sample rate might be suitable as the input for the lite 
CNN model for diagnosing bearing faults. 

 
Figure 14. Comparison of entropy of spectrograms with different sizes. 

Experiments were conducted using the lite CNN model to confirm the suitability of 
the downsampling interval estimated by entropy analysis. Table 6 lists the experimental 
results, which indicate that the estimated sampling rate of 6K is appropriate. The 32 × 10 
spectrogram generated by downsampling to 6K maintains excellent performance in clas-
sification accuracy compared to signals with higher sampling rates, with almost no differ-
ence. The 16 × 10 spectrogram generated by downsampling to 3K, which is similar to the 
results of the entropy analysis, reduced the classification accuracy significantly. Further-
more, the experiments showed that downsampling the vibration sensor signal can effec-
tively reduce the computational complexity and parameter count of the deep learning 
model. 

Table 6. Comparison of bearing fault diagnosis accuracy performance and computation complexity 
measures (computation time, number of parameters, and Flops) of lite CNN models using each in-
put data size according to each corresponding sample rate. 

Input 
Data Size 

Accuracy Computation Time (s) # of Parameter (K) FLOPs 
(G) Min Max Mean std Train Predict Total Total Dense 

65 × 10 99.92  100  99.96  0.031  19.632  0.120  19.752  238 235 0.00365 
32 × 10 99.70  100  99.86  0.112  18.694  0.120  18.814  153 151 0.00187 
16 × 10 93.42  97.00 95.26  0.980  18.480  0.118  18.598  112 110 0.00100 
8 × 10 83.54  87.21  85.20  1.142  18.395  0.119  18.514  92 89 0.00057 

4.4. Comparison Experiment with the Best-Performing Model 
Bearing failures were diagnosed while significantly reducing the complexity of the 

model using a dimensionality reduction technique for input data based on the structure 
of the lite CNN model and the characteristics of vibration sensor signals. 

Table 7 lists the performance of the proposed technique with the transfer learning-
based ResNet50 model [6] using the same CWRU dataset. The same number of training, 

Figure 14. Comparison of entropy of spectrograms with different sizes.

Experiments were conducted using the lite CNN model to confirm the suitability of
the downsampling interval estimated by entropy analysis. Table 6 lists the experimen-
tal results, which indicate that the estimated sampling rate of 6K is appropriate. The
32 × 10 spectrogram generated by downsampling to 6K maintains excellent performance
in classification accuracy compared to signals with higher sampling rates, with almost no
difference. The 16 × 10 spectrogram generated by downsampling to 3K, which is simi-
lar to the results of the entropy analysis, reduced the classification accuracy significantly.
Furthermore, the experiments showed that downsampling the vibration sensor signal
can effectively reduce the computational complexity and parameter count of the deep
learning model.

Table 6. Comparison of bearing fault diagnosis accuracy performance and computation complexity
measures (computation time, number of parameters, and Flops) of lite CNN models using each input
data size according to each corresponding sample rate.

Input Data
Size

Accuracy Computation Time (s) # of Parameter (K) FLOPs
(G)Min Max Mean Std Train Predict Total Total Dense

65 × 10 99.92 100 99.96 0.031 19.632 0.120 19.752 238 235 0.00365

32 × 10 99.70 100 99.86 0.112 18.694 0.120 18.814 153 151 0.00187

16 × 10 93.42 97.00 95.26 0.980 18.480 0.118 18.598 112 110 0.00100

8 × 10 83.54 87.21 85.20 1.142 18.395 0.119 18.514 92 89 0.00057
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4.4. Comparison Experiment with the Best-Performing Model

Bearing failures were diagnosed while significantly reducing the complexity of the
model using a dimensionality reduction technique for input data based on the structure of
the lite CNN model and the characteristics of vibration sensor signals.

