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Abstract: Ocean color is the result of absorption and scattering, as light interacts with the water and
the optically active constituents. The measurement of ocean color changes enables monitoring of
these constituents (dissolved or particulate materials). The main objective of this research is to use
digital images to estimate the light attenuation coefficient (Kd), the Secchi disk depth (ZSD), and
the chlorophyll a (Chla) concentration and to optically classify plots of seawater using the criteria
proposed by Jerlov and Forel using digital images captured at the ocean surface. The database used
in this study was obtained from seven oceanographic cruises performed in oceanic and coastal areas.
Three approaches were developed for each parameter: a general approach that can be applied under
any optical condition, one for oceanic conditions, and another for coastal conditions. The results of
the coastal approach showed higher correlations between the modeled and validation data, with rp

values of 0.80 for Kd, 0.90 for ZSD, 0.85 for Chla, 0.73 for Jerlov, and 0.95 for Forel–Ule. The oceanic
approach failed to detect significant changes in a digital photograph. The most precise results were
obtained when images were captured at 45◦ (n = 22; Fr cal = 11.02 > Fr crit = 5.99). Therefore, to
ensure precise results, the angle of photography is key. This methodology can be used in citizen
science programs to estimate ZSD, Kd, and the Jerlov scale.

Keywords: low-cost tools; coastal monitoring; marine optical properties; ocean color; digital photography;
digital colors (RGB)

1. Introduction

Human activity involves direct or indirect consumption goods from ecosystems,
known as ecosystem services (ES) [1,2]. Unrestrained exploitation has led to the exhaustion
or collapse of some of these natural resources [3,4]. Planning rational use without compro-
mising future use requires an understanding of ecosystemic variability [3–6]. To this end, it
is necessary to define the primary variables that can describe the changes in ecosystems
and define its baseline [1,7,8]. The baseline represents the combination of natural and
anthropogenic variability [1,4].

To build the baseline, monitoring programs need to generate long enough time series.
Current long-term monitoring initiatives include the Latin American Marine Monitoring
Network (ANTARES) [9], the Hawaii Ocean Time Series (HOT) [10], and the California
Current Ecosystem Long Term Ecological Research (CCE-LTER) [11]. However, the im-
plementation of these monitoring initiatives involves high investment and maintenance
costs [1]. These costs are particularly high in the case of marine ecosystems due to their
complexity. These costs are generally incurred by government agencies, either as part
of national programs (mostly) or by international conventions (less important), which
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implies a challenge because the budget can vary or be canceled at the end of each legislative
period [1].

An alternative to overcome this challenge is to supplement monitoring programs
with citizen monitoring programs, in which low-cost and easy-to-apply methodologies
are used for the evaluation of key variables representing changes in the ecosystem [12].
These programs should reflect the work conducted by citizens collaborating with scientists
or under their leadership [13] and represent an alternative that can help generate high-
quality data with broad spatiotemporal coverage, leading to a better understanding of
ecosystems [12,14,15] and, therefore, of the ES linked to them.

This work focuses on marine ecosystems for two reasons: the high cost of tradi-
tional monitoring programs and the intense anthropic pressure to which they are sub-
jected [16,17]. Discharges in the sea produce increased levels of colored dissolved organic
material (CDOM) [18,19] and particulate substances [20,21]. These compounds affect the
light field in the water and the phytoplankton community (short-lived organisms that re-
flect short-term changes) [22–24]. Consequently, seawater has a characteristic color, which,
together with transparency, is used to classify it in optical terms [25,26]. Changes in the
optical classification of water reflect changes in the ecosystem [27].

There have been several attempts to classify water plots based on their color and
transparency [28]. The first classifications were subjective and qualitative [29]. The classifi-
cation proposed by Pietro Angelo Secchi [30] was based on estimating water transparency
according to Secchi disk depth (ZSD), which is the depth at which a Secchi disk is no
longer viewable by an observer when it is lowered into the water. ZSD is a visual turbidity
assessment that is inversely proportional to the amount of attenuating material present
in the water column. Although it represents a quantitative measure of the transparency
of a water body, it is considered subjective and qualitative because it relies on the human
eye and, therefore, different people can record different disk readings. The Forel–Ule (FU)
scale [31,32] is a sea color comparator scale that was developed to cover all possible natural
sea colors. It consists of vials with fluid of 21 colors ranging from blue to brown; water
samples are classified by matching colors. The development of underwater radiometric
equipment allowed for quantitative classification schemes to relate optical parameters
to the observed variability of water transparency and color [29]. The Jerlov scale [33]
established five oceanic water types (I, IA, IB, II, and III) and five coastal water types (1, 3,
5, 7, and 9) based on measurements of the light attenuation coefficient (Kd) (a parameter
that describes the attenuation of light in the water column). The classification of Morel
and Prieur [34] sorts seawater into two types—case 1 and optically complex waters—based
on their reflectance and light absorption coefficient (a(λ)). In recent studies, optical classi-
fications have also been made based on products obtained from remote sensing, such as
Moore’s optical water types, which are based on remote sensing reflectance (Rrs) [35–45].
For instance, the FU scale is applicable to remote sensing data thanks to new algorithms
that convert remote sensing reflectance (Rrs) from satellite-borne ocean color sensors to
FU [46].

The ability to obtain RGB digital color intensities from digital camera images taken
from fixed platforms, boats, or unmanned aerial vehicles has been evaluated in other
studies [47–54]. The objective of these studies was to obtain water-leaving radiance [54] or
RGB reflectance to estimate surface optical parameters [48–51,53]. These latter approaches
are based on the mixing ratio of each color, ranging from 0 to 255, where 0 indicates the
absence of color and 255 indicates the maximum mixing ratio. Accordingly, each color is
defined according to three numbers or digital values (R, G, B) [48–51,53,54]. Once digital
values have been obtained, they are associated with in situ optical parameters of the studied
surface [48–51,53,54].

