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Abstract: There are known limitations in mobile omnidirectional camera systems with an equirect-
angular projection in the wild, such as momentum-caused object distortion within images, partial
occlusion and the effects of environmental settings. The localization, instance segmentation and
classification of traffic signs from image data is of significant importance to applications such as
Traffic Sign Detection and Recognition (TSDR) and Advanced Driver Assistance Systems (ADAS).
Works show the efficacy of using state-of-the-art deep pixel-wise methods for this task yet rely on
the input of classical landscape image data, automatic camera focus and collection in ideal weather
settings, which does not accurately represent the application of technologies in the wild. We present
a new processing pipeline for extracting objects within omnidirectional images in the wild, with
included demonstration in a Traffic Sign Detection and Recognition (TDSR) system. We compare
Mask RCNN, Cascade RCNN, and Hybrid Task Cascade (HTC) methods, while testing RsNeXt 101,
Swin-S and HRNetV2p backbones, with transfer learning for localization and instance segmentation.
The results from our multinomial classification experiment show that using our proposed pipeline,
given that a traffic sign is detected, there is above a 95% chance that it is classified correctly between
12 classes despite the limitations mentioned. Our results on the projected images should provide a
path to use omnidirectional images with image processing to enable the full surrounding awareness
from one image source.

Keywords: deep learning; traffic sign detection; small object detection; omnidirectional camera
imaging

1. Introduction

An inability to recognize and understand information presented by traffic signs raises
the risk of accident and in some cases loss of life. Accordingly, in the last decade, many
contributions for Traffic Sign Detection and Recognition (TSDR) have been proposed [1].
More recent contributions have sought to augment or extend the driver’s ability to un-
derstand the road environment through the use of Advanced Driver Assistance Systems
(ADAS) [2]. The accurate detection, segmentation and classification of traffic signs is vital
for the performance of such systems, as well as those for autonomous vehicles, as it leads
to an enhanced understanding of the road environment which is often dynamic and thus
safer driving. However, most rely on image data captured by camera systems and so
are still influenced by external conditions when detecting and classifying traffic signs [3].
These conditions are either temporal or permanent [1]. Temporal conditions are due to
environmental impact on image quality at the time of capture such as illumination, partial
occlusion and pose. These lead to sparse observations as well as variation in pixel values
and geometric appearances. Permanent conditions affect task performance where physical
changes to the traffic signs have occurred by damage and wear, which introduces further
variance to pixel values and geometric appearances.
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1.1. Contributions

To the authors’ knowledge, this work provides the first comparison of recent bench-
mark deep learning methods for varying sized traffic signs within omnidirectional images.

We present a new processing pipeline for extracting objects within omnidirectional
images in the wild, with included demonstration in a Traffic Sign Detection and Recognition
(TDSR) system.

Our contributions in this paper are:

• Comparison of state-of-the-art (SOTA) object localization and instance segmentation
deep learning methods with differing backbones for traffic signs in equirectangular
images.

• An analysis of various traffic sign object sizes within omnidirectional images and
effect on detection and segmentation results.

• An analysis of best predicted segmentation’s use as a dataset generator for an external
multinomial classifier for eleven traffic sign classes.

• A proposed pipeline covering data capture to traffic sign localization, detection and
classification.

We believe that researchers of TDSR and ADAS systems, and others that use omnidi-
rectional and equirectangular image data, will find this paper helpful in their future work.

1.2. Omnidirectional Images and Challenges

There are many benefits of 360-degree field of view capture for ADAS [4], and it is
widely used in other applications such as robotics perception [5], surveillance [6], virtual
reality [7] and other applications [8]. A camera with a 360-degree field of view projected
to a plane or that approximates the covering of a sphere before projection to a plane is
defined as omnidirectional [9]. A standard camera system is modeled by a perspective
projection through a pinhole (also known as a central projection system), yet its angular
field of view is limited to 180 degrees both horizontally and vertically. There are three
main types of omnidirectional camera systems: dioptric, catadioptric and polydioptric [9],
where a spherical structure of surrounds is typically produced before being projected to
a plane using techniques such as cylindrical or equirectangular projections. In the case
of [5–7], equirectangular was used, as it keeps horizontal and vertical 360 degree fields of
view. Current image datasets such as The German Traffic Sign Detection Benchmark [10],
German Traffic Sign Recognition Benchmark [11], TRMSD [12], COCO [13], ImageNet [14],
Cityscapes [15], PASCAL VOC, [16] PASCAL-Context [17], and KITTI [18] do not include
omnidirectional images. As such, methods that are modeled on these datasets often do
not perform well when applied to omnidirectional images from the real world [19]. This
is because these methods do not learn from datasets that include images that consider
temporal environmental conditions, the traffic signs are often smaller in images captured
in the real world but mostly fill the size of the image in these datasets, and omnidirectional
images introduce further distortion to traffic signs based on their locality to the camera
system. In addition, the negating effects of gross errors in images caused by the speed of
the driver creating turbulence around the camera and consequently blurring objects within
images exists [20] and can affect the performance of TSDR for ADAS.

