
Citation: Tian, W.; Wen, Y.; Chu, X.

Mapping with Monocular Camera

Sensor under Adversarial

Illumination for Intelligent Vehicles.

Sensors 2023, 23, 3296. https://

doi.org/10.3390/s23063296

Academic Editor: Ikhlas Abdel-Qader

Received: 19 February 2023

Revised: 7 March 2023

Accepted: 17 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Mapping with Monocular Camera Sensor under Adversarial
Illumination for Intelligent Vehicles
Wei Tian * , Yongkun Wen and Xinning Chu

School of Automotive Studies, Tongji University, Shanghai 201804, China
* Correspondence: tian_wei@tongji.edu.cn

Abstract: High-precision maps are widely applied in intelligent-driving vehicles for localization
and planning tasks. The vision sensor, especially monocular cameras, has become favoured in
mapping approaches due to its high flexibility and low cost. However, monocular visual mapping
suffers from great performance degradation in adversarial illumination environments such as on
low-light roads or in underground spaces. To address this issue, in this paper, we first introduce
an unsupervised learning approach to improve keypoint detection and description on monocular
camera images. By emphasizing the consistency between feature points in the learning loss, visual
features in dim environment can be better extracted. Second, to suppress the scale drift in monocular
visual mapping, a robust loop-closure detection scheme is presented, which integrates both feature-
point verification and multi-grained image similarity measurements. With experiments on public
benchmarks, our keypoint detection approach is proven robust against varied illumination. With
scenario tests including both underground and on-road driving, we demonstrate that our approach
is able to reduce the scale drift in reconstructing the scene and achieve a mapping accuracy gain of
up to 0.14 m in textureless or low-illumination environments.

Keywords: intelligent vehicle; monocular camera sensor; visual mapping; adversarial illumination;
unsupervised keypoint learning; scale drift reduction

1. Introduction

The advent of big data and Internet of Things (IoT) has brought new prospects for
intelligent vehicles [1–4]. A high-precision map is a prerequisite for the localization and
planning of intelligent vehicles, and its creation is considered a key technology in this field
and is well-researched with various sensor setups. For instance, Global Navigation Satellite
System (GNSS)-based devices are integrated in many commercial vehicles. However,
the satellite signal can be easily shielded by high buildings or specific materials. Lidar
can directly provide accurate distance information and is thus widely used in mapping
approaches. Yet the high resolution of 3D representation is at the cost of high data volume
and non-negligible hardware cost. On the contrary, vision-based solutions, especially with
monocular images, benefiting from the low sensor cost and effectiveness in texture-rich
scenarios [5], have attracted much attention in mapping research.

Traditional visual mapping is based on the structure from motion (SfM) paradigm. It
extracts many keypoints with feature descriptors from images captured in a scene. The 3D
positions of these keypoints are either provided using additional measuring instruments or
triangulated with multi-view geometry. These keypoints are stored and further utilized as
landmarks to construct geometrical constraints for ego-pose estimation in vehicle localiza-
tion tasks. In this way, the output of visual mapping can be presented with a point cloud
consisting of sparsely distributed 3D keypoints along with their descriptors.

However, monocular visual mapping approaches are known to have a relatively low
capacity in accurately estimating the depth information and the absolute scale. Moreover,
handcrafed keypoint models such as SIFT [6], SURF [7], ORB [8], BRISK [9], etc., are prone
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to feature-extraction failure in low-texture and low-illumination environments such as
underground spaces, where the keypoint detection and matching performance significantly
degrades (Figure 1), further deteriorating the generated maps. Many researchers have been
working on these problems, especially leveraging the powerful perception capability of
the rising deep learning technology. For instance, the semantic features are considered as
landmarks in the image [10] and also adopted to improve matching in low-textured envi-
ronments such as in underground garages [11]. Features such as simple visual tags are used
to reduce the computational costs and improve the location accuracy [12]. Furthermore,
high-level landmarks such as visual fiducial markers are simultaneously perceived to aid
the pose-estimation process [13]. In other attempts, keypoint detection and description
are learned by convolutional neural networks (CNNs) to replace handcrafted ORB key-
points and integrated into simultaneous localization and mapping (SLAM) systems [14].
Nevertheless, the segmentation model requires a large amount of pixel-wise labeled im-
age data for training, and the setup of fiducial markers should be elaborately designed,
which limits the generalizability of the mapping approach. Moreover, the groundtruths
(GTs) of keypoints in [14] are provided by the Shi–Tomasi detector [15]. In comparison to
CNN-based methods, which can extract complex visual features [16], approaches that learn
from such a traditional keypoint-detection paradigm can be suboptimal in scenarios with
less texture.

Figure 1. Detected SIFT keypoints (green circles) in ordinary outdoor scenario (above) and dim
textureless garage (below).

To address these issues, this paper presents a monocular visual mapping approach
in low-textured and illumination-changed environments using unsupervised keypoint
learning and improved scale recovery (codes will be available at https://github.com/X
inningC/Adversarial_mono_Mapping (accessed on 18 February 2023)). Our approach
comprises the following two components: unsupervised keypoint extraction and 3D recon-
struction with improved scale estimation. According to the experimental results of keypoint
extraction and mapping in Section 4, we show that our approach outperforms existing
mainstream methods with an average location error gap of 0.04 m on Euroc [17] and 1.86 m
on KITTI [18] and manifests robustness in adversarial-illumination environments. Our
contributions are as follows:

https://github.com/XinningC/Adversarial_mono_Mapping
https://github.com/XinningC/Adversarial_mono_Mapping
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• We introduce an unsupervised keypoint-detection and -description approach into the
visual mapping process with an improved loss to enhance the learning of discrimi-
native descriptors. Such an approach only requires monocular images as input, thus
saving annotation labors.

