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Abstract: This paper introduces a robust normal estimation method for point cloud data that can
handle both smooth and sharp features. Our method is based on the inclusion of neighborhood
recognition into the normal mollification process in the neighborhood of the current point: First, the
point cloud surfaces are assigned normals via a normal estimator of robust location (NERL), which
guarantees the reliability of the smooth region normals, and then a robust feature point recognition
method is proposed to identify points around sharp features accurately. Furthermore, Gaussian
maps and clustering are adopted for feature points to seek a rough isotropic neighborhood for the
first-stage normal mollification. In order to further deal with non-uniform sampling or various
complex scenes efficiently, the second-stage normal mollification based on residual is proposed. The
proposed method was experimentally validated on synthetic and real-world datasets and compared
to state-of-the-art methods.

Keywords: normal estimation; point cloud; feature preserving; normal mollification

1. Introduction

The normal information is a crucial geometric property of 3D point clouds, which
is extensively applied in many fields, such as denoising [1,2], surface reconstruction [3,4],
resampling [5] and consolidation [6], and feature detection and extraction [7]. The inaccu-
rate normals are likely to result in the loss of detailed features on the point cloud surface,
thereby negatively impacting the subsequent applications. Although many works have
been proposed in this research field, normal estimation still confronts numerous challenges.
First of all, normal estimation should have high precision, notably for noisy point clouds
or non-uniformly sampled surfaces. Next, computational efficiency must be ensured to
verify practical significance. Thirdly, adaptive parameters should be designed to apply the
estimator to various conditions.

Regression-based normal estimation methods [3,8] are the most widely employed
on account of their high efficiency and strong applicability. However, such methods are
actually low-pass filters. Consequently, any sharp features of the surface will unavoidably
be smoothed. In this case, normal mollification techniques [4,9] are proposed to improve
the initial normal field. Nevertheless, these methods require refined parameter tuning and
can no longer reliably recover curvature discontinuities under the excessive smoothing
of sharp features. Additionally, segmentation-based approaches [10,11] are proposed to
generate isotropic sub-neighborhood matching the current point to estimate normal. These
methods can generate more reliable normals than other methods but usually require longer
run times.

Motivated by the above consideration, we propose a fast, high-quality normal molli-
fication method. In contrast with the conventional normal mollification process, a rough
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isotropic sub-neighborhood is sought and added in our method, which effectively avoids
the requirement of reliable initial normals and refined parameters. Throughout the process,
the normals of all points are initialized by a normal estimator of robust location. Then
feature coefficient that measures the extent of points are near to sharp region is utilized
to classify the point cloud into feature points and non-feature points. For feature points,
an isotropic sub-neighborhood constructed by a Gaussian map and clustering is utilized
for the first-stage normal mollification. Meanwhile, further secondary mollification can
ensure steady and accurate estimation under various difficult scenarios. The experiments
demonstrate that the presented method yields accurate and efficient results in the presence
of noise and anisotropic samplings while preserving sharp features. Our main contributions
can be summarized as follows:

� A normal estimator of robust location is used to estimate initial normals, which
ensures the reliability of the smooth region normal.

� A robust recognition method based on normal differences is proposed to identify
points close to sharp features. This method can accurately identify feature points at
high noise levels.

� A robust normal mollification process based on neighborhood recognition is proposed,
which can efficiently and reliably estimate normals for points around sharp features
even in the presence of noise and non-uniform sampling.

2. Related Works

Normal estimation is challenging for point clouds with noise, non-uniformity of
sampling, and sharp features. Considerable approaches have been developed for normal
estimation in the literature, which are divided into the following six categories:

The first category is based on regression. The classical normal estimation method,
proposed by Hoppe et al. [3] (PCA), defines the normal of a point as the eigenvector corre-
sponding to the smallest eigenvalue of the covariance matrix of its neighbors, where the
point’s local neighborhood is approximated by a plane. Mitra et al. [12] proposed adaptive
neighborhood size to improve the robustness of the regression method to noise. However,
the method tends to smooth sharp features and thus cannot correctly estimate the normal
near the edges. Moreover, by assigning Gaussian weight to the current point’s neighbors
during the plane fitting, a weighted version PCA is proposed in [8,13], which benefits from
weakening the influence of some points, such as noise and outlier points. To better adapt to
the shape of the underlying surface, Cazals et al. [14] and Guennebaud [15] utilize higher-
order quadric surfaces and algebraic spheres to replace the plane. Mederos et al. [16] extend
the plane fitting by introducing a robust statistic approach called M-estimator to reduce the
impact of the neighbors belonging to different surface patches, but Newton’s method is
needed to solve the normal; thus, the calculation is relatively complicated. Wang et al. [17]
further consider the normals’ likeliness to penalize neighbors having normals much differ-
ent from the normal of the current point. Recently, Sanchez et al. [18] introduced an iterative
weighted PCA (IterWPCA) from a robust M-estimator and effectively dealt with the noise
and anisotropy problems. However, the specified curvature and noise scale assigned to the
global may cause the algorithm not to converge to the optimal solution.

