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Abstract: In this paper, three different structures of surface plasmon resonance (SPR) sensors based
on the Kretschmann configuration: Au/SiO2 thin film structure, Au/SiO2 nanospheres and Au/SiO2

nanorods are designed by adding three different forms of SiO2 materials behind the gold film of
conventional Au-based SPR sensors. The effects of SiO2 shapes on the SPR sensor are investigated
through modeling and simulation with the refractive index of the media to be measured ranging
from 1.330 to 1.365. The results show that the sensitivity of Au/SiO2 nanospheres could be as
high as 2875.4 nm/RIU, which is 25.96% higher than that of the sensor with a gold array. More
interestingly, the increase in sensor sensitivity is attributed to the change in SiO2 material morphology.
Therefore, this paper mainly explores the influence of the shape of the sensor-sensitizing material on
the performance of the sensor.
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1. Introduction

Surface plasmon resonance (SPR) sensors are sensitive to changes in the refractive
index of the medium in contact with the metal film, and when the refractive index of the
medium changes, the resonance wavelength or angle will be changed, thus realizing the
detection of a specific medium [1–3]. SPR sensors are widely used in food safety [4,5], biol-
ogy [6–8], and gas and temperature monitoring [9–12] because of their label-free detection,
low cost, real-time measurement, and high sensitivity. SPR sensors include prism cou-
pling [13–15], waveguide coupling [16], fiber coupling [17–19], and grating coupling [20].

The Kretschmann structure [21] is a common SPR sensor structure consisting of a
prism, a metal film, and a medium [22]. A polarized light illuminates the prism and
undergoes attenuated total internal reflection at the metal/prism interface. The evanescent
wave resonates with the plasmon propagating on the metal medium’s surface, causing
reflected light absorption [23]. The electric field intensity is strongest at the intersection of
the metal and the medium, and decreases exponentially with the increase of medium depth.

In recent years, SPR sensors have developed very rapidly. However, when detecting
media with low concentration or small molecules, SPR sensors would have low sensitivity
due to the small range of refractive index changes that these media bring about. Therefore,
various strategies have been developed to improve the sensitivity of SPR sensors, including
metallic nanowires [24,25], nanohole arrays [26,27], metal oxides [15,28], nanoparticles and
so on. Although gold has good chemical stability, the surface of the gold film is too smooth
to adsorb a large number of molecules, thus limiting the sensitivity of the sensors.

In 2004, Brolo et al. demonstrated the feasibility of using periodic metal nanostructures
as sensors alone [29]. A 200 nm diameter periodic hole array was fabricated on a 100 nm
gold film. The sensing sensitivity of the periodic nanopore chip was about 400 nm/RIU.
Then, Pang et al. increased the sensitivity of the nanopore array spectrum detection to
1520 nm/RIU [28]. In 2020, Armin Agharazy Dormeny et al. made SPR sensors with
different gold structures arranged periodically, and explored the influence of sunken or
raised gold nanorods, and nanorods on the performance of SPR sensors [24,30].
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Recent advances in nanotechnology have led to the emergence of many different types
of SiO2 structures with a variety of heights, shapes and sizes, mostly used in biosensors [31].
SiO2 has a high yield, low cost, good chemical stability, strong film, low refractive index,
and unique optical properties. It has a variable bandwidth, small particle size, large
specific surface area and large volume voids, and can adsorb more molecules of the sensing
medium. Therefore, it is often used as a composite material to improve the reactants’
reaction efficiency, stability and adsorption capacity [32,33]. The above sensor discusses
the influence of the form of the sensitizing material Au on the performance of the SPR
sensor. Based on the above work and the advantages of SiO2 material, this paper studies
the influence of the form of SiO2 material on the performance of the SPR sensor.