• We present a scheme integrating both feature-point verification and self-supervised
multi-grained image similarity measurements. It effectively reduces the cumulative
error and suppresses the overall scale drift at a low level.

• We further integrate ground point features and camera height to recover the absolute
scale. Using validation on both the self-collected data and public benchmarks, this
mapping approach is demonstrated to be robust against illumination changes in
scenarios such as underground parking and outdoor roads.

The remainder of this paper is organized as follows. An overview of the related
work is given in Section 2. Section 3 introduces the proposed monocular visual mapping
approach using unsupervised keypoint matching and improved scale recovery. Section 4
evaluates the mapping in both underground parking and outdoor driving. The conclusion
is given in Section 5.

2. Related Work

In this section, existing studies are reviewed in three aspects mostly related to the
proposed approach: (1) keypoint models; (2) monocular visual architecture; (3) mapping
under adversarial illumination.

2.1. Keypoint Models

Traditional visual mapping approaches are based on handcrafted keypoint models,
including SIFT [6], SURF [7], ORB [8], BRISK [9], etc. SIFT preserves a good invariance to
rotation and scaling by leveraging gradient histograms, but its computational complexity
is high. Although improvements such as the approximated gradient filtering are adopted
in SURF, the runtime gain is still limited. Unlike SURF, ORB achieves an excellent real-
time performance by employing the FAST keypoint detector [19] and the BRIEF feature
descriptor [20]. Since feature points are extracted by simple comparison with surrounding
pixels, the reliability in illumination-changed and low-textured environments is relatively
poor. ASIFT [21] outperforms SIFT while features are undergoing large transition tilt due
to its affinity invariance; nevertheless, the matching accuracy and efficiency need improve-
ment [22,23]. BRISK employs feature pyramid and Gaussian filtering for point sampling,
achieving an improved noise robustness, but at the cost of increased computation amount.

In recent years, deep-learning-based feature-point methods have gained much atten-
tion. Lift [24] proposes a full feature-point handling pipeline, including point detection,
orientation estimation, and feature description, while a supervision form SfM system is
required. Superpoint [25] proposes an unsupervised learning for feature extraction with
a fully convolutional neural network (FCN) and a homography adaption, but it relies on
labeled interest-point images for pre-training. The GCN series accelerates the processing
with binarized descriptors and nested metric learning with groundtruths provided by
the traditional Shi–Tomasi detector. Unsuperpoint [26] inherits the general idea of Su-
perpoint, but relieves the reliance on labeled data by making the keypoint detection and
matching totally self-supervised. However, its adaptability in the visual mapping process
is unexplored.

2.2. Monocular Visual Architecture

Depending on the tasks defined, we review monocular visual architecture in terms of
two main aspects, i.e., SLAM and SfM approaches. A milestone work of visual SLAM is
the PTAM [27], which proposes an architecture of two parallel threads with one for motion
tracking and the other for 3D feature-point mapping. However, suffering from the lack of
loop closure and the low invariance to viewpoint change, its performance is limited in large
environments and rapidly varying scenes. Built on the main idea of PTAM, ORBSLAM [28]
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utilizes ORB feature points through the pipeline of tracking, mapping, relocalization,
and loop closing. It manifests an outstanding real-time performance and a good adaptability
to RGB-D [29] and fisheye cameras [30]. However, the poor performance of ORB feature
points in low-texture environments limits the application of ORBSLAM. VINS [31] adopts
a more lightweight front-end with Harris corner detection and optical flow tracking. It
also introduces an inertial sensor to minimize the scale variance of monocular-vision-
only SLAM. Further improvements are also proposed with sensor adaptability, dynamic
environment, online calibration, and pose-graph reuse [32–36].

SfM aims to estimate the 3D point positions as well as the camera poses through motion.
Unlike SLAM, it can be applied on disordered images and the incremental methods are
widely used. An early work was proposed by [37], which uses a pipeline of feature-point
extraction, matching, and iterative pose optimization. Despite the relatively complete
reconstruction obtained, this method suffers from mismatching in repeated scenes and a
low processing speed due to the large number of images. Thus, subsequent research has
focused more on the improvement of accuracy and efficiency. For example, ASFM [38]
proposes adaptive thresholds in model estimation with a contrario methodology. It achieves
better reconstruction results compared to those based on fixed global thresholds, yet at the
cost of decreased calculation efficiency. In the further work of COLMAP [39], a geometric
verification and a sampling-based triangulation are adopted to improve the robustness and
completeness of reconstruction. Moreover, the global optimization is only then performed
when the model grows to a certain extent, greatly reducing the load of computing resources
and thus increasing the speed.

