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Abstract: We present a novel analytical method as an efficient approach to design a geodesic-faceted
array (GFA) for achieving a beam performance equivalent to that of a typical spherical array (SA).
GFA is a triangle-based quasi-spherical configuration, which is conventionally created using the
icosahedron method imitated from the geodesic dome roof construction process. In this conventional
approach, the geodesic triangles have nonuniform geometries due to some distortions that occur
during the random icosahedron division process. In this study, we took a paradigm shift from
this approach and adopt a new technique to design a GFA that is based on uniform triangles. The
characteristic equations that relate the geodesic triangle with a spherical platform were first developed
as functions of the operating frequency and geometric parameters of the array. Then, the directional
factor was derived to calculate the beam pattern associated with the array. A sample design of GFA
for a given underwater sonar imaging system was synthesized through an optimization process. The
GFA design was compared with that of a typical SA, and a reduction of 16.5% in the number of array
elements was recorded in the GFA at a nearly equivalent performance. Both arrays were modeled,
simulated, and analyzed using the finite element method (FEM) to validate the theoretical designs.
Comparison of the results showed a high degree of compliance between the FEM and the theoretical
method for both arrays. The proposed novel approach is faster and requires fewer computer resources
than the FEM. Moreover, this approach is more flexible than the traditional icosahedron method in
adjusting geometrical parameters in response to desired performance outputs.

Keywords: geodesic-faceted array; spherical array; acoustic transducers; beam patterns; finite
element method

1. Introduction

The development of conformal arrays of acoustic transducers has received consider-
able attention for a long time due to the remarkable advantages of their structures compared
with planar arrays. These advantages include a broad beamwidth, wide angular coverage,
full integration to the curved surface, space conservation, and reduction in the hydrody-
namic dragging effect [1–3]. Conformal volumetric arrays on a doubly curved surface
similar to a spherical array (SA) are regarded as the most effective geometric configuration
for applications requiring a hemispherical beam coverage [4,5]. Consequently, the design of
an SA has been a subject of interest to many researchers for decades and numerous studies
related to that have been reported in the literature [6–13].

However, despite having excellent performance characteristics, implementation of
an SA is difficult because of its complicated and expensive geometry [14–17]. First, the
typically large number of elements, which increases with the radius of the sphere, imposes
a considerable economical constraint considering the huge cost of manufacturing a single
transducer [18,19]. Second, the uniform distribution of the array elements on the doubly
curved surface of the sphere makes the SA geometry complex [20]. Consequently, the
geodesic-faceted array (GFA) has become a dominant alternative configuration, employed
to achieve a hemispherical coverage equivalent to that of a typical SA [21].
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The GFA is a triangle-based quasi-spherical configuration, which is constructed using
the icosahedron method imitated from the architectural design technique for geodesic
dome roof construction [22,23]. In this method, the geodesic triangles have nonuniform
geometries due to the occurrence of some distortions during the random icosahedron
division process [24]. Moreover, this approach is a one-off design technique that is inflexible
to any systematic modification of the structural parameters. Rather than focusing on
the performance requirement, this method is driven by the desired number of triangles.
Therefore, the method is unresponsive to any optimization scheme for achieving a specific
desired output. Unfortunately, to date, no method is available to improve the design and
overcome the glaring disadvantages. Meanwhile, using the conventional computer-aided
design approach (i.e., the finite element method (FEM)) to compose a volumetric array
geometry such as the GFA typically involves considerable computational complexities,
such as a long analysis time and huge computer resources [25]. These factors underscore
the need for another remarkably efficient design technique for the GFA.