In this work, the SPR sensors are simulated by combining silica material with gold
using the fluctuating optics module of COMSOL Multiphysics software [34]. The purpose
of this paper is to explore the effect of three different forms of SiO2 materials on the
performance of SPR sensors. Thus, sensors with Au/SiO2 thin film structure, Au/SiO2
nano-spheres and Au/SiO2 nanorods are designed and their sensitivity, as well as FOM,
are analyzed and compared, respectively. Following the optimization of their structural
parameters, it is found that the Au/SiO2 nanospheres had the best sensitivity and FOM,
and could significantly enhance the performance of the SPR sensors. This indicates that the
device with the Au/SiO2 nanosphere structure not only enhances the performance of SPR
sensors, but also has important implications for the measurement of SPR sensors.

2. Theoretical Analysis and Device Modeling and Simulation Setup

The necessary condition for exciting surface plasmon (SP) is that the wave vector
of polarized incident light (Kc) should be equal to the wave vector of surface plasmon
(Ksp) [35]:

ksp = kc (1)

The wave vector of surface plasmon (Ksp) and the wave vector of polarized incident
light (Kc) can be expressed as follows [36,37]:

Ksp =
ωc

c

√
εmεd

εm + εd
(2)

Kc = npk0sinθ (3)

where εm represents the RI of the metal film, εd represents the RI of the sensing medium,
np is the RI of the prism, λ is the incident wavelength and θ is the incident angle.

The wavelength corresponding to the minimum reflectance is the resonance wave-
length. The change in resonance wavelength is caused by the change in the refractive index
of the sensing medium, and the sensitivity can be defined as [38]:

S =
∆λSPR

∆n
(4)

where ∆SPR is the change of SPR resonance wavelength, and ∆n is the change of refractive
index.

The full width at half maxima (FWHM) of the SPR reflectance spectrum and Figure of
merit (FOM) are also important factors in evaluating the performance of a sensor, and the
FOM can be calculated as follows [5]:

FOM =
S

FWHM
(5)

where FWHM is the geometric parameter of the SPR curve. While paying attention to
the sensitivity of the sensor, it is also necessary to pay attention to its FWHM. FOM can
comprehensively consider the sensitivity and FWHM. Therefore, it is expected that the
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sensor can have greater sensitivity and smaller FWHM, that is, the sensor with a larger
FOM will have better performance.

The electromagnetic module in COMSOL is mainly calculated according to the Max-
well equation. In this paper, three different structures of sensors are simulated with the
prism material BK7. The refractive index of BK7 prism varies with the wavelength by the
following formula [39]:

n2 = 1 +
1.03961212λ2

λ2 − 0.00600069867
+

0.231792344λ2

λ2 − 0.0200179144
+

1.01046945λ2

λ2 − 103.560653
(6)

The alcohol is selected as a sensing medium and the refractive index of the alcoholic
solution varies from 1.330 to 1.365. Figure 1 shows the diagram of the SPR sensor. The
initial setting of the key parameters are as follows: incidence angle (θ) = 74 deg, incident
light wavelength = 632.8 nm and the thickness of the old film = 50 nm. The Lorentz–Drude
model in the experimental section of the COMSOL material library is adopted for Au and
subsequent SiO2 materials.
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Figure 1. Schematic diagram of various structures of SPR sensors (a) Au film, (b) Au/SiO2 thin film,
(c) Au/SiO2 nanospheres and (d) Au/SiO2 nanorods.

In this paper, the performance of the SPR sensors with three different structures:
Au/SiO2 thin film structure, Au/SiO2 nanospheres structure and Au/SiO2 nanorods
structure are investigated by using the wavelength modulation method.

3. Results and Discussion

In this paper, two-dimensional and three-dimensional modeling and simulation stud-
ies on SPR sensors with the Kretschmann structure are carried out using COMSOL soft-
ware [40]. Based on traditional SPR sensors with pure Au film, three kinds of SPR sensors
with different structures, i.e., Au/SiO2 thin film structure, Au/SiO2 nanospheres struc-
ture and Au/SiO2 nanorods structure are designed, and the specific structure diagram is
shown in Figure 1. The performance of the SPR sensors with the three different SiO2 form
structures is investigated.