For marine waters, Goddijn-Murphy et al. [48] developed two approaches to estimate
surface chlorophyll a (Chla). These authors used conventional digital cameras, the Nikon
Coolpix885(®) (Minato, Tokyo, Japan) and the SeaLife ECOshot(®) (Moorestown, NJ, USA),
to perform measurements at 12 stations located in Galway Bay (North Atlantic). They
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used a Nikon Coolpix885 (®) with a plastic tube fitted around the lens to break the air–
water interface to prevent surface-reflected light from entering the camera and to allow the
camera to capture only the water-leaving radiance. They also used a SeaLife ECOshot(®), a
waterproof digital camera, to operate below the water surface, taking pictures of upwelling
light; they then inverted the setup it to capture downwelling sunlight. In this work, they
obtained a significant but low relationship between colors B and G colors of the images
and the concentration of Chla.

Based on the previous results and with the development of smartphones, the cameras
integrated into these devices began to be used to remotely monitor the optical characteristics
of a water parcels using mobile applications (app), such as:

1. The Secchi3000 app 2.0, which was designed to estimate turbidity and ZSD. Along
with the app, a simple and cheap device is provided that must be filled with the
water to be tested; then, a photograph must be taken in specific areas of the sample.
The image is sent to the server, where it is processed using pattern recognition and
computer vision techniques [49];

2. TheEyeofWater app 2.4.0, which allows for evaluation of water color. The app guides
the user to capture an image of the water surface. After capturing the image, the
observed water is assigned one of the 21 colors on the Forel–Ule scale [50]

3. The HydroColor app 2.0, which allows images of the water surface to be taken
following a specific protocol that includes the positioning angle of the camera and
the observer. Subsequently, the app processes the colors of the image to estimate the
turbidity of the water [51].

The aim of this research is to increase the possibly of using digital camera images to
determine key optical parameters, specifically to estimate Kd and ZSD. Kd is an indicator of
the turbidity of the water column, an apparent optical property (AOP) that is a property of
water that changes with a changing light field [27]. It is directly related to the concentration
of scattering particles in the water column; non-algal particles, phytoplankton, CDOM, and
water itself are considered the four optically significant substances that control it [27]. It is
an important parameter for water quality that can be used to predict the euphotic depth
and estimate primary productivity; it is also essential for monitoring of the eutrophication
process due to light attenuation by phytoplankton growth or suspended matter [55,56]. It
is important to maximize the benefits of this low-cost methodology.

The objectives of the present work are to (1) use digital images to estimate the optical
parameters Kd, ZSD, and Chla and to optically classify plots of seawater according to the
Jerlov scale and the Forel–Ule scale; (2) evaluate the effect of camera angles relative to
sea surface when capturing such images; and (3) describe the validated image-capturing
methodology to be used in citizen science programs.

2. Materials and Methods

The database used in this study was obtained from seven oceanographic cruises
performed in oceanic and coastal areas Figure 1. The cruises Pangas 0613, Vaquita 0716,
and Exfinife 0916 were conducted in the Gulf of California (Pacific Ocean, Mexico). The
cruises Point Sur 0413, Glyders 0615, Marias 0316, and Marias 0916 were conducted in the
Northeastern tropical Mexican Pacific Figure 1. During these cruises, digital images of the
sea surface were captured, in addition to measurements of light irradiance in the water
column (Ed (PAR)), a(λ), ZSD, and Chla on the surface, using the methodologies described
below. The number of samples obtained for each variable in each cruise is shown in Table 1.
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Figure 1. Map showing the locations of the stations used in this study.

Table 1. Number of stations from which data for each variable were obtained.

Cruise Images ZSD Ed (PAR) a(λ) Chla

Point sur 0413 15 11 11 9 15
Pangas 0613 29 27 27 26 29
Glyders 0615 15 12 12 11 14
Marías 0316 8 8 8 7 5
Vaquita 0716 7 4 4 7 7
Exfinife 0916 7 7 7 7 7
Marías 0916 5 4 4 2 5

TOTAL 86 73 73 69 82

The digital images were captured on an iPad Air 2 with an 8 megapixel camera
(San Diego, CA, USA). The Spyglass application [57] was downloaded on this device to
determine the tilt angle of the camera and capture the images. The locations of stations
were determined by integrating a Bad Elf GPS with the device.

The images were captured following the protocol of Deschamps et al. [58] on days
with nil or little cloud cover (maximum 30% coverage allowed) and at a time of the day
when the sun was more than 45◦ above the horizon (between 10:00 am and 4:00 pm for
mid-latitudes). To minimize residual polarization and quantify the emerging radiance of
water, the observer applied the following steps [58,59]:

1. Position his/her body at the bow of the vessel with the sun on his/her back (the
sun must be at an angle greater than or equal to 45◦ relative to the horizon). It is
recommended to be located at the bow of the vessel because it is the narrowest and
least shady area Figure 2a;

2. Rotate the body 45◦ to the right or left of the starting position and select a position
where the shadow of the vessel is not projected upon the photographic field. Accord-
ing to the methodology proposed by Deschamps et al. [58], this position is required
because the observer must be positioned at 135◦ in the azimuth between the position
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of the sun and his/her visual field to facilitate measurements from any platform in
the ocean, including moving vessels Figure 2b;

3. Place the camera at 45◦relative to the sea surface, and capture the image Figure 2c.
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Figure 2. Scheme depicting the steps to follow to capture an image of the sea surface. With the sun
on the back (a), rotate 45◦ to the left or right of the initial position to achieve 135◦ in the azimuth
between the position of the sun and his/her visual field (b), place the camera lens at 45◦ relative to
the sea surface and capture the image (c).