Another train of thought is based on the Voronoi diagram, which was first proposed by
Amenta [19]. In this method, the furthest pole of the Voronoi lattice is used to approximate
the normals, but it works only for the noise-free point clouds. Dey et al. [20] extend the idea
by seeking the Delaunay sphere and refining the poles, thereby being able to estimate the
normal while the presence of noise. Based on the former theories, Alliez et al. [21] present a
method that combines the advantages of PCA and Voronoi-based to achieve more stable
normal estimation results.

To lessen the impact of noise and outlier points while improving the initial normals,
the methods based on normal mollification are studied. Yagou et al. [22,23] propose filters to
mollify the normal field locally and introduce three kinds of filters: mean filter, median filter,
and alpha-trimming filter to reduce the sensitivity to noise while recovering curvature
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discontinuities. Similarly, Jones et al. [9] extend bilateral filtering to estimate normals.
Öztireli et al. [4] expound the implicit least square surface from the perspective of local
kernel regression, and take the robust local nuclear regression method in robust statistics for
reference, proposing a robust normal mollification method. Additionally, a half-quadratic
regularization method [24] also restores sharp features while improving noisy normals.
Although normal mollification methods can obtain virtually correct normal [25] for the
points close to sharp features, as post-processing methods, all of them require dependable
initial normal.

The methods mentioned above are limited in the capability to maintain sharp features;
hence the fourth category based on the voting method is developed. Li et al. [26] propose
a robust local noise estimation method combined with kernel density estimation, which
votes all the neighborhood points on a plane set determined by arbitrary triples to select the
optimal tangent plane. This approach can accurately estimate the normal of feature points
and have strong robustness to noise and outliers. However, it does not take non-uniform
sampling into account. To handle this issue, a uniform sampling technique based on the
randomized Hough transform is proposed by Boulch and Marlet [27]. Whereas in the case
of a large dihedral angle, the difference in normals of plane sampling will be trivial, so
these normals will vote for the identical bin, resulting in the blurring of the normals near its
edge. Additionally, Zhang et al. [25] introduce a pair consistency voting algorithm (PCV)
to gain the optimal tangent plane via point pairs voting between neighborhood points
and use density weights to solve non-uniform sampling issues. In order to deal effectively
with noise and outliers, Mura et al. [28] proposed a method based on robust statistics that
can simultaneously maintain the sharp features of the point cloud. Such methods usually
consider that points with large fitting residuals have a negative impact on the normal
estimation and should be reduced or dropped during the plane fitting.

The fifth category is based on neighborhood segmentation. Fleishman et al. [10] pro-
pose robust moving least squares to segment the neighborhood into multiple piecewise
smooth regions, whereas normal estimation of this method is on the premise of reconstruc-
tion; thus, it is time-consuming. Zhang et al. [11] design an unsupervised learning process,
adopting the low-rank subspace clustering method (LRR) with prior knowledge to divide
into multiple isotropic neighborhoods. However, a lot of time is taken to solve the model
in each segmentation process. To reduce the computational time, based on LRR technology,
Liu et al. [29] utilize the least square method as a guide to segmentation neighborhood, de-
creasing time and ensuring its high-quality segmentation. Moreover, Yu et al. [30] proposed
a neighborhood segmentation-based and neighborhood growth-based method to construct
a consistent neighborhood with the current point, but this method could be labile while
dealing with sparse sampling models. Different from pure segmentation, Cao et al. [31]
obtain the surface patch consistent with the current point through neighborhood shift
techniques to estimate accurate normals.