In this study, we adopted an analytical approach as an efficient alternative to the
icosahedron method to synthesize a GFA design using geodesic triangles with uniform
geometry throughout the entire volume of the structure. This method enables the rigorous
analysis and optimization of the effects of the geometric parameters of the arrays to satisfy
the desired performance requirements [26]. Consequently, this method has the prospects of
a higher efficiency and flexibility in designing a performance output-driven GFA compared
to the icosahedron. Using this novel approach, the geometry of the geodesic triangle
was predefined as a function of the operating frequency. The characteristic relationship
between the triangles and the sphere was then developed mathematically, followed by
the composition of the array. The beam pattern of the GFA was derived as a function
of the directional factors to evaluate the performance of the array system based on this
geometrical interrelationship. A design case study was conducted through an optimization
process using the OptQuest Nonlinear Programming (OQNLP) optimization algorithm
considering some given specifications for underwater imaging applications [27]. The
performance analysis via this method was compared with that via the FEM to evaluate
the efficiency. The novelty of this study lies in the introduction of the analytical method
for a more efficient and adaptable configuration of a geodesic acoustical volumetric array
compared to the conventional use of the icosahedron.

2. Geometry of the Hosting Platform

Figure 1a is the schematic representation of the spherical segment as the hosting
platform for the GFA. This segment has a radius R and a curved surface defined by an arc of
length LN and angle θN from its topmost ring of radius R0 to the great circle. The segment
can be extended to a complete sphere by simply modifying the geometrical parameters.
Figure 1b shows the analytical view of the platform decomposed into layers of rings of
different radii separated by an arc of length d and angle θ1. The ring layers have the order
n = 0, 1, 2, . . . ., N, such as that the total number of rings in the entire array is N + 1. The
angle θ0 is the complementary angle to θN. Figure 1c presents the generalized version of the
geometry showing the nth ring of radius Rn at an elevation angle σn from the vertical axis Z
and arc angle θn to the first ring. The mathematical equations representing the relationship
between the geometrical parameters are presented in Equations (1) and (2):{

θ0
R0

}
=

{
90− θN

Rsinθ0

}
for n = 0 (1)


θ1
LN
θn
σn
Rn

 =


θN/N

RθN
nθ1

θ0 + θn
Rsin σn

 for n > 0 (2)
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Figure 1. Schematic of the array hosting platform: (a) basic; (b) simplified analytical; and (c) gener-

alized analytical views. 

2.1. Geometrical Analysis of the Geodesic Faceted Array 

Figure 2 shows the geometry of the proposed geodesic triangle having two equal 

sides of length D, base of length Lo, two equal base angles α, and an apex angle β. The side 

length D is equal to co times λ, where co is a constant and λ is the wavelength of the sound 

wave, and is related to Lo using Equation (3): 

𝐿𝑜 = 2𝐷 cos𝛼 (3) 
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Figure 1. Schematic of the array hosting platform: (a) basic; (b) simplified analytical; and (c) general-
ized analytical views.

2.1. Geometrical Analysis of the Geodesic Faceted Array

Figure 2 shows the geometry of the proposed geodesic triangle having two equal sides
of length D, base of length Lo, two equal base angles α, and an apex angle β. The side length
D is equal to co times λ, where co is a constant and λ is the wavelength of the sound wave,
and is related to Lo using Equation (3):

Lo = 2Dcos α (3)
Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 2. Geometry of the geodesic triangle. 

Figure 3a shows the array of ideal point sources located on the vertices of the geodesic 

triangles combined and arranged edge-to-edge to establish the entire structure of the GFA. 

This design facilitates the assemblage of the GFA without constructing the spherical plat-

form. When the arrangement is set to conform to the base circle of the spherical platform, 

the GFA structurally appears as illustrated in Figure 3b. Figure 3c shows the horizontal 

view of the distribution of the elements in this configuration. The individual element of 

the subarray on the nth ring evenly separated by an angle ϕn is marked by mn, where m 

represents the order of the elements. Hence, mn denotes the mth element on the nth ring 

while Mn represents the total number of elements on the nth ring. The subarrays on the 

GFA structure are independent of the circumference of each ring but dependent on the 

geodesic triangles. Consequently, Figure 3b would not complete a full 360° configuration 

because a certain part of the surface is inevitably left uncovered with elements as depicted 

by the gray area in Figure 3c. However, this condition is negligible because the small void 

section can be used as the backside by which the array is attached to the underwater facil-

ities, equipment, or ship as it is in practice [28]. 