1.3. History of Traffic Sign Detection, Segmentation and Classification

Various methods have been proposed in an attempt to solve the task of TSDR and
ADAS, often falling into two paradigms. The first pertains to methods that employ a
pipeline involving multiple-stage flow architectures with fast candidate searching and
shape matching. Classification is often undertaken through representations. For example,
ref. [21] applied spectral filtering to color channels to generate candidate regions before
thresholding on the aspect ratio of pixels to reject those candidate regions that would
perform poorly in a relational feature analysis due to lack of pixel information. Ref. [22]
used color characteristics and shape matching to generate region proposals, before inputting
these into a support vector machine. The second paradigm involves representation learning
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and complex feature extraction through convolutional operations. Throughout the last
decade, the number of academic contributions relating to road asset classification in images
using the second paradigm has increased. This may be due to the rise in computation
efficiency and effectiveness rendering the developing real-world applications such as road
maintenance [23], self-driving cars and driver assistance tools a viable undertaking.

Staravoitau [24] proposed a new set of augmentation techniques to optimize the
performance of a convolutional neural network for the classification task with their use of
localized histogram equalization. The Y channel was taken from the YCbCr transformation
of each image. Augmentation techniques such as flipping and rotating were taken to
increase the number of training samples. However, the images used in this study were
constantly clear with traffic signs being of similar sizes. This is in fact not reflective of the
outside environment, where the traffic signs are often much smaller in size due to locality
to the camera system.

1.3.1. Deep Representations for Traffic Sign Detection Methods

It is typical to split deep learning object detection methods into proposal-free and
proposal-based methods [19]. We do not use proposal-free methods in our paper so do
not discuss these further. In their paper, Zhu et al. (2016) demonstrated that a two-stage
method with Fast R-CNN [25] detecting traffic signs and inputting into another classifier
achieved better results, with a recall of 0.91. Proposal-based methods are not very effective
for smaller objects due to reduced pixel information, resulting in low-quality traffic sign
candidate images for external classifiers. To overcome this, a three-stage traffic sign detector
was proposed [19] connecting BlockNet [26] with the RPN-RCNN detection network [27].
BlockNet was employed to divide each input image into 256 × 256 partitions that overlap
each other before passing into six convolutional layers for binomial classification of fore-
ground and background using a softmax layer. Then, region proposals are generated using
classified partitions before being inputted to an external convolutional neural network
(CNN). A recall of 0.93 was achieved. Ref. [28] employed a 2D Gabor kernel within LeNet-5
as Gabor wavelets are insensitive to changes in light, achieving an average accuracy of
0.9975. Recently, multi-scale feature fusion was utilized in [29] demonstrating the benefit
of combining high-level semantic information and low-level semantic information for
localization and recognition tasks.