At least six digital images were captured at each station. We selected images captured
at exactly 45◦ from the sea surface and with no foam within the central zone. To obtain the
digital colors (R, G, B), the images were processed in Corel Photo Paint X8. According to
Leeuw and Boss [51], for each image, four 1 cm × 1 cm quadrants were selected; in each
quadrant, a color histogram was obtained, from which the digital values (R, G, B) were
extracted Figure 3. To reduce the natural variability of water color, the digital values of
each station were taken as the mean of the values obtained from all quadrants in all the
images selected for each station.
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To estimate the Forel–Ule scale for each station, we applied the criteria of Novoa et al. [60],
and the digital values (R, G, B) were converted to chromaticity coordinates (x, y, z) according
to the definition of the International Commission on Illumination—x+ y + z = 1; therefore,
z = 1 − x – y; hence, the coordinate (z) provides no additional information, so only the coordi-
nates (x, y) are used to represent a color in a chromaticity diagram [60,61].

Once the chromaticity coordinates (x, y) for each image were obtained, they were
contrasted with the coordinates estimated by Novoa et al. [60] for each type of Forel–Ule
water Table 2. This was carried out by applying the least-squares criteria based on a
goodness-of-fit test [62,63].

Table 2. Chromaticity coordinates (x, y) estimated by Novoa et al. [60] for each Forel–Ule water type.

Forel–Ule
Scale x y Forel–Ule

Scale x y Forel–Ule
Scale x y

1 0.191 0.167 8 0.315 0.440 15 0.446 0.458
2 0.199 0.200 9 0.337 0.462 16 0.461 0.449
3 0.210 0.240 10 0.363 0.476 17 0.475 0.441
4 0.227 0.288 11 0.386 0.487 18 0.489 0.433
5 0.246 0.335 12 0.402 0.481 19 0.503 0.425
6 0.266 0.376 13 0.416 0.474 20 0.516 0.416
7 0.297 0.412 14 0.431 0.466 21 0.528 0.408

Measurements of ZSD were carried out simultaneously when capturing images of the
sea surface. A 30 cm diameter oceanographic disk was used for ZSD measurements, which
was lowered into the water column from the sunny side of the vessel [26]. The depth at
which the disk disappeared from the observer’s view (to the naked eye) was recorded as
ZSD [30,64]. The Ed (PAR) measurements were conducted with a Li-Cor scalar irradiometer
(LI-193) (Lincoln, NE, USA), which recorded the light at 1 m intervals across the water
column up to a maximum depth of 30 m.

Subsequently, Kd was estimated based on two methodologies. In the first methodology,
it was calculated indirectly from the measurements of ZSD and by applying the criteria of
Castillo-Ramirez et al. [56]. In the second methodology, the measurements of Ed (PAR) were
used based on the criteria of Kirk [27], as expressed in the following equation (Equation (1)):

ln(PAR(z)) = ln(PAR(0))− Kd × Z (1)

where Kd is the slope of a linear regression, and the dependent variable is the natural
logarithm of irradiance as a function of depth.

Likewise, the oceanographic cruises collected water samples to estimate a(λ) based on
the criteria of Mitchell et al. [65] and the concentration of Chla following the methodology
of Thomas [66]. a(λ) was estimated considering the light absorption of pure water (aw(λ)),
phytoplankton (aphy(λ)), and CDOM ((aCDOM (λ)) [67] (Equation (2)).

a(λ) = aw(λ) + aphy(λ) + aCDOM(λ) (2)

The estimated a(λ) was used to classify the stations according to the Jerlov optical water
types following the criteria of Solonenko and Mobley [67] and Castillo-Ramirez et al. [56].

The database described above covers a range of optical conditions, from clear (oceanic)
to turbid (coastal) waters (Figure 1). For this reason, three types of empirical approaches
were generated for each optical variable (Forel–Ule scale, ZSD, Kd, Jerlov scale, and Chla):
a general approach that can be applied under oceanic and coastal conditions and two
specific approaches to be applied separately under these conditions (oceanic and coastal
approaches) Figure 4. The full database, including oceanic and coastal waters, was used for
the general approach. For the oceanic and coastal approaches, the stations were classified
first by the Jerlov scale Figure 4.
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The empirical approach relates the Forel–Ule scale, ZSD, Kd, the Jerlov scale, and Chla
with the digital values (R, G, B) based on a stepwise multiple regression analysis following
the Bass criteria [68] (Equation (3)).

ŷ = bo + b1R1 + b2G2 + b3B3 (3)

where ŷ is the variable to predict, which can be the Forel–Ule scale, ZSD, Kd, Jerlov scale,
a Chla (dependent variable), with (R, G, B) as the independent variables and bn as their
associated coefficients.

On the other hand, to eliminate unusual observations, an analysis of residuals was
applied based on the following equation (Equation (4)):

e = y− ŷ (4)

where e is the residual; it can be considered as the error calculated as the distance divided
by the observed value (y) and the modeled value (ŷ). Residuals closer to zero indicate a
better model performance.

To identify high-noise observations, the criteria of the Six Sigma analysis were followed
based on standardized errors [64], where e (Ze) is standardized (Equation (5)).

Ze =
e− e
SDe

(5)

where e is the average of the residuals, and SDe is the standard deviation of the residual.
Once the high-noise observations were removed, the database for each variable was

randomly split into two sets: 50% for modeling and 50% for validating purposes [69,70].
To reduce the random error in the selection of the two datasets and test the robustness of
the models, we performed five iterations by randomly selecting five different datasets to
model, with their respective validation set (Figure 4). A stepwise multiple regression was
applied to the data used for modeling, following the criteria of Bass [68].