 

  

(a) (b) 

Lo

D = coD = co

20

D

D

Lo/2

Lo

DD

D

D

DD

n = N-1

n = 0

n = N

n = 1

1N 
2N 3N 4N

1N-1
2N-1 3N-1

11 21

10

31

4N-1

5N

D D

Lo

Figure 2. Geometry of the geodesic triangle.

Figure 3a shows the array of ideal point sources located on the vertices of the geodesic
triangles combined and arranged edge-to-edge to establish the entire structure of the
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GFA. This design facilitates the assemblage of the GFA without constructing the spherical
platform. When the arrangement is set to conform to the base circle of the spherical
platform, the GFA structurally appears as illustrated in Figure 3b. Figure 3c shows the
horizontal view of the distribution of the elements in this configuration. The individual
element of the subarray on the nth ring evenly separated by an angle φn is marked by
mn, where m represents the order of the elements. Hence, mn denotes the mth element
on the nth ring while Mn represents the total number of elements on the nth ring. The
subarrays on the GFA structure are independent of the circumference of each ring but
dependent on the geodesic triangles. Consequently, Figure 3b would not complete a full
360◦ configuration because a certain part of the surface is inevitably left uncovered with
elements as depicted by the gray area in Figure 3c. However, this condition is negligible
because the small void section can be used as the backside by which the array is attached
to the underwater facilities, equipment, or ship as it is in practice [28].
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Figure 3. Schematic representation of the GFA: (a) rectangular planar; (b) typical quasi−spherical;
and (c) horizontal view.

As shown in Figure 3a, the subarray on the topmost ring layer automatically controls
the subarrays in the subsequent layers in a regular pattern. Therefore, only the radius of
the platform is necessary to determine the number of elements in the topmost layer M0,
as given in Equation (4). The number of elements is an integer; thus, the notation ℵ in
Equation (4) denotes the maximum possible integer for the enclosed expression. Conse-
quently, the number of elements in the subsequent layers is determined independently of
the radius of each ring by Equation (5), while the total number of elements NE and the
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number of triangles NT required for the implementation of the whole array are given in
Equations (6) and (7), respectively.

M0 = ℵ
(

2πR0

L0

)
, (4)

Mn= M0 + n, (5)

NE = M0 + M1 + M2 + . . .+MN = ∑N
n=0 Mn, (6)

NT = (M0 − 1) + 2∑N−1
n=1 (Mn − 1) + (MN − 1). (7)

2.2. Characteristic Equations of the Geodesic Faceted Array

The GFA design concept using the geodesic triangle provides the flexibility to control
Lo using only the angle α. However, this condition would depend on the vast possibilities to
vary D within the limit provided by the characteristic equations governing the relationship
between the geometry of the triangle and the spherical platform. Figure 4 shows this
geometrical connection for deriving the characteristic equations. Figure 4 is a schematic of
the geodesic triangle in Figure 2 that is integrated into the doubly curved surfaces of the
platform in Figure 1 to synthesize their dependence in the elevation and azimuth directions.
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From Figure 4, Rn and Lo can be easily related, as given in Equation (8). The combi-
nation of Equation (8) with Equation (3) then yields Equation (9). Applying the trigonom-
etry identities, cos∅n = 1− 2sin2(∅n

2
)

and cos 2α = 2cos2(α) − 1 yields Equation (10).