3.1. Au Structure

The SPR sensor has the lowest reflectance and the best sensing effect when a Au
film of 50 nm is deposited on a glass prism (BK7). The Kretschmann gold film sensor
is simulated by COMSOL, and five different thicknesses of the gold film (40 nm, 45 nm,
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50 nm, 55 nm, 60 nm) are added behind the prism. Figure 2a shows the SPR curves of
gold films of different thicknesses when the fixed measuring medium is water (n = 1.33).
From Figure 2a, it is found that the variation of resonance wavelength of the gold film
with different thicknesses is concentrated in the range of 630–650 nm. The resonance
wavelength increases with the increase in thickness. A good sensor requires low reflectance
and high-quality factor, so it can be found from Figure 2b that the 50 nm gold film just
meets the above requirements. In addition, the 50 nm gold film is widely used in a variety
of scientific research articles, has good comparability and is basic. Follow-up studies are
carried out on this basis.
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Figure 2. (a) SPR curves for the different thicknesses of gold film, (b) comparison of reflectivity and
FOM at different gold film thicknesses.

Thus, the SPR sensor with a pure 50 nm gold structure is simulated using COMSOL, as
shown in Figure 1a. As can be seen from Figure 3a, when the refractive index of the medium
increases from 1.330 to 1.365, the SPR curve shifts to the right, the resonance wavelength
shows a red-shift shape, and the wavelength shift of SPR is 77 nm. Figure 3b shows that
there is a good linear relationship between the resonance wavelength and the refractive
index with the correlation coefficient R2 = 0.9916. The higher the degree of linear fitting, the
smaller the relative error. The relation between resonant wavelength and refractive index is
better and the accuracy of the measurement of the SPR sensor is higher. Its sensitivity can
reach 2192.62 nm/RIU.
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3.2. Au/SiO2 Thin Film Structure

In order to obtain the excitation effect of the gold film and the enhancement effect of
SiO2 at the same time, the SiO2 film is added behind the gold film to construct the SPR
sensor with a Au/SiO2 film structure without changing the above parameters, as shown
in Figure 1b. Under the condition that the thickness of the gold film remains unchanged,
the thickness of the SiO2 film was optimized by calculating the performance of the sensors
with different SiO2 layer thicknesses in the range of 10–90 nm (10 nm for each increase).
The simulation results are shown in Figure 4.
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From Figure 4, it can be observed that under different SiO2 film thicknesses, the
sensitivity and FOM both increase first and then decrease. Considering the sensitivity and
FOM, we can find that when the thickness of the SiO2 film is 20 nm, the sensitivity and
FOM of the SPR sensor are the highest, and the SPR sensor has the best performance. The
sensor with 50 nm Au and 20 nm SiO2 film composite is selected as the sensor with the best
performance.

Then, the sensor is used to test the media with different refractive indices ranging
from 1.330–1.365. According to Figure 5a, the SPR wavelength shifted 77.9 nm, which
is red-shifted for 0.9 nm compared with that of the gold structure. Figure 5b shows
the relationship between the refractive index and resonance wavelength and their linear
fitting. The refractive index is linearly correlated with the resonance wavelength with the
correlation coefficient R2 = 0.9934. The sensitivity can reach 2230.2 nm/RIU, which is 1.71%
higher than that of the previous gold structure, but the improvement is insignificant. The
increased sensitivity may be due to the SiO2 material’s inherent refractive index. When light
enters the surface of the gold film from the prism and causes surface plasmon resonance in
SiO2 material, the corresponding resonance wavelength will be redshifted and increase its
sensitivity.
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3.3. Au Array Structure

A gold pore array with the same period and size as the SiO2 nanospheres in this
work is established by COMSOL in Figure 6, which is more convenient for the sensitivity
comparison. (Distance = 10 nm, Radius = 20 nm).
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Figure 6. Schematic diagram of the Au array structure SPR sensors.