Sensors 2023, 23, 3199 8 of 22

Subsequently, to demonstrate that the independent variables were significant in
each model, a t-test (Equation (6)) was applied to the coefficients associated with each of
these variables.

tcal =
bk

SEbk
(6)

where bk is the regression coefficient associated with the independent variable, and SEbk is the
standard error of the coefficient (bk) expressed in the following equations (Equation (7)–(9)):

SEb1 =

√√√√ MSE

∑ R2 − (∑ R)
n

2 (7)

SEb2 =

√√√√ MSE

∑ G2 − (∑ G)
n

2 (8)

SEb3 =

√√√√ MSE

∑ B2 − (∑ B)
n

2 (9)

where (R, G, B) are the digital colors (independent variables).
To test the general significance of the resulting models, an F-test was run based on

Equation (10):

Fcal =
∑(yi−y)2−∑(yi−ŷ)2

k
∑(yi−ŷ)2

n−(k+1)

=
MSR
MSE

(10)

where k is the number of independent variables (three in this case), MSR is the squared
mean of the regression, and MSE is the squared mean of the residual error.

The proportion of the variation of the dependent variable that can be explained by inde-
pendent variables was estimated with the coefficient of determination (R2) (Equation (11)).

R2 =

(
∑(yi − ŷ)2

∑(yi − y)2

)
× 100 =

(
SSE
SST

)
× 100 (11)

where SSE is the variability explained by the model, and SST is the variability explained
by y.

Once the models for each variable were obtained, they were validated based on a
match-up analysis [71], where the statistical validity of the models was estimated using the
Pearson correlation coefficient (rP), expressed as (Equation (12)):

rP =
Covmodel,val

SDmodel × SDval
(12)

where rP is the Pearson correlation, Covmodel,val is the covariance of the modeled and val-
idated datasets, and SDmodel and SDval are the standard deviations of the modeled and
validated datasets, respectively. This coefficient is a measure of the linear correlation
between two variables; it ranges between −1 and +1 (where +1 indicates a direct lin-
ear relationship, −1 indicates an inverse linear relationship, and 0 indicates a nonlinear
relationship).

In order to compare the models estimated in this work with those from the literature,
three statistical descriptors were calculated: mean absolute error (MAE) (Equation (13)),
root-mean square error (RMSE) (Equation (14)), and analysis of bias (BIAS) (Equation (15)).

MAE =
∑
∣∣(Kdin situ

− Kdmodel

)∣∣
n

(13)
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RMSE =

√
∑
(
Kdin situ

− Kdmodel

)2

n
(14)

where n is the total number of data points included in this analysis, Kdin situ
− Kdmodel

represents residual observations, and
∣∣Kdin situ

− Kdmodel

∣∣ is the absolute value of residuals.

BIAS = average
(
Kdin situ

− Kdmodel

)
(15)

where BIAS is the residual mean.
Lower MAE and RMSE values represent better results, whereas BIAS values closer to

zero indicate better results. To determine which was the best model, the model performance
index (MPI) was estimated [56] (Equation (16)), which is based on the three statistical
descriptors mentioned above.

MPI = 1−


(

RMAE
p

)
+
(

RRMSE
p

)
+
( R|BIAS|

p

)
3

 (16)

where RMAE, RRMSE are the range of MAE and RMSE, respectively; R|BIAS| is the absolute
range of BIAS; and p is the total number of compared models. The ranks were calculated
following the criteria of Wilcoxon [72]. The MPI intervals range from 0 to 1, where values
closer to 1 represent a better model.

To evaluate whether the differences between the in situ values and the results obtained
from the 45◦ and non-45◦ images were statistically significant, the models mentioned above
were applied for those stations that met the following criteria: (1) stations that had in situ
data for the variable to be modeled, (2) R, G, B values obtained from images captured
at 45◦, and (3) R, G, B values obtained from images captured at an angle other than 45◦.
Following in situ quality control, whereby only images captured at or close to a 45◦ angle
were retained, these data only included images captured with a ± 1◦ difference (44◦ and
46◦). A non-parametric ANOVA analysis was performed by Friedman blocks following the
criteria of Friedman [73] (Equation (17)).

Fr cal = ((
12

rk(k + 1)
×∑(T2

k )))− 3r(k + 1) (17)

where r is the number of observations, k is the number of treatments, and Tk is the sum of
the ranges in each treatment.

Once the differences were analyzed and to determine which results presented the
lowest error, a standardized residual analysis was run (Equation (5)). Values closer to zero
indicates a lower error.

To estimate the accuracy of the results, a confidence interval was established based on
tcrít α/2, n−1 with an α of 95%; then, we calculated the percentage of the data that were within
this interval. Finally, the data accuracy was tested based on a least-square test applied to
the residuals following the criteria of Xu et al. [62]; the most accurate data are those with
the lowest X2 value.

3. Results and Discussion

The approaches proposed in this work are empirical; therefore, they depend on the
boundary limits established by the variables used in their development [26,74]. Empirical
modeling of ocean color and optical parameters is challenged by limited sampling oppor-
tunity on sunny days with calm seas. These conditions are essential to obtain data that
represent the true variability of the light field in water [75–77]. To address this challenge,
in this research, we used data from seven oceanographic cruises carried out between 2013
and 2016. In each cruise, a sampling network of more than 70 stations was established.
However, data could only be obtained at approximately 15% of the established stations due
to unfavorable conditions (e.g., cloudy days and waves) Table 1. In addition, it is necessary
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to obtain an independent dataset to validate the developed model. This validation is
essential to assess the ability of the model to predict values [26,74].

To address these challenges, the database for each variable was divided into two
independent groups, using 50% of the data for the modeling process and the other 50%
for validation. In addition, to ensure the robustness of the models, five iterations were
performed randomly, selecting five different datasets to model, each with its corresponding
validation set [56,69,70] (Figure 4). This approach helped to reduce the random error
associated with the selection of the two datasets.

3.1. General Approach

The general approach was estimated from the complete database with optical conditions
ranging from oceanic to coastal. This showed that the non-significant independent variable for
the estimation of most parameters was the digital color R corresponding to the red wavelength
(700 nm) Table 3. This is because the light absorption by water increases exponentially toward
the red region of the electromagnetic spectrum [78], which implies a lower penetration capacity
into the water column, a lower reflection of long wavelengths (~700 nm), and, therefore, fewer
possibilities to react to changes in optically active compounds [27,79]. The only case in which
the three digital colors (R, G, B) were significant Table 3 was to estimate the Forel–Ule scale
(Equation (18)). This result may have occurred because this scale, unlike the parameters used
in the other approaches, is based on a visual perception of water color, which results from the
combination of these three colors (R, G, B) [80].