Furthermore, the chord length on the elevation, Cl = 2Rsin
(

θ1
2

)
, can be expressed us-

ing Equation (2) considering the total arc length of the spherical surface LN as given in
Equation (11). Similarly, the chord length X given in Equation (12) can take the final form
as given in Equation (13) when Equation (8) is substituted with the trigonometry iden-
tity, sin

(∅n
2
)
= 2 sin

(∅n
4
)
cos
(∅n

4
)
. Using the sine law on the triangle STQ in Figure 4,

Equation (14) is obtained subject to the condition that all three interior angles must be real
values (i.e., δC, δD, δx ε <) according to their respective definitions in Equations (15)–(17).
Equations (10) and (14) are the required two characteristic equations for the GFA on the
azimuth and elevation planes, respectively, to determine the feasibility of the design.

Lo = 2Rnsin
(
∅n

2

)
, (8)

D
Rn

=
sin
(∅n

2
)

cos α
, (9)
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D
Rn

=

√
1− cos∅n

1 + cos 2α
=

√
1− cos∅n

1− cos β
, (10)

Cl = 2Rsin
(

LN
2RN

)
, (11)

X =
Lo/2

sin σ
=

Lo

2sin
(
90− ∅n

4
) , (12)

X =
Rn sin

(∅n
2
)

cos
(∅n

4
) = 2Rn sin

(
∅n

4

)
, (13)

D =
sin δD
sin δc

·Cl , (14)

cos δC =
D2 + X2 − Cl

2

2DX
, (15)

cos δD =
Cl

2 + X2 − D2

2ClX
, (16)

Cosδx =
Cl

2 + D2 − X2

2DCl
. (17)

2.3. Derivation of the Directional Factor of the Array

Figure 5a shows a representative element mn located on the surface of the hosting
platform. The acoustic pressure emitted from this element is measured at point P, located
at a distance rmn away from the element. This figure shows that the position vectors

→
p and

→
mn from the origin of point P and mn have the spherical coordinates (r, θ, φ) and (R, θn,
φmn), respectively. The two position vectors are related as in Equation (18). This equation
indicates that the measurement distance rmn is determined as expressed in Equation (19).
When the positions of P and mn are expressed in terms of Cartesian coordinates as shown
in Figure 5b, rmn can again be expressed as given in Equation (20). Comparing the two
equations, the directional component cosγmn would have the value given in Equation (21).
Equation (22) is obtained at the far-field where r >> R and the propagation lines are assumed
to be parallel, as illustrated in Figure 5c. −

P
−

mn

 =

(
Xp Yp Zp
Xm Ym Zm

)
=

(
rsin θcos ∅ rsin θsin ∅ rcos θ

Rsin σncos(mn∅n) Rsin σnsin(mn∅n) Rcos σn

)
(18)

rmn
2 =

(
Xp − Xm

)2
+
(
Yp −Ym

)2
+
(
Zp − Zm

)2

= r2 + R2 − 2Rr{sin θsin σncos(∅−mn∅n) + cos θcos σn}.
(19)

rmn
2 = r2 + R2 − 2Rrcos γmn (20)

cos γmn = sin θsin σncos(∅−∅mn) + cos θcos σn (21)

rmn = r− R cos γmn (22)
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2
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2
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2 = 𝑟2 + 𝑅2 − 2𝑅𝑟 𝑐𝑜𝑠 𝛾𝑚𝑛 (20) 
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Figure 5. Diagrammatical illustrations for the derivation of the directional factor of an acoustical
point source on the spherical segment platform: (a) spherical coordinate; (b) rectangular coordinate;
and (c) propagation line parallelism at a far−field distance.

The acoustic pressure radiated from this single point source p is expressed as given
by Equation (23); thus, expressing the pressure from the subarray on the nth ring pn as in
Equation (24) is easy [29]. In this equation, A is amplitude and t is time, while the parameters
k and ω are the wave number and angular frequency, respectively. Consequently, the total
acoustic pressure from the array pa is the summation of the sound pressures p0, p1, . . . ,
pN radiated from each subarray on the rings n = 0, 1, . . . , N as expressed in Equation (25).
Substituting Equation (22) into Equation (25) and applying the far-field condition, that is,
1/rmn

∼= 1/r for being r >> R, Equation (26) is obtained as the final sound pressure from
the array.