As can be seen from Figure 7a, when the refractive index of the medium increases
from 1.330 to 1.365, the SPR curve shifts to the right, the resonance wavelength shows a
redshifted shape, and the wavelength shift of SPR is 82 nm. Figure 7b shows that there is a
good linear relationship between the resonance wavelength and the refractive index with
the correlation coefficient R2 = 0.9909. Its sensitivity can reach 2282.8 nm/RIU. Compared
with the gold film, the sensitivity of the gold array is improved by 4.11%. The simulation
results show that the void structure improves the sensitivity of the sensor based on the
pure gold film. Follow up studies are carried out on this basis.
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3.4. Au/SiO2 Nanospheres

To further improve the sensitivity and FOM, and change the shape of the SiO2 mate-
rial, periodic SiO2 nanospheres were embedded in a 50 nm gold film to form an SPR sensor
with a periodic Au/SiO2 nanosphere structure, as shown in Figure 1c. According to the
literature, it can be found that a linear relationship between period and size and FWHM and
resonance wavelength [41]. Therefore, the study period and size are of great significance to
this paper. However, the period of the device is the sum of the distance and ×radius in
this work. In order to accurately consider the changes of multiple periods in the following
articles, we divide the period into two variables: radius and distance. Therefore, two factors
need to be considered, i.e., the radius of the nanospheres and the distance between the
nanospheres.

Under the condition that the thickness of the gold film remains unchanged, in order
to obtain the best combination of the radius of the SiO2 nanosphere and the distance
between them, the sensing performance of the sensor with different combinations of SiO2
nanosphere radius, in the range of 10–30 nm (increasing 5 nm each time), and the distance
between spheres ranging from 10–40 nm (increasing 5 nm each time) is calculated, and the
simulation results are shown in Figure 8. It is observed that in the transverse direction, the
sensitivity increases with the increase of the nanosphere radius, but FOM increases first
and then decreases. It is observed in the longitudinal direction that the sensitivity decreases
with the increase of the distance between nanospheres.

Considering the performance of both sensitivity and FOM, a set of optimal solutions is
selected from Figure 8a–d, respectively, and the four sets of data were compared in detail in
Table 1. By observing Table 1, it can be seen that the SPR sensor has the highest sensitivity
and FOM when the spacing between the SiO2 nanospheres is 10 nm and the radius is 20 nm.
At this time, the SPR sensing performance is optimal, thus making it the best choice.
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Table 1. Evaluation of the sensing performance for the sensors with different thicknesses and
distances between SiO2 nanospheres.

Distance
(nm)

Radius
(nm)

Wavelength
(nm)

n = 1.33

Wavelength
(nm)

n = 1.365

Sensitivity
(nm/RIU)

FWHM
(nm)

FOM
(/RIU)

10 20 748 848 2875.4 86.359 33.30
20 25 744 844 2857.14 98.637 28.97
30 20 695 784 2542.9 84.045 30.26
40 20 682 769 2600 92.764 28.03

The device is used to test media with different refractive indices ranging from 1.330–
1.365. Figure 9a shows that the SPR wavelength is shifted by 100 nm, which is redshifted
by 23 nm compared with that of the gold structure. Figure 9b shows the relationship
between the refractive index and resonance wavelength, and the corresponding linear
fitting. The refractive index is linearly correlated with the resonance wavelength with the
correlation coefficient R2 = 0.9923. The sensitivity of the sensors with this structure can
reach 2875.4 nm/RIU. The sensitivity is significantly improved compared with the previous
two structures (31.14% higher than sensors with a pure gold film structure and 28.93%
higher than sensors with the Au/SiO2 thin film structure). At the same time, the FOM of
this structure is also higher than that of the previous two structures. Compared with a gold
film, the specific surface area of the SiO2 nanospheres will be increased, which can provide
more contact sites with alcohol molecules. When adsorbing more alcohol molecules, the
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resonance wavelength will be redshifted. Thus, the Au/SiO2 nanospheres structure sensor
improves the sensitivity.
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Comparing a pore structure with a SiO2 nanoarray showed that while the structure in-
creases the sensitivity above the bare film, the SiO2 nanosphere further increases sensitivity.
In order to further understand how the SiO2 nanospheres improve the sensitivity of the
sensor, the electric field distribution diagram of the structure is drawn in Figure 10.
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Figure 10 shows the electric field distribution at the resonance wavelength for a
dielectric refractive index of 1.330 in the Au/SiO2 nanosphere structure. The electric field
intensity is close to the maximum when the reflectance is minimal. It can be seen from
Figure 10 that the maximum electric field intensity is obtained at the interface between
Au and SiO2 nanospheres, and then the electric field intensity decays continuously in the
induced medium. The electric field distribution indicates that the reduced reflectivity is
caused by the SPR phenomenon.