2.3. Mapping under Adversarial Illumination

The mapping task in low-illuminated environments such as underground mainly
rely on lidar or camera sensors. Thus, corresponding approaches can be divided into two
branches, depending on the used sensor. Lidar-based approaches prefer line or plane
features. As the range information can be directly obtained with laser measurements,
the cumulative error is relatively low. However, high-definition lidar is costly for com-
mercialization and the positioning is difficult in structures such as long, narrow tunnels.
For visual mapping, the main challenge remains in the visual feature extraction from low-
texture, dim environments. Reference [13] proposed an underground mapping by adopting
semantic features of parking slots in conjunction with a geometric prior to improve the
point-matching accuracy. Additionally, they placed visual fiducial markers on specific
positions to create a robust constraint in the back-end optimization. Despite an improved
mapping performance, their dependence on visual markers restricts the usage of their
method. Reference [40] proposed a self-supervised approach to learn features from both
the entire image and its subregions. This method can effectively match images across
daytime and thus improve the location-related image-retrieval accuracy. Reference [11]
proposed a SLAM approach in indoor parking lots based on surround-view images to
increase the perception range. Additionally, they built maps by exploiting semantic segmen-
tation results of parking signs, slot lines, and bumps as robust features against illumination
change, achieving a centimeter-level accuracy. Reference [41] proposed CNN models to
accomplish the identification of slot marking points and classification of patterns repre-
sented by marking-point pairs that can be applied on both indoor and outdoor parking
sites. Reference [42] proposed a more lightweight parking-slot segmentation model by
employing network pruning. Their method shows a significantly reduced computational
cost and can be applied on CPUs with real-time performance while maintaining a good
mapping precision. Nevertheless, the segmentation performance strongly relies on the
quantity and quality of pixel-wise labeled data, which restricts the generalizability of the
above mapping approaches.

In this work, we mainly focus on the mapping accuracy. Thus, without strict runtime
requirements, we adopt an SfM scheme, i.e., the COLMAP, as the back-end for camera
pose optimization. The proposed approach is presented mainly based on the mapping
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task of an underground parking lot. To improve the mapping performance, we adopt an
unsupervised learning method to address the challenge of feature-point detection and
-description in dim, low-texture environments. Moreover, we integrate the multi-grained
image similarity measurement along with feature-point verification into the loop-closure
detection and adopt ground-point features with camera height for scale recovery, thus
improving the mapping robustness.

3. Proposed Approach

The pipeline of the proposed visual mapping approach is shown in Figure 2. The
input image is captured with a monocular front-view camera on a vehicle and fed into
two subsequent processing branches. The first branch adopts a CNN to predict the scores,
relative positions, and descriptors of the keypoints, which are learned in an unsupervised
manner. The keypoints are matched across frames and fed into the SfM framework along
with the corresponding image pairs to reconstruct a scene graph for camera pose estima-
tion. In conjunction with the keypoint-based verification, it also adopts a multi-grained
image similarity measurement to improve the pose-estimation accuracy, especially for loop
closures. In the second branch, it detects the corners of ground parking slots and considers
them as additional keypoints, which are tracked across frames by leveraging the keypoint
network in the first branch. By integrating the tracks of the above-ground keypoints and the
camera height, the absolute scale of camera motion can be recovered. With an additional
association strategy, the parking slots on the ground can be reconstructed and thus the
map for the underground parking lot can be created. The specific steps in this proposed
mapping procedure are introduced below.

Localization & Mapping

Scale Recovery

Image Matching

Monocular
Front-view 
Image

Feature Extraction

Parking-slot Detection & Reconstruction

Figure 2. The overall architecture of our monocular visual mapping system.

3.1. Unsupervised Keypoint Extraction

Regarding both the scene adaptability and the unreliability on training labels, in this
work, we adopt an unsupervised-learning-based approach for keypoint extraction. The
network consists of a backbone similar to reference [26] except with more convolutional
layers to facilitate the learning of deep visual features. We additionally enhance the loss
function by emphasizing the consistence between feature points in illumination-varied
environments. The detailed architecture of the network is shown in Figure 3.

The input image is first processed by the backbone (top right in Figure 3), which
consists of four stages. After each stage, the feature map is downsampled by a factor
of 2 while its channel number is doubled. The generated feature map thus has a size of
1/8 of the input image and is further fed into three output heads to predict the tensor of
keypoint scores Smap, relative positions Pmap, and descriptors Fmap, respectively. Since the
output tensors are the same size as the input feature map, the total predicted keypoints is
H
8 ×

W
8 , and each score, relative position, and descriptor correspond to an 8 × 8 region of

the input image.
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𝑺𝑚𝑎𝑝

𝑷𝑚𝑎𝑝

𝑭𝑚𝑎𝑝

[1 8 , 1 8 , 2]
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Loss
ℒ𝑠𝑐𝑜𝑟𝑒

ℒ𝑢𝑛𝑖
ℒ𝑟𝑒𝑝
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[𝑠𝑛
′ ,𝒑𝑛

′ , 𝒇𝑛
′ ]

[𝑠0
′ ,𝒑0

′ , 𝒇0
′ ]

[𝑠1
′ ,𝒑1

′ , 𝒇1
′ ]

𝐻1�2

[1 8 , 1 8 , 256]

Feature
Extraction

Figure 3. The architecture of our feature-extraction network. The channel number is indicated under
each block. The network takes an input image and outputs a feature-point vector (s, p, f ).

For training, a source image I1 is preprocessed using a random homography transform
H1→2 with an additional color conversion or noising to generate a warped version I2 (see
orange dashed box in Figure 3). Thus, we obtain an image pair (I1, I2), which is fed into
the network to predict keypoints. Each keypoint P consists of a tuple of score, relative
position, and descriptor, described as (s, p, f ). Similar to reference [26], descriptor f is a 256-
dimensional tensor of floating-point numbers. A keypoint P1,i in I1 with another keypoint
P2,j in I2 is defined as a good match if their Euclidean distance ‖H1→2 · p1,i − p2,j‖2 is less
than a threshold αdis.