p =
A

rmn

e
j(ωt−krmn )

, (23)

pn =
A
r1

e
j(ωt−kr1)

+
A
r2

e
j(ωt−kr2)

+ . . . +
A

rMn

e
j(ωt−krMn )

= ∑Mn
mn=1

A
rmn

e
j(ωt−krmn )

, (24)

pa = p0 + p1 + . . . + pN ,

=
M0

∑
m0=1

A
rm0

e
j(ωt−krm0 ) +

M1

∑
m1=1

A
rm1

e
j(ωt−krm1 ) + . . . +

MN

∑
mN=1

A
rmN

e
j(ωt−krmN ) (25)

pa =
A
r

ej(ωt−kr)∑N
n=0 ∑Mn

mn=1 ejkR cos γmn . (26)
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Setting γmn = 0, the pressure on the acoustic axis normal to the element mn is obtained
as expressed in Equation (27). R

r
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0 at a far-field distance; thus, the maximum pressure
amplitude is isolated as given in Equation (28).

pa(0) =
A
r

ej(ωt−kr)∑N
n=0 ∑Mn

mn=1 ejkR =
A
r

ej{ωt−kr(1− R
r )}∑N

n=0 ∑Mn
mn=1 1, (27)

pmax =
A
r

NE. (28)

Dividing the total pressure in Equation (26) by its amplitude in Equation (28) yielded
Equation (29). The Heaviside function Hf is incorporated in the expression to remove the
backward radiation and its value is determined as given in Equation (30) [30]. The direc-
tional factor is the absolute value of the angular-dependent component of this expression
as isolated in Equation (31).

pa

pmax
=

1
NE

ej(ωt−kr)∑N
n=0 ∑Mn

mn=1 ejkR cos γmn ·H f , (29)

H f =

{
1, T > 0
0, T ≤ 0

; T =
|cos γmn|
cos γmn

, (30)

Ha(θ, ∅) =

∣∣∣∣ 1
NE

∑N
n=0 ∑Mn

mn=1 ejkR cos γmn ·H f

∣∣∣∣. (31)

As depicted earlier in Figure 2, the point sources are ideally located at the center
of the circular piston elements with radiation surfaces of radius a. Therefore, the actual
acoustic piston element replaces the point source on the platform as shown in Figure 6 to
derive its directional factor. The diameter of this element imposes another constraint on the
design, that is, Cl, Rnφn > 2a, due to the inter-element spacing. The angle ξmn between the
measurement point P and the normal axis of the piston is related with the angle γmn at the
center of the platform, as given in Equation (32). The relationship shows correspondence in
Equation (33) when Equation (22) is substituted and the condition at the far-field distance
(i.e., R

r
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backward radiation and its value is determined as given in Equation (30) [30]. The direc-
tional factor is the absolute value of the angular-dependent component of this expression 
as isolated in Equation (31). ௣ೌ௣೘ೌೣ = ଵேಶ 𝑒௝(ఠ௧ି௞௥) ∑ ∑ 𝑒௝௞ோ௖௢௦ఊ೘೙ெ೙௠೙ୀଵே௡ୀ଴ . 𝐻௙, (29)

𝐻௙ = ቄ1, 𝑇 > 00, 𝑇 ≤ 0 ; 𝑇 = |௖௢௦ఊ೘೙|௖௢௦ఊ೘೙ , (30)

𝐻௔(𝜃, ∅) = ቚ ଵேಶ ∑ ∑ 𝑒௝௞ோ௖௢௦ఊ೘೙ெ೙௠೙ୀଵே௡ୀ଴ . 𝐻௙ቚ. (31)

As depicted earlier in Figure 2, the point sources are ideally located at the center of 
the circular piston elements with radiation surfaces of radius a. Therefore, the actual 
acoustic piston element replaces the point source on the platform as shown in Figure 6 to 
derive its directional factor. The diameter of this element imposes another constraint on 
the design, that is, Cl, Rnϕn > 2a, due to the inter-element spacing. The angle ξmn between 
the measurement point P and the normal axis of the piston is related with the angle γmn at 
the center of the platform, as given in Equation (32). The relationship shows correspond-
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0) is applied. Consequently, the directional factor of the circular piston element He
can be expressed as in Equation (34) [29].
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rmn
sin γmn