3.5. Au/SiO2 Nanorod Structure

To investigate whether the SiO2 nanorods affect the effect of SPR sensing, the SiO2
nanospheres are replaced with SiO2 nanorods. The Au/SiO2 nanorod structure of the SPR
sensor is formed by inlaying SiO2 nanorods in a gold film, as shown in Figure 1d. In this
structure, three factors need to be considered, namely the radius and height of the nanorods
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and the distance between the nanorods. The effects of the above three factors on the sensing
effect are shown in Tables 2–4.

Table 2. Evaluation of the sensing performance for different distances between SiO2 nanorods.

Distance
(nm)

Wavelength
(nm)

n = 1.33

Wavelength
(nm)

n = 1.365

∆Wavelength
(nm)

Sensitivity
(nm/RIU)

FHWM
(nm)

FOM
(/RIU)

10 814 927 113 3228.57 119.372 27.05
20 760 861 101 2885.71 95.712 30.15
30 729 824 95 2714.29 90.578 29.97

Table 3. Evaluation of the sensing performance for the different radii of the SiO2 nanorods.

Radius
(nm)

Wavelength
(nm)

n = 1.33

Wavelength
(nm)

n = 1.365

∆Wavelength
(nm)

Sensitivity
(nm/RIU)

FHWM
(nm)

FOM
(/RIU)

10 711 803 92 2628.57 87.754 29.95
15 740 838 98 2800 93.653 29.90
20 760 861 101 2885.71 95.712 30.15
25 777 881 104 2971.43 103.561 28.69
30 787 893 106 3028.57 107.691 28.12
35 792 897 105 3000 111.620 26.88

Table 4. Evaluation of the sensing performance for the different heights of the SiO2 nanorods.

Height
(nm)

Wavelength
(nm)

n = 1.33

Wavelength
(nm)

n = 1.365

∆Wavelength
(nm)

Sensitivity
(nm/RIU)

FHWM
(nm)

FOM
(/RIU)

20 700 787 87 2485.7 80.135 31.02
40 758 859 101 2885.71 95.712 30.15
60 760 862 102 2914.29 100.036 29.13

To further investigate the performance of the sensor, we varied the height, radius and
spacing of the SiO2 nanorods. The geometric parameters of the SiO2 nanorods are initially
set at 40 nm in height, 20 nm in radius and 20 nm in spacing. The control variable method
was subsequently used.

First, the effect of the distance between the SiO2 nanorods on the sensing performance
was investigated, as shown in Table 2. While keeping the radius and height constant, the
sensitivity of the sensor decreases as the distance increases from 10 nm to 30 nm and the
FOM increases first and then decreases. Taking both into account, it is found that the
sensitivity and FOM of the sensor are relatively high and the SPR is the best when the
distance is 20 nm.

Next, the effects of the radius of the SiO2 nanorods and the rod spacing on the
sensitivity and FOM of the sensor were investigated. It is observed from Table 3 that both
the sensitivity and FOM of the sensor increase first and then decrease as the radius increases
from 10 nm to 35 nm. When the radius of the SiO2 nanorods is 20 nm, the sensitivity and
FOM are high. It is observed in Table 4 that when the rod height increases from 20 nm to
60 nm, the sensitivity of the sensor increases, while the FOM decreases. The sensitivity
and FOM are relatively maximum when the spacing between the SiO2 nanorods is 40 nm.
Finally, the geometric parameters of the optimized SiO2 nanorods are: a height of 40 nm, a
radius of 20 nm and a distance of 20 nm.