Recently, the sixth category of learning-based normal estimation methods has been
proposed [32–35]. Zhou et al. [36] offer a multi-scale neighborhood selection technique and
an additional plane feature constraint based on PCPNet [32] to enhance performance. By
leveraging both the PointNet and 3DCNN, Hashimoto et al. [37] proposed a joint network
that can accurately infer normal vectors from a point cloud. Zhou et al. [38] proposed a
normal filter based on multipatch stitching. Thanks to their patch-level architecture, their
method can reduce computational costs and improve the robustness of noise removal.
Boulch et al. [39] proposed to convert a local point cloud block into a 2D Hough space
accumulator by randomly selecting a point triplet and voting for the normals in that plane.
Then, the normals are estimated from the accumulator as a continuous estimate of the
regression problem. This method does not take full advantage of the 3D information,
as it loses information in the transformation phase. Later, a mixture-of-experts (MOE)
architecture called Nesti-Net was introduced by Ben-Shabat et al. [40] and relies on a data-
driven methodology to determine the ideal scale around each point and boosts sub-network
specialization. Usually, such methods are suitable to models with many curvature details
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and/or high noises, and many methods are still limited in their ability to handle piecewise
smooth surfaces and preserve sharp features.

3. Overview

Given a point cloud P = {pi}n
i=1 as input, our method takes three steps to estimate

the normals. (1) The nearest neighborhood N with S neighbors is obtained for each point
pi, and initial normals are referenced for NERL. Afterward, point cloud P is classified into
two types: feature point set Pf or non-feature point set Pn, according to feature coefficients
of the points, which are detailed in Section 4. (2) Different neighborhood Ñ is selected for
each feature point. After that, Gaussian map and clustering are utilized to form different
clusters

{
N1, N2, ..., NK

}
, where K is the number of clusters of the current point. Each

cluster is solved to a plane by the RANSAC algorithm. The residuals between the current
point and each fitting plane are calculated, then the cluster that matches the current point
is regarded as the optimal cluster that is employed to conduct the normal mollification,
as shown in Section 5.1. (3) According to the distribution of fitting residuals, the feature
points with larger residuals can be considered abnormal points. Then the second-stage
normal mollification is carried out for these points, which is explained in Section 5.2. The
overview of our method is concluded in Algorithm 1 and illustrated in Figure 1.

Algorithm 1 The pipeline of our algorithm

Input: Point cloud P;
Output: Normal set {ni};
1: for pi ∈ P do
2: Compute initial normal ñi ∈ pi, feature coefficient wi;
3: if wi < wt then
4: ni = ñi;
5: else
6: Obtain mollification neighborhood Ni ∈ pi via Algorithm 2;
7: Obtain ni via the first-stage normal mollification based on Equation (7);
8: if fitting residual r(pi) > ε f then
9: Obtain mollification neighborhood Ni ∈ pi via Section 5.2;
10: Obtain ni via the second-stage normal mollification based on Equation (8);
11: end for
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4. Normal Initialization and Feature Point Recognition

In order to make the initial normals of smooth areas have a certain accuracy, as well as
preparation for the subsequent processing, based on the weighted principal component
analysis (WPCA) [13], our NERL takes advantage of M-estimates of location [41] instead
of the mean to estimate the normals. For each point pi and its S neighbors, a covariance
matrix C is calculated as

C = 1
∑ wd(pj ,pi)

S
∑

j=1
wd(pj, pi) · (pj − pr)(pj − pr)

T

pr =

S
∑

j=1
wd(pj ,pi)·pj

S
∑

j=1
wd(pj ,pi)

,
(1)

where wd and pr are a distance weight and points of robust location, respectively, and
wd(pj, pi) = exp(−

∣∣∣∣pj − pi
∣∣∣∣2/2 · σd

2) . σd is set to the average distance from its ten nearest
neighbors of the current point to their one respective neighbor. The estimated normal at pi
is the eigenvector associated with the smallest eigenvalue of the covariance matrix. Figure 2
shows the normal estimation errors of PCA, WPCA, and NERL on the Harpago and Scallop
curved surface models.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 2. The normal estimation error. Green denotes points with an estimated normal that deviates 

by less than 5  from the ground-truth normal; blue encodes angular deviations between 5  and 

10 ; and red marks errors more than 10 . From left to right are the model, PCA, WPCA, and NERL 

methods, and the percentages of green, blue, and red points are counted under each result. 