= r
sin(180−ξmn)

= r
sin ξmn

,

→ r−Rcos γmn
sin γmn

= r
sin ξmn

→ sin γmn = sin ξmn − R
r cos γmnsin ξmn

(32)

∴ ξmn = γmn, (33)

He(θ, ∅) =
2J1(kasin γmn)

kasin γmn
. (34)

Using the product theorem, the total directional factor of the GFA H is calculated as
expressed in Equation (35). Using this equation, the beam pattern b of the GFA is obtained
as shown in Equation (36).

H(θ, ∅) = |Ha(θ, ∅)·He(θ, ∅)|

=
∣∣∣[ 1

NE
∑N

n=0 ∑Mn
mn=1 ejkRcosγmn ·H f

]
2J1(kasin γmn)

kasin γmn

∣∣∣, (35)

b(θ, ∅) = 20log|H|. (36)

3. Design of the Geodesic Faceted Array

Subsequent to the completion of the general design scheme for the development of the
novel GFA, the beam pattern in Equation (36) was evaluated with different values of the
geometrical parameters Vi, which were critical to the performance of the array where i = 1,
2, . . . , k. Here, k denotes the total number of such parameters. The values of each of these
parameters were varied between the lower and upper bounds Vi

L and Vi
U, respectively,

to generate additional designs and optimize them for specific beam pattern requirements.
These values were combined using the 3k method and constituted into predictors, which
were fitted against the beam performance outputs yj to form a nonlinear multiple regression
function yj = f (Vi

L, Vi, Vi
U), where j = 1, 2, . . . , h and h is the number of the performance

outputs [31]. The optimization process was conducted using the OQNLP algorithm [32].
According to the equations derived in the previous section, the four critical geometrical

parameters that influence the beam pattern of the array were identified as the number
of layers N, radius of elements a, the constant ratio of the geodesic triangle’s side length
co, and the base angle α. The efficacy of the beam pattern was illustrated with a sample
design of the GFA. The specification for the design case study in terms of the size of the
hosting platform and the performance output for the GFA is given in Table 1, considering
the requirements for practical underwater imaging systems. The optimization and beam
performance evaluation were conducted considering this specific design. All the design
calculations and implementation algorithms were written using MATLAB® (version R2019a
9.6) programs.

Table 1. Specifications for a design case study.

Parameter Specification

Size of the platform
Radius, R 800 mm

Arc angle, θN 35◦

Performance requirements

Elevation half-power (−3 dB) Beamwidth (BW) 20◦ [33]

Elevation side lobe level (SLL) ≤−8 dB [34]

Ripple level ≤3 dB

Center frequency 16 kHz [35]
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Based on the performance requirement in Table 1, the objective and constraint condi-
tions were given in Equation (37), while the tolerance of 1◦ was provided in the upper and
lower bounds of the BW of the desired 20◦.

Minimize SLL
Subject to: 19◦ ≤ BW ≤ 21◦

SLL ≤ −8 dB
Elevation ripple level (ERL) ≤ 3 dB
Azimuth ripple level (ARL) ≤ 3 dB

(37)

The optimization process was repeatedly conducted for different ranges of values of
the geometric parameters. At the penultimate iteration, the final range within which all the
target specifications were satisfied was obtained as presented in Table 2. The ‘Basic’ in the
middle column of the table represents the penultimate values of the geometrical parameters
from which the final lower and upper bounds in the process were found. Table 3 presents
the optimized structure, satisfying all the given specifications. The graphical plots of the
beam pattern of the model for the elevation plane, azimuth plane, and three-dimensional
space are presented in Figure 7a–c, respectively.
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Table 2. Final range of geometrical parameters for the GFA.