The loss function of the whole network consists of six terms as

Ltotal = w1Lscore + w2Lpos + w3Lrep + w4Luni + w5Ldecor + w6Ldes, (1)

where w1,...,6 indicates the corresponding weight of each term. The losses Lscore, Lpos, Lrep,
Luni, and Ldecor are defined similar to reference [26] and briefly described in Table 1 and
Appendix A.1.
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Table 1. Loss terms to train keypoint network.

Term Description

Lscore Squared score difference of paired points

Lpos Euclidean distance of paired points

Luni
Differences between the distribution of predicted
point coordinates and a uniform distribution

Ldecor
Correlation coefficients between keypoint
descriptors on the same image, further explained in Equation (A.1)

Lrep

Ensuring closely located point pair with a high score,
interpreted as Lrep = ∑k(s1 + s2)(dk − d), with
s1, s2: point scores of the k-th pair
dk: distance of the k-th pair
d: mean distance of all pairs

The essence of a keypoint description is the expression of a corresponding image patch
surrounding the point. Considering that similar image areas should yield highly correlated
keypoint descriptors, the descriptor loss Ldes should reduce their distance in the feature
space. Inspired by the contrastive learning of visual representation [43], the loss Ldes is
defined as

Ldes = ∑
i
− log

∑j exp (t · f 1,i
> · f 2,j)

∑l 6=j exp (t · f 1,i
> · f 2,l)

(2)

where terms ( f 1,i, f 2,j) in the nominator indicate keypoint descriptors of a good match,
while keypoint descriptors ( f 1,i, f 2,l)|l 6=j in the denominator are from a bad match. The
temperature t is a hyperparameter. For hard negatives, which can be easily classified as
false positives, a smaller t can reduce their weights during learning, which further improves
the feature-point matching.

In order to improve the illumination robustness of keypoints, we utilize traditional
transformation methods such as random clipping, flipping, and brightness adjustment,
with the latter having a certain impact on the performance of feature points in adversarial-
illumination environments. Moreover, our adopted loss function Ldes contributes to im-
proving the feature-point learning significantly. Detailed experimental verification can be
seen in Section 4.2.

3.2. 3D Reconstruction with Improved Scale Estimation

The predicted image keypoints are tracked across frames (e.g., by descriptor matching)
and then fed into the 3D reconstruction framework. Here, we use COLMAP [39] as the base
reconstruction approach. Additionally, we add the multi-grained image matching along
with the feature-point verification to reduce drift at loops and adopt ground keypoints for
further scale recovery.

3.2.1. Base SfM Approach

COLMAP is an incremental SfM framework. Given a set of images with correspon-
dences indicated by tracked keypoints, also known as the scene graph, the outputs are
the estimated poses of camera images and the scene structure represented by a point
cloud in the 3D space. For initialization, it uses a seeding with an elaborated two-view
reconstruction, e.g., at a location in the image graph with multiple overlapping cameras,
which has a high redundancy. It further proceeds with incremental registration of new
images. Their poses are estimated by solving the Perspective-n-Point (PnP) problem based
on the triangulation of matched feature points in exiting images. By extending the camera
pose, new scene points can be observed and triangulated from the added images, thus
incrementally increasing the scene coverage. To reduce the uncertainties propagated be-
tween the image pose and triangulated points, bundle adjustment (BA) is utilized as a joint
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non-linear refinement for both of them by minimizing the point reprojection errors on the
image. Additionally, COLMAP leverages the multi-model to verify non-panoramic and
calibrated image pairs in seeding the reconstruction. To reduce the risk of mis-registration,
it chooses the next-best view based on a multi-resolution analysis. Furthermore, it adopts
an efficient sampling-based triangulation and an elaborated local/global BA strategy. Al-
though COLMAP has improved over conventional SfM approaches in the reconstruction
completeness and scalability, it still shows limitations when applied to monocular images.
Lacking the depth information, the scale estimation of a monocular SfM system significantly
depends on the feature points in the local map. Due to the inherent uncertainties of feature
points (e.g., by misdetection and mismatching), without sufficient constraints, it is difficult
to maintain a long-term scale consistency and thus makes the monocular system susceptible
to scale drifts. Therefore, more powerful constraints such as loop-closure detection (which
is common in parking lots and urban streets) are required so that the scale information of
feature points can be efficiently propagated.

3.2.2. Image Matching with Multi-Grained Similarity and Keypoint Verification

Compared to keypoint descriptors, images contain much richer visual information.
Thus, we adopt an image-retrieval-based loop-closure detection, i.e., to identify images
captured at the same place. However, spatially close-by images do not exactly depict the
same scene, especially with varied camera poses or changed foreground objects, which
results in noisy hard positives. By only using the image-level supervision, all the features
of the target image are forced to be similar to those of the noisy positive image, impairing
the discriminatory learning of local features. Regarding these points, we employ a multi-
grained image-similarity learning strategy. Specifically, we decompose each image into
4 half-regions (including horizontal and vertical direction) and 4 quarter-regions. Thus,
the similarity of the target and the positive image is learned in a region-level supervision.
Compared to the image-level supervision, such a manner is more rational. It focuses more
on the common regions between images during learning by pulling positive regions closer
while pushing away negative regions in the feature space.