The device was used to test media with different refractive indices ranging from 1.330–
1.365. Figure 11a shows that the SPR wavelength is shifted by 101 nm, which is red-shifted
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by 24 nm compared with the gold structure. Figure 11b shows the relationship between the
refractive index, resonance wavelength and the corresponding fitting line. The refractive
index is linearly correlated with the resonance wavelength with the correlation coefficient
R2 = 0.9879. The sensitivity can reach 2902.5 nm/RIU. The sensitivity is improved by 32.38%
compared with that of the pure gold film sensors, but the improvement is not significant
compared with that of the sensors with a Au/SiO2 nanosphere structure. Nonetheless, the
sensitivity of this structure is significantly higher than that of the first two structures.
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The sensing performance of the SPR sensor with four different structures: Au array
structure, Au/SiO2 thin film structure, Au/SiO2 nanospheres and Au/SiO2 nanorods were
identified by comparing the slopes of the four fitted straight lines, as shown in Figure 12.
The sensitivity of the SPR sensor with the Au/SiO2 nanosphere structure is 25.96% higher
than that of the SPR sensor with the Au array structure. Although its sensitivity is lower
than that of the sensor with the Au/SiO2 nanorods, its FOM is better. In summary, the SPR
sensor with the Au/SiO2 nanosphere structure has higher sensitivity and good FOM, and
there is a good linear correlation between the resonance wavelength and refractive index.
In addition, the sensor with this structure has a wide measurement range and can measure
media with a refractive index ranging from 1.330 to 1.365. The comparison results also
show that the sensor sensitivity is greatly affected by the morphology of SiO2 material.

The device is compared with other sensors, and the results are shown in Table 5. A
200 nm diameter periodic hole array was fabricated on a 100 nm gold film. The sensing
sensitivity of the periodic nanopore chip was about 400 nm/RIU [30]. The device was con-
structed from a gold film with Al2O3 grating, which had a sensitivity of 461.53 nm/RIU [42].
The above two articles show that the periodic arrangement of the nanomaterials has an
impact on the performance of the sensor. The sensitivity of this paper is higher than that
of these two papers, which indicates that the periodic arrangement of the materials and
the change of morphology have an impact on the performance of the sensor. Although
these results indicate that the SPR sensor designed in this work has a good performance in
alcohol detection, it still needs to be further explored in the experiment. The experimental
scheme of silicon dioxide synthesis can be referred to the literature [43,44].
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Table 5. Performance comparison of the different SPR sensors.

Sensitivity to the Refractive Index References

100 nm gold film with 200 nm diameter periodic hole array 400 nm/RIU [30]
A gold film with an Al2O3 grating 461.53 nm/RIU [44]

This work 2875 nm/RIU

4. Conclusions

In this paper, three different structures of SPR sensors based on the Kretschmann con-
figuration: Au/SiO2 thin film structure, Au/SiO2 nanospheres and Au/SiO2 nanorods were
designed, mainly by depositing a 50 nm gold film on the glass and adding three different
forms of SiO2 materials behind the gold film. Through modeling and simulation, the effects
of these three structures on the sensitivity and FOM of the sensors were explored and
compared. It was found that the sensitivity of the SPR sensor could reach 2875.4 nm/RIU
when the SiO2 nanospheres (with a radius of 20 nm and spacing between nanospheres of
10 nm) were inlaid in the 50 nm gold film. The sensitivity of the sensor with the Au/SiO2
nanosphere structure is 25.96% higher than that of the SPR sensor with a gold array
structure. Compared with the sensor with the Au/SiO2 nanorod structure, the sensor with
the Au/SiO2 nanosphere structure has a slightly lower sensitivity but enjoys a higher FOM.
Therefore, SiO2 nanospheres have more influence on the sensitivity of the sensor, which
just proves the influence of the shape of the sensitizing material on the sensitivity. The
device is used to measure the resonant wavelengths of substances with different refractive
indices. Based on the curve of resonant wavelength varying with the refractive index, it is
found that the device has linear properties and can be used to identify substances with an
unknown refractive index. The results of this device show that the different forms of SiO2
arranged theoretically.
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