Geometrical Parameter Lower Bound Basic Upper Bound

N 7 9 11

a (mm) 9 12 15

α (o) 59 60 61

co 0.58 0.60 0.62

Table 3. Structure of the optimized GFA model.

Geometrical parameter

N 10

a (mm) 10.0

α (o) 61.0

co 0.6

Performance output

BW (o) 20.6

SLL (dB) −9.4

ERL (dB) 2.9

ARL (dB) 2.9

4. Validation of the GFA Design Using the Finite Element Method

The validity of the design in Section 3 was verified using the FEM. Using the geo-
metrical parameters obtained theoretically for the sample case, the array was modeled,
simulated, and analyzed via the FEM using the commercial software Pzflex® according
to the procedures employed by [32]. Figure 8a shows the body of the aluminum base
platform incorporating the acoustic piston elements. All the dimensions used were the
same as those from the theoretical designs. The outer layer of the model was covered
with water to simulate the practical working environments, as shown in Figure 8b. An
absorption boundary condition was enforced around the water domain to avoid the reflec-
tion of acoustic waves. After discretization of the entire volume, the grid mesh contained
75.4 million elements and 76.0 million nodes. The pressure signals were applied to each of
the piston elements for the analysis. The beam patterns from the finite element analysis
were compared with the theoretical version, as shown in Figure 9, while the quantitative
values of the performance outputs are presented in Table 4. The difference in the peaks
of the lower side lobes in Figure 9 was due to the limitation in the size of the elements in
the FEM model. However, the difference was inconsequential in the design of the array as
long as the main lobe and peak of the highest side lobe coincided. The excellent agreement
between the main lobe performances from the two methods can be observed in the table
validating the proposed analytical design. Meanwhile, the analytical method in comparison
with the FEM demonstrated its merits considering the speed to calculate the performance
of the array. Running the model analytically only took 21 min, while the analysis using the
FEM took three days and six hours.

Table 4. Comparative values of the performance outputs of the theoretical and finite element analysis
beam patterns of the GFA.

Methods
Performance Outputs

BW (◦) SLL (dB) ERL (dB) ARL (dB)

Theoretical 20.6 −9.4 2.9 2.9

FEM 20.5 −9.9 2.9 3.0
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Figure 8. Finite element models of the GFA: (a) aluminum base platform; (b) array covered with a
water layer.
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Figure 9. Comparison of the theoretical and finite element analysis beam patterns of the GFA:
(a) elevation plane; (b) azimuth plane.

5. Comparison with a Conventional Spherical Array

Following the design and performance evaluation of the GFA in the previous sections,
the design of a typical SA on the same platform was synthesized for the sake of comparison.
The geometry of the SA is shown in Figure 10, in which the array elements mn have a
uniform spacing d vertically and horizontally on the ring layers. Unlike the GFA, the
subarrays strictly depend on the radius of each ring such as that the circumference in each
layer is designed for the maximum possible number of elements. This condition implies
that the SA is expected to have a higher number of elements than the corresponding GFA
design when Lo > d. Consequently, the inter-element spacing d, the number of elements on
each ring Mn, and the total number of elements in the whole array NE can be defined as
given in Equation (38). The number of rings N and the radius of the element a were selected
as the design variables. The optimization and the beam pattern performance analysis were
similarly performed.
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Figure 10. Schematic view of the SA of point sources: (a) elevation plane; (b) azimuth plane.

The objective function and constraints were set in reference to the performance output
of the GFA, as given in Equation (39). The optimization process was also repeated for
several iterations until the final range of values of the design variables was obtained as
given in Table 5. The final model of the SA that satisfied the desired specification was
obtained, as presented in Table 6. Based on Equation (38), the performance on Table 6 was
obtained at d = 48.9 mm because R = 800 mm and θN = 35◦. The graphical plots of the beam
pattern for the elevation plane, azimuth plane, and three-dimensional space are shown in
Figure 11a–c, respectively.

d = RθN
N

Mn = ℵ(2πRn/d)
NE = ∑N

n=0 Mn

 (38)

Minimize SLL
Subject to: 19◦ ≤ BW ≤ 21◦

SLL ≤ −9.4 dB
Elevation Ripple level (ERL) ≤ 2.9 dB
Azimuth Ripple level (ARL) ≤ 2.9 dB

(39)

Table 5. Final range of values for the design variables for SA.