Table 3. Results of the stepwise multiple regression analysis of the models for the general approach
(α = 0.05).

Variable n Model Min Max R
(tcal)

G
(tcal)

B
(tcal)

tcri Fcal Fcri R2

Forel–Ule
scale 36 =3.16 + 0.0188 R+ 0.0495 G

−0.0335 B (Equation (18)) 1 8 2.20 22.47 −12.08 1.99 242.42 3.12 96%

ZSD 30 = 22.1 − 0.309 G + 0.201 B
(Equation (19)) 4 m 35 m −14.45 5.13 2.00 109.13 4.00 89%

Kd 35 = 0.218 + 0.00179 G −
0.00196 B (Equation (20))

0.045
m−1 0.293m−1 7.79 −5.78 1.99 30.57 3.98 66%

Jerlov
scale 28 = 37 – 0.0733 G – 0.0874 B

(Equation (21)) IA 4C −5.56 −4.45 2.00 83.58 4.02 87%

Chla 31 = 0.521 + 0.00534 G −
0.00521 B (Equation (22))

0.053
mg
m3

0.541
mg
m3

11.19 −7.73 2.00 62.83 4.00 82%

Once the significant variables were identified, we confirmed that the general approach
for all the parameters (Equations (18)–(22)) was significant (Table 3, column 10 (Fcal>Fcri)).
This finding implies that the partition of a digital image into digital channels (R, G, B) and
the association of these channels with in situ data of surface optical parameters can be
also used to estimate ZSD, Kd, and the Jerlov scale. In addition, these findings support
the reports by Goddijn-Murphy et al. [48], Novoa et al. [50], and Leeuw and Boss [51],
who suggested the use of images as an alternative to estimate Chla, turbidity, and the
Forel–Ule scale.

Subsequently, this approach was validated based on the criteria proposed by Gregg
and Casey [81], Djavidnia et al. [82], and Santamaría-del-Ángel et al. [71], who established
that rpcal values above 0.70 indicate a strong association. These criteria suggest that the
correlations between the modeled and validation data were mostly highly significant Ta-
ble 4. The Kd model expressed by (Equation (20)) yielded the lowest values. To improve
Kd estimation, the criteria of Castillo-Ramirez et al. [56] were used based on values mod-
eled according to (Equation (19)). The Castillo-Ramirez et al. [56] criteria yielded higher
correlation values (rpcal= 0.85) Table 4; therefore, we propose this as the best alternative for
estimating Kd from a digital image.



Sensors 2023, 23, 3199 11 of 22

Table 4. Results of the validation analysis of the models for the general approach.

Variable Model n rp cal rp cri

Forel–Ule scale = 3.16 + 0.0188 R + 0.0495 G − 0.0335 B
(Equation (18)) 36 0.96 0.33

ZSD = 22.1 − 0.309 G + 0.201 B (Equation (19)) 30 0.81 0.36
Kd = 0.218 + 0.00179 G − 0.00196 B (Equation (20)) 34 0.69 0.33

Alternative Kd
Apply Equation (15) to obtain ZSD; then,

apply criteria from Castillo-Ramírez et al. [56] 30 0.85 0.36

Jerlov scale = 37 − 0.0733 G − 0.0874 B (Equation (21)) 28 0.90 0.37
Chla = 0.521 + 0.00534 G − 0.00521 B (Equation (22)) 31 0.76 0.36

The results presented in Tables 3 and 4 show that the general approach can be applied
for a broad spectrum of optical conditions to estimate all the modeled parameters (ZSD, Kd,
Jerlov scale, Chla, and the Forel–Ule scale).

3.2. Oceanic and Coastal Approaches

Morel and Prieur [34] proposed the classification of seawater into two types: case 1
and optically complex waters. Case 1 waters are those whose optical properties are driven
mainly by phytoplankton and are generally found in oceanic areas far from the continental
shelf. Optically complex waters contain suspended sediments, non-phytoplanktonic or-
ganic particles, or CDOM, in addition to phytoplankton. The sources of these compounds
are frequently associated with coastal areas; however, in some cases, it is also possible to
observe optically complex waters in oceanic areas. For instance, a phytoplanktonic bloom
would increase CDOM levels in an oceanic water plot and would provide it with optically
complex characteristics [34,79,83].

The approaches for oceanic and coastal conditions were obtained to assess whether
more specific models (in terms of optical conditions) are more accurate to estimate the
studied parameters. The results of the oceanic approach Table 5 show that none of the three
digital colors (R, G, B) was significant for most of the parameters. The only significant
model for the oceanic approach was that for the estimation of the Forel–Ule scale (Table 5;
Equation (23)). The greatest quantity of optical components that produce a change in water
color occurs in coastal areas, where they have a high variability [34]. The results obtained
in the present work Table 5 indicate that water color changes in oceanic regions are not
significant enough to be captured in a digital image to be associated with ZSD, Kd, the Jerlov
scale, and Chla.

Table 5. Results of stepwise multiple regression analysis for the oceanic approach models (α = 0.05).