Here we adopt a VGG16-based network as in [40], which receives the query and noisy
positive image as inputs and estimates their similarities. Additionally, we adopt an iterative
learning strategy, i.e., using the converged model and its estimated image similarities in
the current round to initialize the to-be-trained model and its supervised labels in the next
round. The positive inputs are the top k (k = 10) difficult images with their queries from
the last round. By iteratively mining the hard positives, the accuracy of the predicted
similarity labels and the discriminatory ability of the model are progressively improved in
a self-supervised manner. The loss function is defined as in [40], which is

L = Lhard + λLso f t, (3)

where λ is a trade-off factor. The first term is in the form of

Lhard = ∑
j

log
exp( fv

>
q · fv p)

exp( fv
>
q · fv p) + exp( fv

>
q · fvnj

)
, (4)

where fv indicates the feature vector extracted from the last convolutional layer of VGG16
(i.e., the conv5) while the subscripts q, p, and nj denote the query, the positive, and the hard
negative j, respectively. The second loss term in Equation (3) is expressed as

Lso f t = CE(s(q, pr
1, . . . , pr

n, 1), s−1(q, pr
1, . . . , pr

n, τ)) (5)
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with CE denoting the cross entropy operator. The subscript “−1” indicates features ex-
tracted from the model trained in the previous round. The temperature τ is a hyperparam-
eter. The similarity vector is calculated in a softmax form as

s(q, pr
1, . . . , pr

n, τ) = softmax

 fv
>
q · fv pr

1

τ
, . . . ,

fv
>
q · fv pr

n

τ

, (6)

where pr
1, . . . , pr

n indicate the top k hard positive images and their 8 subregions. Thus,
we have the number n = 9k. In our experiment, the network is trained in 4 rounds with
progressively reduced τ (0.07, 0.06, 0.05), while the trade-off factor is set to λ = 0.5.

Given the fact that our keypoint network can extract an amount of robust keypoints
and all images are acquired consecutively, we adopt a sequential image-matching procedure
in conjunction with the loop-closure detection to suppress the uncertainty of scales. The
image matching is based on the multi-grained similarity measurement and an additional
feature-point verification, with the latter to suppress the false positives missed by the
former. The whole image-matching process is as follows.

1. Images are processed in chronological order. If there is still an image unprocessed, it
is marked as qi. Otherwise, the process is terminated.

2. The query qi is matched with its following N images.
3. Based on the matching results, the images are searched with their multi-grained

image similarities to qi within a threshold αmg and denoted as set O. For an empty O,
the procedure goes back to step 1.

4. For each image pj ∈ O, if the number of correspondence keypoints between qi and
pj is greater than a threshold αnum, the pair (qi, pj) is recorded into a database of
query-positive candidates (Figure 4). Otherwise, the procedure goes back to step 1.

5. For each pj in the candidate database, we also consider the correspondence between
qi and N images after pj. If the number of correspondence keypoints in any image
pair is not greater than the threshold αnum, the candidate database is cleared. The as-
sumption is that the keypoints across true positive images can be tracked for a period.
Otherwise, the candidate database is recorded in the final database. The procedure
goes back to step 1.

In the above process, we empirically set N = 3, αmg = 0.5, and αnum = 250.

𝑘

𝑖

𝑗

unmatchablematchable

k+1

Image Feature Space

Feature Matching

Feature Matching

386 Matches (True Positives)

197 Matches (False Positives)

kk-1

i-1 i i+1

j-1 j j+1

Figure 4. The sequential image-matching process.
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3.2.3. Scale Recovery

This part focuses on the reconstruction of underground parking slot instances and the
recovery of the overall scale in the mapping task.

Since the corners of parking slots appear to be similar and can be easily recognized
in the bird’s eye view (BEV), we first convert the front-view image to a BEV image using
the process introduced in reference [44] and use a CenterNet-based network [45] to detect
the corner points of parking slots. Afterwards, we project the positions of the detected
corner points from the BEV back to the front-view image. The feature points related to
the projected corner points are searched and tracked in the next few frames. As the corner
points are strong keypoints, they can provide a more stable tracking performance. The
related procedure is shown in Figure 5.

Detect Corners

Projection

Keypoint Extraction

Front-view

Inv. Projection

Keypoints Keypoints on
Parking-slots

Searching

Reconstruction Absolute Scale

Camera 
Height

Multi-Frame TrackingTriangulation

Figure 5. The process for scale recovery and parking slot instance reconstruction.

Due to the restricted driving speed, each parking slot as well as its corners can be
observed in up to 20 consecutive frames. With triangulation, we can obtain the positions of
the corner points in the 3D space. Since each parking slot has two corresponding corner
points at the entrance, the position of the parking slot (represented by the entrance center)
can be estimatedwithby two corner points within a distance threshold (i.e., 2.5 m).

The scale recovery is based on the relative distance between the ground and the camera
trajectory. Specifically, for each pair of corner points, we consider a 3D cubic space located
at the center of the corner points, as illustrated in Figure 6. The cube is above the ground
plane with a side length of e greater than the camera height d. Given a camera position t,
the ground plane can be approximated by

n>t + d = 0, (7)

where n indicates the plane normal vector. Given a camera trajectory within the cube, its
historical positions (t1, t2, . . . , tk) can be applied with the above equation as

t>1
t>2
...

t>k

 · n + d = 0. (8)

Here we assume that the ground is flat and the camera height is fixed within the cube. The
cube size is elaborately set so that it contains sufficient trajectory points and Equation (8)
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is over-determined. Thus, the normal vector n and the camera height d can be solved,
e.g., using the least squares method. Given the real measurement dgt of the camera height,

the scale correction factor is r = dgt
d , which is used to recover the scale of the reconstructed

map, especially the parking slot instances. The math symbols used in our paper are
explained in Table A1 in Appendix A.2.