1.3.2. Deep Pixel-Wise Methods for Instance Segmentation

There has been a rise in the availability of deep pixel-wise representation learning
methods with lower costs contributing toward ADAS performance improvement. Accord-
ingly, research toward developing ADAS with deep pixel-wise methods has grown in
popularity [30]. Botterill et al. [31] conclude that the ability to remove variable lighting and
replace it with a constant imminence helps pixel-wise operations, as the objects lighting
does not vary in different positions. Alternatively, a more recent study concluded that an
approach using image pre-processing is actually sensitive to changes in environmental
conditions [32]. Deep pixel-wise classification methods such as SegNet [33] and Apes-
Net [34] have been developed for road scene understanding and segmentation tasks, yet
they have not specifically targeted the extraction of traffic signs in panoramic images. The
segmentation task of objects within an image is also widely discussed with the localization
task. This task involves the ability to create a vector of x, y co-ordinate points within an
image, which forms a polygon that captures the pixel-by-pixel make-up of the targeted
object. This is broken into two major research areas: semantic segmentation and instance
segmentation. Semantic segmentation is concerned with the pixel-by-pixel classification
to different objects classes so each semantic in each image is masked according to its class.
Instance segmentation differs in the regard that it takes semantic segmentation and adds
the assignment of each semantic in each class its own unique key, so that an instance is
created per unique object per image. One of the advantages of using instance segmentation
methods is the ability to later treat each instance independently to others in its class, making
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independent instance tracking and record keeping possible. Lee et al. proposed a novel
traffic sign detection system that estimates the location of the traffic sign with a bounding
box and then projects the boundary of the sign from a corresponding template of the sign
to mask the pixels that belong to the sign in its boundary box [35]. The argument for
undertaking this method was that each targeted object had its own set of pre-determined
measurements. Knowing these measurements and co-ordinates of the predicted bounding
box allows for the geometric projection of the measurements into the boundary box, hence
segmenting the object. With each object in the image, a unique key is given, and the
instance segmentation is able to be completed without the pixel-by-pixel classification that
feature extraction methods use, saving computational time in both training and in real-time
application. Many instance segmentation tasks have been similar to R-CNN’s approach
based on segment proposals (e.g., DeepMask) [36]. More recent contributions reflect a
re-ordering of these stages, where the proposed region would lead to the classification task
with the instance segmentation taking place external to this with the proposed regions of
interest used as input to encode the candidate object’s spatial layout (using pixel-by-pixel
wise classification). A region of interest alignment layer (RoIAlign) takes the object’s spatial
layout and aligns extracted features to their relevant input [36]. In the real world, traffic
signs are often small and contain less pixel information (compared to closely approximate
objects). In their paper, Elhawary et al. (2021) [37] demonstrate that the VGGNet [38] back-
bone employed with cross-entropy loss and Dice loss achieves a mean IOU of 62.36% and
average accuracy of 74.04% over classes in cases where traffic signs are small to medium
sized.

A comparison of the strengths and weaknesses of related works can be found in Table 1.

Table 1. Strengths and weaknesses of previous and proposed works.

Method Strengths Weaknesses

Elhawary et al (2021). [37] •Small road sign detection. •Limited to classic images.
Classic landscape data. •Compares backbones. •Narrow field of view.

•Method no longer SOTA.

Varma et al (2019). [30] •Includes comparative study. •Narrow field of view.
Classic landscape data. •Multiple object types. •No instance segmentation.

•No object distortion.

Lin et al (2022). [29] •Modern deep learning •Includes small objects.
Classic landscape data. methods. •Narrow field of view.

•Large dataset size. •Low object distortion.
•New attention mechanism. •No instance segmentation.

Song et al (2019). [19] •Modern deep learning •Excludes small objects.
Panoramic data. methods. •Moderate field of view.

•Large dataset size. •Low object distortion.
•Proposes a pipeline. •No instance segmentation.

Ours. •Propose new pipeline. •Available compute power.
Equirectangular data. •Includes comparative study. •Moderate dataset size.

•Full field of view from •Images sourced from fast
single source image. moving mobile mapper.
•High object distortion.
•Small road sign detection.
•Instance segmentation results.

2. Datasets

This section explains how the images were captured, the capture environment and
the post-capture processing. The section then goes into detail about image pre-processing
and provides summary information about the dataset including information on the traffic
sign classes and a distribution of their positions within the image plane. Finally, this
section goes into detail about how our best instance segmentation model was used to
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generate another dataset for traffic signs multi-classification tasks. These steps make up
our proposed pipeline, which is illustrated in Figure 1.

Figure 1. Our proposed pipeline. Step 1, the MMV traverses the road corridor capturing omnidirec-
tional images. Step 2, for each image, an equirectangular projection occurs, creating an RGB image
which is cropped based on a known positional distribution of signs. Step 3, images are inputted into
the best instance segmentation model. Step 4, a bounding box is constructed for each instance using
the instance’s polygon coordinates. Step 5, the extracted instance from the RGB image is inputted
into a multinomial classifier for inference, and finally, in Step 6, the output classification of above 95%
accuracy is given for downstream tasks.