Variable n Model R
(tcal)

G
(tcal)

B
(tcal)

tcrit Fcal Fcrit

Forel–Ule scale 16 = 3.16 + 0.0221 R + 0.0495 G −
0.0346 B (Equation (23)) 2.43 12.49 −4.80 2.04 71.74 3.34

ZSD 12 2.06 2.08 4.24 4.30
Kd 14 0.99 1.64 0.96 2.05 1.64 3.38

Jerlov scale 16 1.29 0.07 0.77 2.04 0.91 3.34
Chla 14 1.69 −0.51 2.07 1.45 4.32

The coastal approach showed that the digital color G was significant in all models, for
some parameters in combination with the digital colors R or B Table 6. This variation in
significant digital colors (or wavelengths) depends on the nature and quantity of particles
present in the studied water plot [25]. Specifically:

1. Phytoplankton produces a green coloration in the water when it is in high concentra-
tions due to the presence of Chla in cells, except for certain species that produce a red
or brown coloration;
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2. Non-phytoplankton material (or detritus) produces a brown or reddish coloration
depending on the source of the material;

3. CDOM stains water a yellow–brown color.

Table 6. Results of the stepwise multiple regression analysis for the coastal approach models
(α = 0.05).

Variable n Model Min Max R
(tcal)

G
(tcal)

B
(tcal)

tcri Fcal Fcri R2

Forel–Ule
scale 18 = 5.12 + 0.0406 G − 0.0368 B

(Equation (24)) 3 6 9.16 −13.16 2.03 161.32 4.14 92%

ZSD 13 = 29.2 − 0.369 G + 0.210 B
(Equation (25)) 4 m 30 m −7.46 6.26 2.07 63.66 3.44 88%

Kd 12 = −0.191 + 0.00329 R + 0.0018 G
(Equation (26)) 0.053 m−1 0.127m−1 5.08 5.06 2.08 21.40 4.37 73%

Jerlov
scale 16 = 2.92 + 0.0538 G (Equation (27)) 1C 4C 5.49 2.04 30.13 3.32 55%

Chla 16 = 1.44 + 0.00243 G − 0.00808 B
(Equation (28)) 0.080 mg

m3 0.703 mg
m3 2.82 −8.98 2.04 56.66 4.18 82%

The coastal approach was significant to estimate all the variables (Equations (24)–(28))
Table 6, the Forel–Ule scale, the Jerlov scale, ZSD, Kd, and Chla under optically complex
conditions. The degree of association between modeled and validation data (rPcal) for the
oceanic and coastal approach Table 7 was higher than that obtained in the general approach
Table 4. The validation of these models shows that a more specific approach in terms
of optical conditions results in greater accuracy Table 7. The model that yielded lower
values than those reported for the general approach was that predicting the Jerlov scale
(Equation (27)). This may be because the model proposed by Solonenko and Mobley [67] for
associating a(λ) with the Jerlov water type ignores the contribution of non-phytoplanktonic
particulate matter. This component includes phytoplankton, detritus, and other organic
particles and minerals (Equation (2)), which represent important contributions in coastal
areas, as reported by Morel and Prieur [34].

Table 7. Results of the model validation analysis for the oceanic and coastal approaches.

Variable Model n rP cal rP cri

Forel–Ule scale = 3.16 + 0.0221 R + 0.0495 G − 0.0346 B (Equation (23)) 15 0.93 0.51
Forel–Ule scale = 5.12 + 0.0406 G − 0.0368 B (Equation (24)) 17 0.95 0.48

ZSD = 29.2 − 0.369 G + 0.210 B (Equation (25)) 12 0.90 0.57
Kd = −0.191 + 0.00329 R + 0.0018 G (Equation (26)) 11 0.80 0.60

Coastal
alternative Kd

Apply Equation (21) to obtain ZSD; then, apply
criteria from Castillo-Ramírez et al. [56] 12 0.97 0.57

Jerlov scale = 2.92 + 0.0538 G (Equation (27)) 16 0.73 0.49
Chla = 1.44 + 0.00243 G − 0.00808 B (Equation (28)) 16 0.85 0.49

3.3. Model Comparison

Table 8 shows a comparison of the performance of our Chla general and coastal models
(Equations (22) and (28)) with models proposed by Goddijn-Murphy et al. [48]. These
authors developed two models, in which the B/G ratios are the independent variables and
Chla is the dependent variable.

The results presented in Table 8 show that the models proposed in this work achieved
a better performance in the validation process compared to those reported in the literature
applied to our data, demonstrating the relevance of acquiring field data under appro-
priate conditions (e.g., sunny days and calm sea). These conditions were not observed
by Goddijn-Murphy et al. [48]. Additionally, the lower R2 obtained by Goddijn-Murphy
et al. [48] could be due to the high CDOM concentrations reported, which could affect the
absorption of blue wavelengths in water.
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Table 8. Chla general and coastal models compared with literature models.

General Approach Coastal Approach

Model n R2 RMSE BIAS MAE MPI Model n R2 RMSE BIAS MAE MPI

Chla(Equation (22)) 31 82% 0.075 0.013 0.063 0.66 Chla(Equation (28)) 16 82% 0.082 0.027 0.071 0.66
CP885 [48] 31 49% 0.085 0.112 0.115 0.33 CP885 [48] 16 49% 0.107 0.158 0.162 0.33

ECOShot [48] 31 53% 0.104 0.209 0.209 0.00 ECOShot [48] 16 53% 0.139 0.311 0.311 0.00

Gao et al. [53] developed an algorithm to estimate ZSD using smartphone images in
continental water bodies. These authors observed the same conditions as in our study,
including camera and sun angles. However, we could not apply their model to our data
because it was developed for other conditions. Continental waters with high CDOM
concentrations are characterized by high reflectance in R and high absorption in B [48].
They also used a limnologic Secchi disk, while in this research, an oceanic disk was used.
Differences in terms of size and reflectance surface are noticeable in both versions [26,56],
so they are not comparable.

3.4. Angle Effect

Friedman’s non-parametric analysis showed significant differences between the ZSD
(Equation (25)) and the Chla (Equation (28)) values obtained from an image captured at 45◦

and at an angle other than 45◦ Table 9.

Table 9. Results of the non-parametric Friedman analysis (α = 0.05), where Fr crit = χ2
(α,k−1).