Parking slot
Corners

Cameras

Figure 6. Local scale recovery based on selected camera trajectories.

4. Experiment
4.1. Platform Configuration and Dataset Selection

In our work, we implement the keypoint extraction network and the mapping ap-
proach with Python 3.6.9, PyTorch 1.7.0 on Ubuntu 18.04 LTS using a machine with 32 GB
RAM, a six-core Intel Core i7-8700 CPU, and an Nvidia GeForce GTX 1060 GPU.

For the keypoint extraction learning, we util-ze MS COCO [46] to train the network and
test it on HPatches [47]. For the evaluation of the 3D reconstruction and mapping, we test
our approach on EuRoC [17] and KITTI [18]. In comparison with other unused datasets such
as Strecha [48] and DTU [49], the datasets selected here are more comprehensive in terms
of the data amount and diversity, up-to-date, and broadly used to validate mainstream
methods, which allows a fair comparison of our method with state of the art.

4.2. Evaluation of Keypoint Model

For a comprehensive evaluation of the utilized keypoint detector, it is tested on the
HPatches benchmark [47], which consists of sequences from 59 scenes with viewpoint
change and 57 scenes with illumination variation, each with one reference image and
a number of target images. All images are scaled to the same size of 240 × 320 px for
evaluation. Four metrics are chosen, i.e., the homography accuracy (HA), the repeatability
score (RS), the location error (LE), and the matching score (MS), which are briefly described
in Table 2. The loss weights are empirically set to ω1 = 2, ω2 = 1, ω3 = 1, ω4 = 100,
ω5 = 0.03, and ω6 = 0.001 (with t = 0.05). It is trained on the MS COCO dataset [46] for
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10 epochs with a learning rate of 0.000025 and a batch size of 16. The ADAM optimizer
is adopted. The inference time of our keypoint model is about 10 ms per image. The test
results of the utilized keypoint model on scenes with illumination variation and viewpoint
change are reported in Table 3, in comparison with handcrafted feature points such as SIFT
and SURF and another self-supervision-based method, Superpoint.

Table 2. Evaluation metrics of the keypoint network.

Metric Description

HA Ratio of estimated homographies under a threshold ε
(here set to 3 px) to all estimated homographies

RS Ratio of corresponding points to all predicted points

LE Average distance of corresponding points

MS
Ratio of good matches to predicted points in one image,
where a good match denotes two corresponding points
with the nearest descriptors in the feature space.

Table 3. Comparison of different keypoint detectors on the sequence with viewpoint and illumination
change of HPatches.

Illumination Viewpoint

Methods HA ↑ RS ↑ LE ↓ MS ↑ HA ↑ RS ↑ LE ↓ MS ↑
SURF 0.77 0.57 1.16 0.27 0.58 0.53 1.41 0.23
SIFT 0.86 0.50 1.11 0.25 0.66 0.52 1.22 0.29
Superpoint 0.93 0.64 0.94 0.63 0.63 0.51 1.17 0.47
Ours 0.91 0.65 0.81 0.64 0.62 0.55 1.09 0.47

As can be seen, the learning-based keypoint models significantly outperform the
handcrafted approaches in handling scenarios with illumination variation. Especially
in terms of the matching score, the gain is more significant, up to 38%, implying a more
powerful feature representation with deep learning. Moreover, the adopted keypoint model
in our approach achieves a slightly lower HA than Superpoint while outperforming it in
terms of all three other metrics. The improvement in the location error is more critical, at
13%, demonstrating the effectiveness of unsupervised learning of the keypoint detector. A
qualitative example is shown in Figure 7a. As for scenes with a viewpoint change, similar
trends can be seen in Figure 7b. Deep-learning-based approaches achieve a comparable
HA to SIFT while outperforming it in all other three metrics, with our adopted approach
ranking at the top.

To assess the influence of brightness adjustment during preprocessing and the loss
term Ldes on the illumination robustness of the learned feature points, we conducted
ablation experiments on the HPatches illumination sequence, with the results presented in
Table 4. The results indicate that the performance of feature points is influenced by both
traditional transformations and Ldes. Only by combining these factors can the optimal
performance of feature points be achieved.

Table 4. Ablation study results on HPatches illumination sequence. “Trans.” indicates brightness
transformations and “Ldes” indicates the utilization of the loss function Ldes.

Trans. Ldes HA ↑ RS ↑ LE ↓ MS ↑
X 0.86 0.65 0.82 0.38

X 0.91 0.65 0.92 0.62
X X 0.91 0.65 0.81 0.64
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Figure 7. Qualitative comparison of matched keypoints using different models on scenes with
(a) illumination change and (b) viewpoint change. Detected keypoint number is displayed on the
right side of each figure.