2.1. Camera System and Image Generation Process

A mobile mapping vehicle (MMV) mounted with a polydioptric camera system tra-
versed down corridors in differing state highways (SH) capturing omnidirectional images.
A polydioprtic camera system allows for capturing a true 360 degree field of view on both
the horizontal and vertical axis, with overlapping perspective views. After capture, an
equirectangular projection was employed to map latitude and longitude coordinates to a
rectangular plane in Figure 2. The process taken was as follows described using radians:
consider a sphere with its right-handed orthonormal referential (−→ux ,−→uy ,−→uz ) with center
O at (x, y, z) = 0 and its equatorial plane on (x, y) with −→uz pointing to north pole. Let a
point P be projected radially onto its surface to image point P’ and the equirectangular
projection of P’ be P”. Let λ and ϕ denote the longitude and latitude of P”. The projection
from R3 7→ R2 for λ and φ is modeled by:

(λ, ϕ) =

(
arctan 2(y, x), arcsin

(
z√

x2 + y2 + z2

))
(1)

where if x > 0 arctan2(y, x) = atan(y/x). If x < 0 then arctan2(y, x) = atan(y, x)± π. For
y > 0 arctan2(y, x) = π/2 and = −π/2 when y < 0. The case of y = x = 0 is undefined.
North and south meridians are converted into horizontal and vertical straight lines for the
projection.

The corresponding pixel RGB values of the P” in the rectangle were then converted
into an image in Figure 3.
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Figure 2. Diagram of the equirectangular projection used. P is centrally projected to P′ before being
projected to P′′. Note the center of the rectangle is at (0, 0) radians. Ref. [9] 2014, with permission
from D. Scaramuzza. [39].

Figure 3. Equirectangular projection before and after from in a grid. Left, shows the spherical form
captured by the camera system used. Right, demonstrates the produced .png after equirectangular
projection is taken. The meridian m from Figure 2 can be seen as the left and right vertical sides.

2.2. Collection Sites

The data used were collected on two New Zealand state highways (SH), these being
SH1 and SH7. The SH1 data were collected around the North Otago town Oamaru and SH7
data were collected around the Weka Pass in north Canterbury. The SH1 data are slightly
more urban as it contains a section within Oamaru. However, the majority of the data sit
outside of Oamaru. The SH7 data are more rural with the town center of Waikari being the
most developed area that the data pass through.

The omnidirectional image dataset was collected driving at the speed limit, up to
100 km/h. The data were collected during the day time and under a variety of weather con-
ditions including sunny and cloudy; however, no data were collected during rainy weather.

2.2.1. Annotations

VGG Image Annotator (VIA) [40] was used to create ground truth masks of the
traffic sign instances for each image. Each of these ground truth masks was generated by
annotating images by encapsulating the relevant image segments within polygons so to
include only the pixels relevant to each specific object. These instance polygons at run time
are convert to bounding boxes and masks at run time.
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2.2.2. Dataset Information

Figure 4 shows the distribution of the size and location of the signs in the image with
almost all being located near the expected side of the road. We can also see from these
locations that a larger portion of the image does not contain any traffics signs, especially the
top; this is due to the location of the MMV capturing a large portion of sky. The majority of
annotated signs have an area greater than 1024 pixels and are located closer to the MMV.
Large (greater than 96px2) traffic signs appear significantly more on the right side of the
image; this is a result of the MMV driving on the left-hand side of the road and the center
of the image post transformation being behind the MMV, which therefore increased the
size of traffic signs on the right side of the image.

(a)Placement Distribution (b)Area Distribution

Figure 4. Distributions of traffic sign area and placement.

The dataset is randomly split into 80% for training, and 20% for testing the trained
model. The results presented for accuracy are the testing accuracy.

2.3. Multiclass Dataset

Traffic sign images were generated using our best-performing instance segmenta-
tion model (see Results section). Predicted instances Mpred co-ordinates (ymin, xmin) and
(ymax, xmax) were taken to extract a rectangular RGB image from the input image space. A
minimum acceptance threshold of 10 × 10 pixels was employed to ignore any instances
with too low-quality pixel information. With this approach, 1215 traffic signs were extracted.
Original annotations were not used to extract traffic sign instance images in order to show
the efficacy of our best model.