The normals of the points in the smooth regions are reliably computed through 

NERL, whereas those of the points near the edges still fail to preserve sharp features. 

Therefore, it is indispensable to distinguish the feature points further. In order to make 

feature detection more applicable, we divided it into two cases according to the noise scale 

to deal with separately. Under the condition of small-scale noise, for each point ip , the 

eigenvalues of its covariance matrix computed by PCA and NERL methods can be ob-

tained by singular value decomposition, and the feature coefficients 1 2,i iw w  are calculated 

by their three eigenvalues, respectively, corresponding to 0 1 2 0 1 2( , , ),( , , )         with as-

cending order. 

0 0
1 2

0 1 2 0 1 2

, .i iw w
 

     


= =

  + + + +
 (2) 

Feature points fP   are differentiated via the given threshold 1 2,t tw w  , i.e., 

1 1 2 2{ | ( ) ( )}f i i t i tP p P w w w w=     . Although the above method has good efficiency, 

it will become invalid under the situation of large-scale noise, as illustrated by Figure 3. 

Accordingly, a robust method based on normal differences is proposed. For a given point 

ip  with the neighborhood 
ipN  of S  neighbors, a covariance matrix U  is constructed 

by the normal difference of point pairs in the neighborhood: 

,

1
( )( ) ,

j k pi

T

j k j k

n n N

U n n n n
S 

= − −
 

(3) 

where jn  and kn  are the normals of the neighborhood points. The size of the three ei-

genvalues of the covariance matrix U  reflects the dispersion degree of the normals in 

the neighborhood. For smooth regions, the three eigenvalues tend to be zero, and as the 

enlargement of dispersion degree, the size of the eigenvalues increases accordingly. Thus, 

for a point ip , its feature coefficient 3iw  is defined as the sum of three eigenvalues. We 

still specify a threshold 3tw , and feature points are denoted as 3 3{ | ( }f i i tP p P w w=   . 

Figure 3 indicates that our method can still perform accurate feature detection even if un-

der large-scale noise. Note that in practical implementation, there is no strict standard for 

the selection of both, which depends on the prior cognition of the processing object. 

Figure 2. The normal estimation error. Green denotes points with an estimated normal that deviates
by less than 5◦ from the ground-truth normal; blue encodes angular deviations between 5◦ and
10◦; and red marks errors more than 10◦. From left to right are the model, PCA, WPCA, and NERL
methods, and the percentages of green, blue, and red points are counted under each result.

The normals of the points in the smooth regions are reliably computed through NERL,
whereas those of the points near the edges still fail to preserve sharp features. Therefore, it
is indispensable to distinguish the feature points further. In order to make feature detection
more applicable, we divided it into two cases according to the noise scale to deal with
separately. Under the condition of small-scale noise, for each point pi, the eigenvalues of its
covariance matrix computed by PCA and NERL methods can be obtained by singular value
decomposition, and the feature coefficients wi1, wi2 are calculated by their three eigenvalues,
respectively, corresponding to (λ0, λ1, λ2), (λ′0, λ′1, λ′2) with ascending order.

wi1 =
λ0

λ0 + λ1 + λ2
, wi2 =

λ′0
λ′0 + λ′1 + λ′2

. (2)

Feature points Pf are differentiated via the given threshold wt1, wt2, i.e.,
Pf = {pi ∈ P|(wi1 > wt1) ∪ (wi2 > wt2)}. Although the above method has good efficiency,
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it will become invalid under the situation of large-scale noise, as illustrated by Figure 3.
Accordingly, a robust method based on normal differences is proposed. For a given point
pi with the neighborhood Npi of S neighbors, a covariance matrix U is constructed by the
normal difference of point pairs in the neighborhood:

U =
1
S ∑

nj ,nk∈Npi

(nj − nk)(nj − nk)
T , (3)

where nj and nk are the normals of the neighborhood points. The size of the three eigen-
values of the covariance matrix U reflects the dispersion degree of the normals in the
neighborhood. For smooth regions, the three eigenvalues tend to be zero, and as the
enlargement of dispersion degree, the size of the eigenvalues increases accordingly. Thus,
for a point pi, its feature coefficient wi3 is defined as the sum of three eigenvalues. We
still specify a threshold wt3, and feature points are denoted as Pf = {pi ∈ P|(wi3 > wt3}.
Figure 3 indicates that our method can still perform accurate feature detection even if under
large-scale noise. Note that in practical implementation, there is no strict standard for the
selection of both, which depends on the prior cognition of the processing object.
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5. Robust Normal Estimation

In this section, we explain how to reliably estimate the normals of the distinguished
feature points via the normal mollification methodology, which divides into two successive
steps: a preliminary normal estimation based on neighborhood segmentation and a further
normal estimation based on residual under various difficult scenarios.