4.3. Study on Image Matching and Keypoint Verification

To verify the performance of the adopted multi-grained image matching and keypoint
verification, we collected a dataset by driving a test vehicle for several rounds in the
underground parking lot of about 1500 m2 at Tongji University Campus. The test vehicle
was equipped with a camera capturing front-view images at 10 Hz and a lidar of 16 beam
lines. As GNSS signals are unavailable in the underground space, we consider the map
constructed using the laser measurements of lidar as the groundtruth. An ablation study
on the influence of the adopted multi-grained image matching and keypoint verification
was conducted, with the results reported in Table 5. For evaluation, it follows the protocol
of the 7-DOF alignment [50] of the reconstructed trajectories. The mean value of absolute
pose errors (APE) is chosen as the metric.

It is straightforward that the naive matching by keypoints yields a high position error
of more than 12 m. By replacing it with the multi-grained image matching, the error is
reduced to 0.6 m. However, image mismatching still occurs, which leads to an abrupt
change in the estimated trajectory (yellow curves in Figure 8). By further integrating the
keypoint verification procedure, the error decreases to 0.45 m and the abrupt trajectory
change disappears (purple curves in Figure 8). Thus, the benefit brought by multi-grained
image matching and keypoint verification has been validated.

4.4. Exploration of Mapping Architecture

Although the keypoint model alone was tested in the previous experiments, its in-
fluence on the SfM-based mapping architecture is still unexplored. Here we replace our
adopted keypoint model with other approaches such as the handcrafted SIFT and ORB
and the learning-based Superpoint, thus yielding three new mapping architectures, denoted
COLMAP (SIFT), COLMAP (SURF), and COLMAP (Superpoint). We adopt the same data
and metrics as in Section 4.3, with the test results shown in Table 6. Obviously, the learning
approach of Superpoint improved the mapping accuracy compared to the handcrafted
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SIFT and SURF in terms of the mean APE. Since our keypoint model emphasizes the
distinctive feature representation during training, by integrating it, the least pose error has
been achieved. The estimated trajectories and keypoint matches are illustrated in Figure 9.
Additionally, we show the map generated by our approach in representation of point clouds
and with identified parking slots in Figure 10a,b, respectively.

Table 5. Ablation study results. “Match by pts.” indicates the naive matching by keypoints;
“Match by img.” indicates the multi-grained image matching; “Pts. verify” indicates the keypoint
verification procedure; “-as” represents the 7-DOF alignments used in the evaluation.

Match Match Pts. APE-as
by Pts. by Img. Verify (Mean) ↓

X 12.81 m
X 0.60 m
X X 0.45 m

Figure 8. The estimated trajectories using different matching schemes.

Table 6. Exploration of SfM-based mapping integrated with different keypoint models.

Methods APE-as (Mean) ↓
Ours 0.453 m
COLMAP (Superpoint) 0.502 m
COLMAP (SIFT) 0.562 m
COLMAP (SURF) 0.596 m

4.5. Transferring on SLAM Approaches

Although our matching scheme is designed for SfM architectures, it can be integrated
with SLAM systems. Here we replace COLMAP with the VINS approach. Due to the
high complexity of the optimization scheme in VINS, we exclude the integration of multi-
grained image matching and keypoint verification. We test the new architecture on the
EuRoC and KITTI datasets. The EuRoC dataset is aimed for the evaluation of indoor
SLAM and consists of 11 sequences captured in different rooms and fields along with IMU
measurements. The KITTI visual odometry dataset is captured in a surrounding region
of the city Karlsruhe, consisting of 22 image sequences, in which 11 sequences (00-11) are
provided with temporally aligned groundtruths and measurements from lidar sensors.
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For comparison, we provide the performance of the original VINS approach, which is
denoted as VINS (flow) due to its deployment of optical flow. Additionally, we replace
the optical flow in VINS with other feature descriptors and our proposed feature-point
approach and report their test performance. The evaluation metric is the root mean square
error (RMSE) of the estimated trajectories.

S
U
R
F-38

S
IF
T-89

S
uperpoint-81

O
urs-262

(a) (b)

Figure 9. (a) The mapping results using different approaches. (b) Matched keypoints using
different approaches.

(a) (b)

Figure 10. (a) Generated map in representation of point clouds. (b) Generated map with parking
slot identification.

4.5.1. Evaluation on EuRoC

The evaluation results are shown in Table 7 while examples of the estimated trajectories
in the sequence MH04 and V101 are shown in Figure 11. As can be seen, the handcrafted
feature points generally perform inferiorly to the learning-based approaches. Specifically,
the VINS (flow) employs the conventional Harris keypoint detector with its point tracking
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assisted by optical flow. Its accuracy is still lower than our approach and the version
with Superpoint. Superpoint dominates mainly on the “M”-sequences, which have rich
textures, benefiting the accuracy and stability of the keypoints extracted by Superpoint.
In contrast, our approach is more advantageous on the “V”-sequences with large camera
motion and illumination variation. The adverse environmental conditions can result in
reduced keypoints extracted by other approaches. However, as our method focuses more
on the learning of distinctive visual features, it shows a superior performance. An example
of feature-point matching with large camera motion is visualized in Figure 7b.

Table 7. The RMSE (in meters) of estimated trajectories using VINS integrated with different keypoint
models on EuRoC. “x” indicates the failure of approach.