Design Variable Lower Bound Basic Upper Bound

N 7 9 11

a (mm) 9 12 15

Table 6. Final structure of the SA model.

Design variable
N 10

a (mm) 10.0

Performance output

BW (◦) 20.6

SLL (dB) −9.4

ERL (dB) 2.9

ARL (dB) 2.8
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Figure 11. Beam patterns of the SA on: (a) elevation plane; (b) azimuth plane; and
(c) three−dimensional space.

Using the same procedure as in the case of GFA, the SA was modeled using the FEM,
as shown in Figure 12. The meshed model contains 76.5 million elements and 77.2 million
nodes, and the analysis took approximately three days and five hours. Figure 13 compares
the beam patterns from the theoretical analysis with that from the finite element analysis,
while the quantitative values of the performance outputs are presented in Table 7.
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Table 7. Quantitative values of the performance outputs from the theoretical and finite element
analysis beam patterns of the SA.

Methods
Performance Outputs

BW (◦) SLL (dB) ERL (dB) ARL (dB)

Theoretical 20.6 −9.4 2.9 2.8

FEM 20.6 −9.9 2.9 2.9

Table 8 shows a quantitative comparison between the SA and the GFA, while Figure 14
compares the beam patterns. The small gap at the terminal parts of the azimuth beam
in Figure 14b is due to the void section at the backside of the spherical segment for the
GFA design. With 880 elements against 1054, the GFA significantly reduced the number of
elements in the SA by 16.5%, while the performance is virtually the same, as shown in the
table. This reduced number of elements also explains the slightly low azimuth ripple level
in the SA. The reduced ripple level is associated with a narrow element spacing or a dense
element grid [1].

Table 8. Quantitative comparison between the SA and GFA.

Model

Structural Parameters Performance Parameters

R (mm) θN (o) N a (mm) BW (o) SLL (dB) ERL (dB) ARL (dB) NE
% Element
Reduction

Spherical 800 35 10 10 20.6 −9.4 2.9 2.8 1054 –

Geodesic 800 35 10 10 20.6 −9.4 2.9 2.9 880 16.5

Consequently, the proposed analytical method improves the efficiency of the GFA
design by developing triangles with uniform geometry. This is a novelty compared with
the random shapes and sizes of the geodesic triangles in the conventional icosahedron
method. The method also enhances structural flexibility, increasing the adaptability of the
design to the desired or output-driven performance compared with the one-off approach
of the icosahedron method. Finally, the analysis of the GFA via the proposed method is
approximately 210 times faster than the FEM.
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6. Conclusions 
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6. Conclusions

GFA is an excellent alternative volumetric array structure to circumvent the challenges
associated with an SA without compromising its excellent performance. However, an exact
method to design a GFA is currently unavailable. Thus, this study was conceived to improve
the design technique of GFA by using an analytical method, which can act as a substitute for
the existing traditional icosahedron approach. Unlike the latter, the novel GFA developed
in this work via the new analytical method is based on triangles with uniform, defined,
and predetermined geometries throughout the entire volume of the array. The new method
provides the flexibility to adjust geometrical parameters in response to desired performance
outputs compared to the one-off approach of the icosahedron method. Moreover, analysis
via the proposed method is faster than computer-aided techniques such as the FEM. The
proposed method also preserves the intrinsic property of GFA by reducing the acoustical
elements, which could have been used in a typical SA. Consequently, the method is proven
to be more efficient, flexible, and time saving than the icosahedron method.
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