5.1. Normal Mollification Based on Neighborhood Segmentation

Gaussian map and clustering: The Gaussian map of the point cloud is used to map
the normals of the surface in Euclidean space to the unit sphere. Based on the fact that
the normals of points change continuously in the smooth regions but alter dramatically
when located at the sharp surface, the normals of smooth areas will form a single cluster,
while those near the sharp feature will form multiple clusters on the Gaussian sphere and
each cluster corresponds to different surfaces, as shown in Figure 4. Since the fitting-based
approaches generally assume that the surface is smooth everywhere and the estimated nor-
mals are continuous at sharp edges, which makes the threshold employed for subsequent
clusters unreliable, we temporarily remove the feature points from the neighborhood in
the first-stage normal mollification to form a single cluster for each patch on the Gaussian
sphere. Therefore, for each feature point pi ∈ Pf , neighborhood Ñ of S̃ neighbors without
feature points will be selected.
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Figure 4. Gaussian map and clustering of cube.

The dataset of the neighborhood of the feature point Ñ =
{

pi, i = 1, 2..., S̃
}

is mapped to

the Gaussian sphere, and the mapped dataset can be expressed as G(Ñ) =
{

ni, i = 1, 2..., S̃
}

,
where ni is the corresponding normal. Since the amount of sub-neighborhood is not
foreknown, the parameter-free clustering algorithm is adopted. Thus, here, we select the
parameterless hierarchical agglomerative clustering (HAC), where the bottom-up clustering
procedure is also appropriate for this process. In this algorithm, each data point is regarded
as a separate cluster beforehand. Then, according to the similarity between clusters, they
are gradually merged into increasing clusters until the similarity between any two clusters
exceeds a specified threshold.

Calculating the similarity between two clusters, Ñ1 and Ñ2, is also termed the linkage
criterion, which includes three categories: single linkage, complete linkage, and average
linkage. The common average linkage shows the best performance in our application:

Dave(Ñ1, Ñ2) =
1∣∣∣Ñ1

∣∣∣ · ∣∣∣Ñ2

∣∣∣ ∑
i∈Ñ1

∑
j∈Ñ2

d(i, j), (4)

where
∣∣∣Ñ1

∣∣∣, ∣∣∣Ñ2

∣∣∣ represent the number of points in clusters Ñ1, Ñ2, respectively; i and

j denote i-th and j-th points in the clusters Ñ1, Ñ2; d(i, j) is expressed as the similarity
between two points; and

d(i, j) = arccos(ni · nj), (5)

where ni · nj is the inner product of two unit normals. On the Gaussian sphere, they will be
merged when the similarity between two clusters is less than a given threshold δ.

An appropriate threshold δ is key to obtaining credible clustering results. A small
threshold can result in the isotropic neighborhood being divided into multiple clusters.
Inversely, a relatively large threshold makes the anisotropic neighborhood group into an
identical cluster. However, on account of the feature points being removed in advance, the
normals of different patches have obvious recognizability; thus, the appropriate threshold
is in a relatively large tolerance. After considerable tests, the threshold of 7◦ performs good
outcomes in this algorithm.

Neighborhood recognition: The dataset in the neighborhood of feature points
Ñ =

{
pi, i = 1, 2..., S̃

}
is grouped into several isotropic clusters

{
N1, N2, ..., NK

}
by us-

ing a Gaussian map and clustering, where K is the number of clusters. To eliminate the
influence of noise and outliers, the RANSAC algorithm is utilized for each cluster. Then
the residuals between the current point and each fitting plane are obtained, and the cluster
corresponding to the minimum residual is selected as the mollification neighborhood of
the current point. The cluster and neighborhood recognition algorithms are shown in
Algorithm 2.