2.3.1. Class Definitions and Components

Our image dataset contains 11 different classes: chervon board, advisory, giveway,
railcross, directional, speed limit, unrestricted, information yellow (infoYellow), informa-
tion brown (infoBrown), information blue (infoBlue) and information green (infoGreen).
The chevron boards class consists of yellow signs with black arrows which point in the
direction of travel. The advisory class consists of yellow and black diamond-shaped signs
either containing an arrow depicting the road up ahead or a symbol to communicate an
upcoming hazard. The giveway class consists of giveway or yield signs.The railcross class
consists of railway crossing signs. The directional class consist of the small circle blue signs
that indicate the lane to travel. The speed limit class consists of circular red and white
signs with the speed limit for a section of road written in the middle. The unrestricted
class consists of the unrestricted speed sign. The infoYellow class consists of the small
rectangular yellow and black signs that either appear by themselves or under the advisory
signs with their sign content being either a small amount of text or the advised speed. The
infoBrown, infoBlue and infoBrown signs look very similar with a with a large rectangle
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(in comparison to infoYellow) or a large with an attached arrow, with their color matching
their name.

2.3.2. Image Augmentations for Imbalances

A class imbalance existed with a greater emphasis on advisory, chevronboard and
Information Green classes. −5◦ and −10◦ rotations were used to increase observation
frequency to address imbalances. Road signs in New Zealand are facing 5◦ away from
the parallel of the road (this is to reduce the headlight reflection). This resolved the major
imbalances in the dataset. See Table 2 for a breakdown of frequencies. Images were resized
in order to have uniform dimensions (128× 128) within the first layer of the multi-class-
CNN. Images that had a smaller dimension were up-sampled, and the images with more
dimensions were down-sampled.

Table 2. Table showing the frequency counts of classes before and after −5 and −10 degree rotations.
An imbalance still existed, yet the dataset included enough examples for the multinomial classifier to
perform at state-of-the-art levels. See results.

Class Images Augmented

Advisory 287 287
Chevronboard 189 189
Derestriction 66 198
Directional 20 60
Giveway 36 108
Information Blue 83 160
Information Brown 38 114
Information Green 197 497
Information Yellow 159 159
Rail Cross 19 57
Speed Limit 121 121

Total 1215 1650

3. Methods
3.1. Backbones

The method we will use to perform instance segmentation and object localization
works by utilizing an image recognition backbone to generate feature proposals. The
backbones that we will be utilizing are Swin, HRNet, and ResNeXt [41–43].

3.1.1. ResNeXt

ResNeXt [43] improves previous work that focused on the depth and width compo-
nents [44] of residual networks by utilizing “split–transform–merge” blocks. The split–
transform–merge block splits the stand block into several branching paths and then merges
them at the end of the block. In ResNeXt, the number of paths is refereed to as the cardinally
of the block. Splitting the feature volume into groups allows the trained kernels to be more
specialized within the group when different groups focus on different characteristics of the
input volume. The naming convention for ResNeXt models is ResNeXtd− w× c where d,
w, and c refer to the depth, width, and cardinally of the network, respectively.

3.1.2. High-Resolution Nets (HRNets)

The intuition behind HRNets [42] is that high-resolution representations are needed
for downstream and more complex tasks such as semantic segmentation and human pose
detection. Methods such as AlexNet, VGGNet, Inception, and ResNet [38,45–47] reduce the
spatial size of the feature maps with the resolution lowering as the network becomes deeper,
which results in a lower-resolution representation. HRNet’s first places the input image into
a stem of two 3× 3/2 convolutional layers; this reduces the input resolution to a quarter
of its initial size. The body of the network consists of four components: parallel multi-
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resolution convolutional layers, repeated multi-resolution fusions, and a representation
head. Parallel multi-resolution convolutional layers consist of parallel branches of different
resolutions. The main branch has the same resolution outputted by the stem, with the
resolution being halved in each lower level branch, with these branches being connected
every four convolutional layers by multi-resolution fusions.

Multi-resolution fusions are designed to share information between the lower-level
lower-resolution branches and the higher-level higher-resolution branches. High-resolution
branches are connected to lower-resolution branches by repeating 3× 3/2 convolutional
layers to match the resolution of the lower-resolution branch. Lower-resolution branches
are connected to high-resolution branches by up-samping the lower resolutions to the same
resolution as the higher resolution branch, and then a 1× 1 convolutional layer is applied
to aligning the number of features.