VINS VINS VINS VINS
Seq. (Flow) Ours (Superpoint) (SIFT) (SURF)

MH01 0.24 0.22 0.20 0.76 0.50
MH02 0.22 0.22 0.18 0.51 0.48
MH03 0.28 0.24 0.17 x 0.27
MH04 0.43 0.43 0.47 0.56 0.62
MH05 0.31 0.32 0.22 0.53 0.75
V101 0.109 0.108 0.12 0.23 0.20
V102 0.10 0.11 0.09 0.13 0.13
V103 0.111 0.088 0.09 0.15 0.19
V201 0.121 0.116 0.14 0.18 0.21
V202 0.11 0.09 0.13 0.27 0.25
V203 0.30 0.200.200.20 0.79 0.39 0.49

4.5.2. Evaluation on KITTI

Due to the fast motion in large-scale outdoor environments, the VINS versions inte-
grated with handcrafted keypoint approaches such as SIFT and SURF all fail in the test, thus
without the results reported in Table 8. The high-speed motion scenario (e.g., the highway)
also explains the failure of learning-based approaches in sequence 01. Since VINS (flow)
employs optical flow to assist the point tracking, it can still maintain a small position error
in this sequence. Furthermore, it can be seen that our approach dominates the sequences
00, 02, 05, and 08–10 with the least error while in other sequences it performs better than
Superpoint, yet with a small gap to VINS (flow). Especially in sequences 00, 02, and 08,
our approach outperforms VINS (flow) more significantly, with an accuracy gain of more
than 4 m, further demonstrating the effectiveness of our approach. Examples of estimated
trajectories are shown in Figure 12.

Table 8. The RMSE (in meters) of estimated trajectories using VINS integrated with different keypoint
models on KITTI. “x” indicates the failure of approach.

VINS VINS
Seq. (Flow) Ours (Superpoint)

00 13.74 7.05 77.70
01 7.54 x x
02 20.69 11.34 17.71
03 1.75 2.67 3.17
04 1.33 2.27 2.68
05 6.64 5.54 5.78
06 3.87 4.89 15.64
07 2.20 4.27 11.28
08 9.37 4.97 57.24
09 7.73 7.42 8.01
10 3.66 1.96 4.25
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VINS (flow)

VINS (Superpoint)

VINS (SIFT)
VINS (SURF)

(a) MH04

VINS (flow)

VINS (Superpoint)
VINS (SIFT)
VINS (SURF)

(b) V101

Figure 11. Estimated trajectories in sequence MH04 and V101 on EuRoC.

VINS (flow)

VINS (Superpoint)

(a) KITTI-08

VINS (flow)

VINS (Superpoint)

(b) KITTI-09

Figure 12. Qualitative test results on sequence KITTI08 and KITTI09.

5. Conclusions

In this paper, we proposed a novel monocular visual-mapping approach to address
adversarial illumination conditions such as in underground parking lots. There are two
main points contributing to this approach: the unsupervised learning of keypoints that
enhances the discriminative feature representation and the scheme of multi-grained image
matching and keypoint verification in scale drift suppression. This paper presents extensive
experiments validating the individual modules and the entire SfM-based mapping archi-
tecture, demonstrating the robustness of the approach against illumination variation. The
testing results on a public benchmark and our collected dataset show that our approach out-
performs the existing mainstream methods, with an average location error gap of 0.05 m on
collected data, 0.04 m on Euroc, and 1.86 m on KITTI. Additionally, the approach is effective
not only in SfM systems but also in indoor SLAM and outdoor visual odometry tasks.
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Appendix A. Mathematical Explanations

Appendix A.1. Equation of Ldecor

Descriptors should be decorrelated to prevent overfitting and carry as much use-
ful information as possible within a limited dimension. The descriptors forming good
matches in image pair (I1, I2) are denoted as G1 = [ f 1

1, ..., f m
1 , ..., f p

1 ]256×p and G2 =

[ f 1
2, ..., f m

2 , ..., f p
2 ]256×p, where p stands for the number of good matches. Apparently, we

can denote G1
> as [h1

1, ..., hm
1 , ..., h256

1 ]p×256 and hm
1
> is the m-th row vector of G1. Similar

to reference [26], the correlation matrix R1 = [r1
ij]256×256

can be defined as

r1
ij =

(hi
1 − h

i
1)
>(hj

1 − h
j
1)√

(hi
1 − h

i
1)
>(hi

1 − h
i
1)

√
(hj

1 − h
j
1)
>(hj

1 − h
j
1)

(A1)

where h
i
1 stands for the mean of the i-th row of G1. The same is true for R2. Thus, we can

calculate Ldecor as

Ldecor = ∑
i 6=j

(
r1

ij

)2
+ ∑

i 6=j

(
r2

ij

)2
. (A2)

Appendix A.2. Explanation for Math Symbols

Table A1. A notation table that explains math symbols in our used paper.

Symbol Description

Smap Map of keypoint score

Pmap Map of keypoint relative positions

Fmap Map of keypoint descriptors

H, W Height/Width of input images

I1, I2 Source image/Warped image

H1→2 Homography transform matrix

P Keypoint

s Keypoint score

p Keypoint relative position

http://www.cvlibs.net/datasets/kitti
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
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Table A1. Cont.

f Keypoint descriptor

L Loss function

w1,...,6 Weights of losses

t Hyperparameter that controls Ldes

λ Trade-off factor between Lhard and Lso f t

fv Feature vector

s Similarity vector

τ Hyperparameter that controls fv and s

qi Unprocessed image

N Number of images following qi

O Set of images that are not searched

pj Image that is not searched

αmg Threshold of multi-grained image similarities

αnum Threshold of the number of correspondence keypoints

d Camera height

e Side length of the cubic space in Figure 6

t Camera position

n Plane normal vector

r Scale correction factor
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