Sensors 2023, 23, 3292 8 of 17

Algorithm 2 Neighborhood recognition of feature points

Input: pi, pi ∈ PF;
Output: pi‘s mollification neighborhood Ni;
1: for i = 0 to PF.size() do
2: Seek S̃ nearest neighborhood Ñ;

3: View every point
{

p1, p2, ...pS̃

}
as a single cluster

{
Ñ1, Ñ2, ..., ÑS̃

}
;

//see Section 5.1 and Figure 4
4: for j = 1 to S̃ do
5: Compute similarity: Dave(Ñp, Ñq), p 6= q based on Equation (4);

6: T = min
{

Dave(Ñp, Ñq)
}

;
7: if (T < δ) then
8: Find two cluster Ñm, Ñn with minimum similarity;
9: Merge (Ñm, Ñn);
10: else
11: Obtain the ultimate cluster result:

{
N1, N2, ..., NK

}
;

12: break;
13: end For
14: {ε1, ε2, ..., εS} =computeResidual (pi,

{
N1, N2, ..., NS

}
); //see Section 5.2

15: Ni = min{ε1, ε2, ..., εS}corresponding to Nc, c ∈ {1, 2, ..., S};
16: end for
17: return Ni with Si neighbors;

Mollification: The isotropic sub-neighborhood matching the current point is em-
ployed to mollify its normal. Similar to previous studies [5], our iteration formula of the
first-stage normal mollification is given by Equation (6).

nk+1
i =

Si
∑

j=1
wn(nk

i , nj)nj

Si
∑

j=1
wn(nk

i , nj)

, (6)

where nj is the normal of a point in the mollification neighborhood Ni of the current point
pi, nk

i is normal of pi after the k-th mollification, and wn(nk
i , nj) is a normal deviation kernel

function as shown in Equation (7).
As the deviation between the normal of the k-th iteration and the normal of the

(k− 1)-th iteration is less than the threshold ε, the iteration will be terminated, i.e.,
1− nk−1

i · nk
i ≤ ε, and the threshold ε = 10−4 is set.

wn(nk
i , nj) = exp(

−
∣∣∣∣∣∣nk

i − nj

∣∣∣∣∣∣2
σ2

n
), (7)

where ||·|| is the l2 − norm, and σn is the normal deviation bandwidth. To make the normal
mollification more accurate, the selection of this parameter should reduce the influence of
outlier normals as much as possible in the normal mollification process. In the practical
utilization, σn is set to the maximum normal deviation, i.e., σn = max(

∥∥ni − nj
∥∥), j ∈ [1, Si].

5.2. Normal Mollification Based on Residual

Detection and neighborhood recognition of abnormal points: Due to the existence
of noise, non-uniform sampling, or various complications, some non-feature points are
over-identified as feature points, such as sharp corners, narrow-bands, and low-sampling
density regions, so the normals in some points may be incorrectly estimated.

To cope with this kind of issue, as well as compensate for the impact of excluded
feature points in the first stage, the second-stage normal mollification is devised. First of all,
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the residual set
{

r(Pf )
}

between each feature point and the consistent optimal plane can be

calculated, and abnormal points Pa are defined as Pa =
{

pi ∈ Pf

∣∣∣r(pi) > ε f

}
, ε f = µ + 3σ,

where µ and σ are the mean and standard deviation of the residual set, respectively. Note
that it is impossible for the recognition to be 100% precise. However, excessive identification
only increases the running time of the method and does not degrade the results.

Next, similar to the first stage, we need to seek the mollification neighborhood of the
abnormal points for normal readjustment. Therefore, a neighborhood with a larger size
S∗ = 6S̃ is selected. Since the normals of most feature points are correctly estimated in
the first stage, they would be involved when constructing the second-stage mollification
neighborhood. Given an abnormal point pi and its neighbor pij, we define the residual
rij =

∣∣nij · (pij − pi)
∣∣. The mollification neighborhood Ni is constituted by selecting neigh-

bors if rij is less than the specified threshold στ , which is set to 0.25 degrees, corresponding
to the amplitude in this article.

Mollification: After the abnormal points’ mollification neighborhood is sought, the
second-stage normal mollification is designed to estimate the normals of these points more
finely. The formula of the second-stage normal mollification is given by Equation (8).

ni =

∑
pj∈Ni

ws(rij)nij

∑
pj∈Ni

ws(rij)
, (8)

where ws(rij) is a residual kernel function defined as ws(rij) = exp(−(rij/σs)
2), and σs is

set as στ/3.