ZSD Chla

n 22 26
Fr cal 11.02 11.07
Fr crit 5.99 5.99

Subsequently, the precision of the results was evaluated; to this end, a confidence
interval of ±2.08 was set when using the model to predict ZSD (Equation (25)) and ±2.06
for Chla (Equation (28)) Figure 5a,b. This methodology showed that when applying the ZSD
model (Equation (25)), 95.45% of the data obtained from 45◦ images were within the confi-
dence interval, while only 86.36% were within this interval for non-45◦ images Figure 5a.
It was also observed that the data outside the confidence interval were underestimated.
On the other hand, when we applied the Chla model (Equation (28)), 95.45% of the 45◦

data and 90.90% of non-45◦ data fell within the confidence interval Figure 5b. In this case,
the data outside the interval are overestimated. Once the differences and precision of the
results were analyzed, their accuracy was evaluated; the lowest X 2 values correspond to
the results obtained using 45◦ images Table 10. This finding indicates that these results, in
addition to being more precise, are more accurate.
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Table 10. Least-squares analysis for the and ZSD and Chla models.

ZSD Chla

n 22 26
X2

45o 52 5.82
X2

non−45o 55 11.85

The assessment of the variability of images according to the angle at which they were
captured Tables 9 and 10 and Figure 5 showed that a variation of just one degree in the
position relative to the surface may lead to significant differences in the results.

4. Discussion

The methods traditionally used for in situ monitoring to estimate optical parameters
involve the use of specialized instrumentation, which can be relatively complex and expen-
sive [63,66,67,84–90]. In addition, these methods involve a slow analytical process, making
them ineffective to obtain a large-scale view of the study area in a short time [48,90]. On the
other hand, the logistics involved in preparing in situ monitoring based on optical parame-
ters is not straightforward; it requires a vessel, field material, and personnel experienced in
recording measurements and collecting samples. These monitoring procedures should be
scheduled on sunny days, as clouds can distort light measurements in the water during
field work [75–77].

1. The results of this study show the potential of digital images to evaluate the surface
optical parameters of a water plot. The main advantage of the proposed approaches
is their easy implementation and low cost, since they do not demand optics exper-
tise and only require a digital camera. These advantages can be summarized as
follows [47–54,91–96]:

2. Low-cost system: The use of smartphones, tablets, or digital cameras to capture digital
images is a cost-effective method for estimating surface optical parameters in the
ocean, as it does not require expensive specialized equipment. Smartphones and other
devices are relatively inexpensive and widely available, making them an attractive
option for researchers who are working with limited budgets or who do not have
access to specialized instrumentation;

3. Accessibility and ease of use: since these electronic devices are widely used, this
methodology can provide a widespread network of data acquisition, which can be
essential for global-scale analyses and modeling;

4. High spatial and temporal resolution: digital image capture can provide high spatial
and temporal resolution, allowing for a more detailed analysis of the ocean’s surface
optical properties over a larger area;

5. Versatility: smartphones, tablets, or digital cameras can be used to capture images
from different platforms such as beaches, piers, and boats, making them versatile
tools for surface optical parameter estimation;

6. Citizen science: The use of digital images allows for citizen scientists to contribute
to the data acquisition process. This can increase public participation in scientific
research and environmental monitoring, as well as their awareness and engagement
in oceanographic research;

7. Environmental monitoring: Surface optical parameters play a crucial role in the health
of marine ecosystems. The use of electronic devices can aid in environmental moni-
toring efforts, providing critical information for decision-making and conservation
efforts;

8. Rapid response: in the event of a phytoplankton bloom, the use of digital images
can aid in rapid response efforts, providing real-time information on the extent and
severity of spills.

This type of low-cost, user-friendly approach not only benefits scientists but could
also be used by the tourism or aquaculture industries, as well as by individual citizens
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concerned about changes in the water quality in their local environment. The benefits of this
approach go beyond just improving data collection. By enabling real-time and continuous
monitoring of surface optical parameters, this approach provides valuable information for
environmental management and decision making. The enhanced resolution and coverage
of the data also offers new opportunities for researchers to investigate the complex relation-
ships between surface optical parameters and environmental processes. This is especially
important in coastal areas, where our results are more accurate, since 355 million people
are expected to live within the 100 km of the coast between 2020 and 2035 [16,97,98]. This
continuously increasing pressure will likely lead to the degradation of these ecosystems,
adversely impacting the provided ES [26,99]. We propose implementing the use of the
coastal approach to supplement traditionally used analyses for in situ monitoring.

Taking into account these advantages, using the model generated for the Jerlov scale
(Equation (27)), as an example, would help to classify water types in a quick and efficient
way, since the equipment currently used to define water types based on this scale require
specialized knowledge for their use. This is the case of hyperspectral irradiometers [87] or
spectrophotometers (for calculating inherent optical properties) if the criteria of Solonenko
and Mobley [67] are followed, as in the cruises used to build the database used in the
present study. Likewise, approaches such as that proposed by Mallick et al. [89], where Kd
values are derived from satellite images, may be considered for estimating the Jerlov scale.
However, as mentioned by Lebourgeois et al. [47], the processing of such images is more
complex relative to digital images. In turn, the approach proposed herein could be used to
obtain and monitor optical properties such as a(λ), the total dispersion coefficient (b(λ)),
and Kd (λ), since, as reported by Jerlov [33] and Solonenko and Mobley [67], each Jerlov
water type is associated with a typical spectrum of these properties. Therefore, a shift in the
Jerlov water type may indicate that the components in the water column (phytoplankton,
detritus, and CDOM) and the light field are changing.

Estimating Chla concentrations with the model proposed in this work (Equation (28))
would help us to monitor phytoplankton blooms [100,101] at a lower cost and more quickly.
This is because the methodologies currently used in laboratories involve equipment such
as spectrophotometers or high-performance liquid chromatography (HPLC), which require
a filtration system, fiberglass filters, and solvents [66,102]. In addition, the methodology
involving HPLC also requires standards of pigments to estimate their concentration and
takes approximately 48 h [66]. However, phytoplankton blooms are proliferation events
that can last less than 24 h (fast blooms), for several days, or for weeks [103]. Therefore, a
rapid response can be crucial.