Table 7 lists the performance of the proposed technique with the transfer learning-
based ResNet50 model [6] using the same CWRU dataset. The same number of training,
validation, and test data were used, and the proposed lite CNN model was tested with 10
classification classes under the same conditions. To produce 10 classes, data with a 0.028
diameter inner race and ball damage were excluded. For each class, 300 train data, 100
validation data, and 200 test data were used. Three thousand train data, 1000 validation
data, and 2000 test data were used for the 10 classes.

Table 7. Comparison of the bearing fault diagnosis accuracy performance and computation complex-
ity measures (computation time, number of parameters, and Flops) of the proposed lite CNN model
against ResNet based SOTA model.

Model
Accuracy Computation

Time(s)
FLOPs

(G)
# of Parameters

(K)Min Max Mean

SOTA model
(ResNet50 based

on transfer
learning)

99.90 100 99.95 294 3.8 over 23,900 over

Proposed
lite CNN 99.92 100 99.95 18.326 0.00187 153

The comparison was made by considering the calculation amount and the total number
of parameters, excluding the dense layer, of the transfer learning-based ResNet50 model
because of the structural difference from the lite CNN model. This was done for a more
accurate comparison.

Compared to the transfer learning-based ResNet50 model, the proposed model showed
the same average classification accuracy and maximum classification performance, which was
0.02% higher in the 10 repeated experiments. Despite the low complexity, the proposed model
produced better classification results than the SOTA model [6]. On the other hand, both models
have excellent classification properties, considering the experimental conditions.

The proposed lite CNN model using 32 × 10 input data dimensions significantly
reduces the computation complexity in terms of the total number of parameters, FLOPs,
and computation time compared to the SOTA model. The lite CNN model had only
0.64% of the total number of parameters, 0.05% of the total FLOPs, and 6.399% of the
computation time compared to the SOTA model. This results in a significantly lighter
model with the same maximum classification performance. Under a limited computing
power environment, the proposed lite CNN model’s 32 × 10 input data dimension was
plausible and ideal for fault diagnosis [15].

4.5. Generalization Performance Experiment

The proposed lite CNN model exhibited excellent classification performance, even
with a lightweight structure, under the experimental conditions of Set1 of the CWRU dataset.

The CWRU dataset was composed of three different types of defects located in two
areas of a rotating machine (drive end and fan end) and measured by three different sensors
(drive end, fan end, and base) at different locations. The dataset contained a combination
of vibration signals in the time domain. The proposed lite CNN model was tested on the
data from all sensor types to classify the generalized characteristics of bearing failures in
the facility. Table 8 lists the composition of the CWRU dataset used in the experiments.
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Table 8. CWRU Dataset Configuration.

Data Set Fault Location Sensor Location # Classes

Set1
DE

DE 12

Set2 FE 10

Set3 BA 9

Set4
FE

DE 10

Set5 FE 10

Set6 BA 9

Set7
DE

DE 10

Set8 FE 10

Table 9 presents the experimental results of the proposed model using the vibration
sensor signals measured at various damaged locations and sensor positions. For each class,
300 train data, 100 validation data, and 200 test data were used.

Table 9. Bearing fault diagnosis accuracy performance and computation time of the proposed lite
CNN model for all datasets (Set1~Set8).

Data
Accuracy Computation Time (s)

Min Max Mean Std Train Predict Total

Set1 99.70 100 99.86 0.111539 18.694 0.120 18.814

Set2 99.85 100 99.93 0.050990 17.684 0.138 17.821

Set3 99.72 100 99.89 0.090752 16.054 0.133 16.187

Set4 99.65 99.85 99.76 0.056789 17.564 0.134 17.698

Set5 99.70 99.90 99.78 0.050990 17.596 0.139 17.735

Set6 99.72 99.94 99.81 0.066068 16.09 0.133 16.223

Set7 99.90 100 99.95 0.031623 17.58 0.138 17.718

Set8 99.95 100 99.98 0.025000 17.758 0.139 17.897

The classification experiments performed on the CWRU dataset using the drive end,
fan end, and base sensors for all types of damage confirmed that the proposed lite CNN
model had excellent classification performance, similar to that obtained when using the
drive end sensor to classify drive end damage under the experimental conditions of Set 1.
In the experimental conditions of Sets 2 to 8, a high classification accuracy of at least 99.65%
or more was confirmed in 10 repeated experiments. All experimental data achieved a high
average classification performance of 99.78 to 99.98%.