6. Implementation Results

To evaluate the performance of the proposed method, a variety of point cloud models
of sharp features with a complicated neighborhood, non-uniform sampling, and noises
are tested. We contrast our method with some state-of-the-art approaches: PCA [3], BF [4],
PCPNet [32], DeepFit [33], MTRNet [34], RNE [26], HF [27] (only HF_cubes is involved),
IterWPCA [18], and PCV [25]. The learning-based methods used for comparison are trained
via the PCPNet shape dataset [30]. For the sake of fair comparisons, the same neighborhood
size is applied to each algorithm, and all other parameters required by other methods, if
any, are set to the default or the values of the best results obtained through trial and error.
In addition, the parameters of our algorithm are summarized below:

• S, S̃, S∗ are the number of neighbors for calculating the initial normal, the first-stage,
and the second-stage mollification, respectively (S̃ = 2S, S∗ = 6S̃).

• wt1, wt2 are the thresholds used to distinguish feature points under low-level noise.
• wt3 is the threshold used to distinguish feature points under high-level noise.
• δ is the threshold for clustering (δ = 7◦).
• σn, σs are the normal deviation and the residual bandwidth for the first-stage and the

second-stage mollification, respectively.

In this paper, three different scores are used to evaluate the performance of the algo-
rithms quantitatively: (1) the runtime; (2) the root mean square with a threshold (RMSτ);
and (3) the number of bad points (NBPs), where (2) and (3) are defined as

RMSτ =

√
1
|P| ∑p∈P

f ( ˆnp, ñp)
2
, (9)

where

f ( ˆnp, ñp) =

{ ˆnpñp, i f ˆnpñp < τ
π/2, otherwise

, (10)
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np is the ground-truth normal of p, and ñp is the estimated normal of p. ˆnpñp is the
angle between np and ñp. τ = 10◦ is set, which means those points whose errors are more
than 10◦ are regarded as bad points.

All the noise used in the experiments is Gaussian noise, with different standard
deviations as a percentage of the bounding box diagonal. Our method is implemented
using Microsoft Visual Studio 2015 with C++ and Point Cloud Library (PCL) [42]. In the
specific test process of our algorithm, the parameters S̃ = 2S, wt1 = 0.02, wt2 = 0.012,
and wt3 = 0.2 (note that the neighborhood size below refers to S̃) are the default unless
otherwise specified. All the experiments have been performed on the same computer with
Inter(R) Core(TM) i3-7100 3.90 GHZ and 16 GB RAM without parallel computing.

6.1. Quantitative Evaluation
6.1.1. Accuracy

To evaluate the effectiveness of our method under various complex conditions, three
basic categories are used for performance testing, as shown in Figure 5. Here, the first
category is used to evaluate performance on sharp features, the second is a test of robustness
to non-uniform samplings, and the third is utilized to assess the ability to preserve small
structures. For each model, the neighborhood size is defined as 40 points. The second
recognition strategy only is used in Detials in our method. Additionally, for PCPNet
and MTRNet, we adopt the multi-scale versions provided by authors with the default
parameters. DeepFit does not have a multi-scale version, so the 256 neighborhood points
and 3-order jet recommended by the author are adopted. The results for each model are
presented in Figure 6 (the errors of Pipe and Icosahedron are the average of the test results
of gradient and striped anisotropic samplings).
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Figure 5. The point cloud models used to test the experiment.

Overall, PCA generates overly smooth normals near sharp edges, which can be
markedly seen from the NBPs of the first two categories of models in Figure 7, but it
has a slight improvement in the processing of more curved models. PCPNet obtains the
worst result due to its poor accuracy on smooth regions. Furthermore, DeepFit, as a deep-
fitting method, underperforms in the face of sharp features. In contrast, MTRNet obtains
better results, especially for detecting details. Although BF and IterWPCA maintain sharp
features to a certain extent, there are still considerable bad points, as presented in Figure 7.
HF and RNE have almost similar results, and RNE is inferior to HF in the Details module,
whereas it has some advantages in anisotropic sampling. PCV achieves good outcomes
in handling the above cases, but in comparison, our method takes on lower and lower
computational costs (see Section 6.3).
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Figure 6. The RMSτ estimated by various methods, where the first three respectively represent
the angular error of sharp feature models, non-uniform sampling models, and detail models; the
comparison of the comprehensive performance of each algorithm in each category is demonstrated at
the end, in which the average errors of each category and all models are included.
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6.1.2. Robustness to Noise