The estimated models to predict ZSD (Equation (25)) and water color based on the Forel–
Ule scale (Equations (23) and (24)) could be used to monitor eutrophication and anoxic–
hypoxic events, which influence water color and transparency [104–106]. In addition, they
would assist us to obtain data on these variables on sunny days when a Secchi disk or color
comparators are unavailable. In addition, in the case of the Forel–Ule scale, this approach
allows for estimation of all 21 colors of the scale, as the currently used instrument only
shows 16 color comparators.

Thus, this approach may facilitate surveying the water status in the study area without
the need to collect water samples or previous planning. For example, data could be obtained
on sunny days when no field trips are scheduled. However, it is worth noting that the
reliability and usefulness of this approach requires additional in situ measurements to carry
out additional calibration and validation studies.

In addition, the algorithms proposed herein may be implemented in the development
of an app that provides the Forel–Ule scale, ZSD, Kd, the Jerlov scale, and Chla. However,
to obtain high-quality data, it would be essential to implement quality flags such as those
used in the “Eye on water” app 2.4.0 [107], where the user is asked to perform a test prior
to capturing the image.

Although the use of digital images to estimate surface optical parameters in the ocean
has notable advantages in terms of ease of use and low cost, it is important to mention that
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there are limitations that must be considered. One issue that could arise is whether different
technologies used in smartphone cameras could generate different RGB readings. However,
Leeuw and Boss [51] evaluated the spectral sensitivity of RGB channels in different next-
generation devices and showed that although there may be differences in the spectral
shape, the values in RGB peaks are practically the same between devices. The approaches
presented in this work are based on the RGB peaks Figure 3, so they should be valid
regardless of the device being used. Another issue is the interpretation of color changes in
a relatively small area (1 cm × 1 cm). Our methodology is based on the work of Leeuw and
Boss [51], who proposed establishing a fixed area within the photograph so that devices
with cameras of different resolutions can be compared with each other, thanks to the fact
that the field of view of the camera is the same between devices.

Variability in lighting and image quality can be critical factors that influence the quality
of the obtained data, as mentioned in [75–77]. The quantity and quality of light reaching
the ocean surface depends mainly on the position of the sun and cloud cover [27,28]. The
image quality can be affected by elements influencing the visual state of the ocean surface,
for example, the presence of waves or white caps, sunshine, or the shadows generated by
the boat or platform from which the image is captured [50,51,53,58,59].

To overcome these limitations and obtain quality data, we followed the reflectance
measurement methodology with a SIMBAD spectroradiometer to capture the photographs
(refer to [58]). As mentioned by Fougnie et al. [108] and Deschamps et al. [58], this method-
ology is very specific with respect to the sun position and angle, as well as the equipment
angles, and it allows for a reduction in the noise or interference caused by the sunshine
and the reflection of the sky on the water surface. Digital images were captured at an angle
of 45◦ relative to the ocean surface on sunny days, when the sun was at an angle equal
to or greater than 45◦ relative to the horizon and with little or no cloud cover. A 45◦ sun
position at the zenith minimizes Fresnel reflectance on the water surface, allowing greater
light penetration, improving the accuracy of radiometric measurements, and facilitating
accurate estimation of optical parameters in the ocean [108].

5. Conclusions

Changes in color or turbidity in the marine environment involve an alteration of the
components that absorb or disperse light within the water column. These changes can
be associated with natural or anthropogenic processes that affect water quality, such as
anoxia–hypoxia, eutrophication, and phytoplanktonic blooms. Therefore, it is advisable
to implement monitoring systems to generate time series with a sufficient time span to
differentiate between natural variabilities and those derived from anthropogenic pressures.

A simple way to carry out this sort of monitoring without incurring high costs is
to apply techniques such as the one proposed in the present work, which only require a
smartphone or tablet. The results of this study demonstrate that images captured at the
sea surface with the methodology described herein provide information about the optical
characteristics (such as the Forel–Ule scale, ZSD, Kd, the Jerlov scale, and Chla) of a water
plot. The use of these images for the development of empirical approaches yielded the
best results in the coastal area. In addition, this study confirmed that if the established
methodology for image capture is not followed in relation to the camera positioning angle,
the results can be biased by the noise generated by the solar brightness and the reflection of
the sky on the water surface. The conditions required for the proper performance of our
approach that the image of the water surface be captured on days with low or no cloud
cover, with a calm sea, and when the sun is behind the observer at an angle greater than or
equal to 45◦ with respect to the horizon. Once the above conditions are met, the observer
must turn his/her body 45◦ to the right or left of the starting position and select a position
where the shadow of the boat does not interfere in the image recording field. Finally, the
camera should be positioned at 45◦ relative to the sea surface to capture the image.

This user-friendly and low-cost methodology could be used as a supplement to the
analyses traditionally applied in in situ monitoring. The observer does not necessarily
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have to be an expert in optics to use it, which facilitates its implementation in monitoring
schemes involving citizen assistance for data generation. This advantage would help to
expand the spatiotemporal coverage of monitoring. However, it is worth noting that the
reliability and usefulness of this approach must be supplemented by in situ measurements
to carry out additional calibration and validation studies. Moreover, this work establishes
a basis for the future development of an app to deliver the Forel–Ule scale, ZSD, Kd, the
Jerlov scale, and Chla, which could be suitable for use by scientists and the general public.
To obtain data reflecting the true variability of a water plot and filter out images that fail
to meet the methodological criteria, this app should include quality flags considering the
angles of the observer and the camera relative to the position of the sun. In addition, this
app should record information including the date, time, global position, and distance from
the water surface. The above can be achieved with the tools currently included in mobile
devices, such as calendar, clock, global positioning system (GPS), and barometer. For free
access to the data, we also recommend developing a web page where these data can be
viewed in real time and downloaded.
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