Hence, the proposed lite CNN model generates excellent classification results for all
data sets of the CWRU.

5. Conclusions and Further Works

This paper proposes a new lightweight CNN model for bearing defect diagnosis based
on low-dimensional input data that considers equipment and signal characteristics. The
model achieved competitive diagnostic performance while having low complexity. Two
methods were proposed to reduce the dimensionality of the data required for bearing
fault diagnosis. First, an effective 0.0346 s signal segment for bearing fault diagnosis
was identified by calculating the rotational cycle of the rotating machinery. Second, the
vibration sensor signals obtained for bearing faults were downsampled to 6K by reducing
the sampling rate. The spectrograms generated using the proposed techniques had lower
input data dimensions than the 224 × 224 input data dimensions used by the transfer
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learning-based ResNet50 model. To detect bearing faults using low-dimensional input
data, a lite CNN model was proposed that uses padding and excludes pooling to prevent a
reduction in the feature map dimensions during convolution and pooling operations. The
experiments performed using the CWRU dataset showed that the proposed model achieved
an average of 0.02% superior classification performance with only 0.64% total parameters,
0.05% total FLOPs, and 6.399% computation time compared to the latest models, including
the SOTA model. Furthermore, the proposed model could effectively classify various
bearing failures, regardless of the location or type of sensor used to measure the data in the
same facility.

One limitation of the proposed light deep learning model for bearing fault diagnosis
is that it might not capture all the complexity and variability of the data. The light models,
like the proposed model, typically have fewer layers and parameters, which can reduce
their ability to learn and generalize from the data. In addition, reducing the input data
dimension may result in a loss of important information that could affect the accuracy of
the diagnosis. Therefore, it is essential to evaluate the trade-off between computational
efficiency and classification performance carefully when using light deep learning models
for bearing fault diagnosis. Another limitation is that the proposed model may not be
suitable for detecting rare or subtle faults that require more complex and sophisticated
models to capture their patterns. Furthermore, low sample rate sensors may lead to a
loss of information critical for identifying specific bearing defects. The effectiveness of the
light model may also depend on the specific operating conditions and characteristics of
the rotating machinery being analyzed. Therefore, while the proposed light deep learning
model offers a practical solution for reducing computational and data processing costs, it
might not always be the best choice for all applications of bearing fault diagnosis.

When diagnosing faults in complex systems, it is vital to consider the complexity of
the problems that may arise. One way to do this is to develop models that capture the
intricacies of a system appropriately, without adding unnecessary complexity that could
lead to overfitting or computational inefficiencies. Hence, it is crucial to gather diverse data
from real-world systems in operation, which can be used to test and refine the models. By
utilizing such data, lightweight models can be developed with enhanced generalization
characteristics that are better suited for fault diagnosis. Conducting experiments with this
data can help ensure that the proposed model is accurate, reliable, and efficient, and can be
applied to various systems in various industrial fields. Ultimately, this research aimed to
improve fault diagnosis and reduce downtime and maintenance costs in complex systems,
leading to more efficient and reliable operations.

On the other hand, the proposed method has only been tested on the CWRU dataset.
While it showed effective results for diagnosing bearing faults in the specific dataset, it
cannot be applied uniformly to all rotating machinery, operating conditions, and bearings.
Therefore, the length and sample rate of vibration sensor signals should be recalculated
and adjusted for each dataset when testing under different conditions.

Future research will validate the proposed method using various types of bearing
fault data with noise from real operating machinery. More research will be needed to make
the proposed method robust to noise and address the lack of fault data before it can be
applied to actual equipment. The proposed studies will focus on lightweight AI models
that can perform well in various fault diagnosis fields and be applied to actual industry
applications at low power and cost.
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STFT Short-Time Fourier Transform
MLP Multilayer Perceptron
SVM Support Vector Machine
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