In this experiment, two models of Cube and Lagera with variational Gaussian noise
levels are tested, where the Cube model focuses on relatively small noise levels varying
from 0% to 1.5% with an interval of 0.25% and the second recognition strategy is used
when the noise level reaches 0.5%; the Lagera noise data from the PCPNet dataset centers
on relatively large noise levels, which contains noise varying from 0% to 10% with an
interval of 2%, so the second recognition strategy is used, and wt3 is set as 0.6 when the
noise level exceeds 6%. The neighborhood size is defined by 60 points for each model. The
statistical results and the visualization of the angular error are presented in Figures 8 and 9,
respectively. Compared with other methods, due to noise affecting the stability of voting
results, HF has bad behavior under different noises of the two models. The accuracy of
the normal estimated by MTRNet in the Lagera model containing curved surfaces is well
guaranteed with the increase in noise level, whereas on account of incorrect estimation
of normals at sharp features and noisy normal, as shown in Figure 9, it has a high RMSτ

in the Cube model. RNE has great contrast between models with different features. In
comparison, it is bad at large noises and curved models. The errors of IterWPCA and
PCV have moderate results but a great amplitude rise with the increase in noise level. The
proposed method achieves the lowest RMSτ , which indicates that our method is more
advantageous in robustness to noise.
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6.2. Qualitative Evaluation

We further demonstrate the performance of our method in point cloud filtering appli-
cations. In the experiment phase, we utilize an effective point updating algorithm [1,43], a
point cloud smoothing algorithm Bilateral method [44], and EGT [45], in which the normal
information used in this algorithm is matched by the estimated normal output via each
method. To obtain better results in the experiment, we alternately call the normal estimation
and position update for several iterations. Because the excessive implementation of this
algorithm could smooth out sharp edges, the number of iterations is empirically set to 4.
The Joint model with 48K points and 1.0% noise is used in our experiment, where except for
the first iteration, the first recognition strategy is used in the remaining iterations, and the
results are shown in Figure 10. We can see that our method has higher fidelity in preserving
features than other methods.
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Real scan data often has many defects, such as noise, outliers, and non-uniform
sampling. In order to illustrate the effectiveness of our method on real scan data, we tested
our method on the Pyramid and Office models and compared them with PCA, as shown in
Figure 11, where the first recognition strategy is adopted in our method. As we can see, the
PCA method results in the loss of the sharp edges and corners, but the sharp features are
favorably preserved by our method.
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6.3. Computational Time

We present the time consumption of all algorithms applied to the models in Figure 5
in Table 1. It can be seen that PCA and BF are the fastest two methods, whereas BF has
a larger improvement in error results. Due to the voting strategy of point pairs, PCV is
the slowest method, but it has a better effect. Moreover, learning-based approaches take
relatively more time. Our method is slightly faster than RNE and HF, and the accuracy has
been significantly improved. Moreover, it is worth noting that the proposed method can be
fully parallelized easily, which will remarkably reduce the computational time taken by
our method.

Table 1. Mean computational time (in seconds) of different algorithms.

PCA BF PCPNet DeepFit MTRNet RNE HF IterW-PCA PCV Ours

SharpFeature (48,068) 0.07 0.56 61 59.7 42.5 23.2 15.7 6.25 184.7 2.98
NonUniform (72,000) 0.63 0.98 90.8 78.3 64.5 42.55 17 14.1 296.7 4.34

Details (189,021) 1.43 3.82 249.5 208.2 161.6 84.5 76 22.3 523.7 32.5
Average 0.71 1.79 133.8 115.4 89.5 50.1 36.2 21.3 335 13.3

7. Conclusions

In this article, we present a robust normal estimation method for point clouds with
sharp features, where via a normal estimator of robust location and a robust feature point
recognition, reliable initial normals of smooth regions and accurate recognition of points
close to sharp regions can be obtained. Further, the two-stage normal mollification based on
neighborhood recognition ensures our algorithm can deal with various difficult conditions.
We demonstrate the validity of our work by testing on both synthetic and scanned point
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clouds. Compared with other algorithms, the proposed method has higher quality, lower
computational cost, and robustness to noise and non-uniform sampling. Moreover, it is
simple and easy to implement.

However, more faithful normals can be generated with delicate parameters turning.
In the future, we would like to choose these parameters adaptively according to various
noises and sampling densities.
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