3.1.3. Shifted Window Transformer (Swin)

The goal of the Swin [41] is to provide a general-purpose backbone for computer
vision. Swin improves recent work that has shown the validity of using transformers
for image classification tasks [41]. The base Swin block consists of an altered multi-head
self-attention [48] (MSA) block. The Transformer block consists of two shifted window
MSA modules followed by a two-layer MLP with GELU [49] nonlinearity in between the
two layers with Layer Normalization [50] (LN) applied before each MSA module and
each MLP and a residual connection applied after each module. The first shifted window
MSA module labeled W-MSA performs MSA separately on non-overlapping windows
with each window containing M×M patches. The second shifted window MSA module
labeled SW-MSA works the same as W-MSA but with the pixels shifted by (bM

2 c, b
M
2 c)

pixels. An issue with shifted window partitioning is that it will result in more windows,
from d h

M e × d
w
M e to (d h

M e+ 1)× (d w
M e+ 1), with h and w being the width and height of

the input. This results in some of the windows being smaller and some of the windows
having bounds outside the input. To solve this, the pixels outside the new windows are
cyclic-shifted to the potion of the shifted windows that are outside the input. The Swin
architecture has four variants, with the base model being Swin-B. The other three variants
are Swin-T, Swin-S, and Swin-H, with these being 0.25×, 0.5×, and 2× the size of the base,
respectively. The window size is set to M = 7. The query dimension of each head is d = 32,
and the expansion layer of each MLP is α = 4. The Swin architecture has four stages, with
each stage containing a set number of sequenced Swin blocks. In our experiments, we use
either Swin-S or Swin-B with 96 and 128 filters in their respective initial blocks with both
variants having four stages made up of 2, 2, 18 and 2 blocks, respectively.

3.2. Instance Segmentation Methods

The methods we will be utilizing to perform the instance segmentation are Mask
RCNN, Casacade Mask RCNN and Hybrid Task Cascade [36,51,52]. The backbones selected
for each of these models are selected based on their performance on common instance
segmentation benchmarks such as COCO and ImageNet detection as well as the availability
of pre-trained weights for the method–backbone combinations. Pre-trained weights trained
on large datasets provide generalist information that enables a significant reduction in both
the number of training examples and the number of iterations. The pre-trained models
were obtained from open mmlabs [53].

Each of the models we use in Table 3 is trained using the AdamW [54] optimizer using
the a learning rate of 0.0001, β = (0.9, 0.999) and weight decay of 0.5. The training dataset
is augmented using the AutoAugment strategy [55].
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Table 3. Instance Segmentation Methods.

Method Backbone Pre-Trained

Mask RCNN [36] ResNeXt101-64x4d-FPN [43] COCO
Swin-S [41] ImageNet

HRNetV2p-W40 [42] COCO

Casacade [51] ResNeXt101-64x4d-FPN[43] COCO
RCNN Swin-B [41] ImageNet

HRNetV2p-W40 [42] COCO

HTC [52] ResNeXt101-64x4d-FPN [43] COCO
HRNetV2p-W40 [42] COCO

3.2.1. Mask Region-Based Convolutional Neural Network (Mask RCNN)

The aim of Mask RCNN [36] is to provide a framework object instance segmenting
or fine grain localization. The main contributions in Mask RCNN are extensions of the
Faster RCNN [56] framework, these being RoI Align instead RoI Pooling and the uses of
an additional parallel arm to perform instance segmentation. Mask RCNN introduces the
RoI Align layer, which extends the RoI Pooling. RoI Align aims to remove the information
loss that occurs in RoI Pooling by performing the pooling with a floating point stride, with
the four points being bilinear interpreted from the stride cell and then pooled either by the
max or average value.

3.2.2. Cascade Mask RCNN

The motivation behind the work of Cai et al. is improving the quality of bounding
boxes and masks. To improve the quality, Cai et al. have proposed implementing a multi-
stage extension that can be applied to frameworks such as Faster RCNN and Mask RCNN,
with the extended Faster being referred to as Cascade RCNN and the extension to Mask
RCNN being referred to as Cascade Mask RCNN [51]. The extension consists of two parts:
cascade bounding box regression and cascades detection. Cascade bounding box regression
aims to improve quality by providing a series of regressions with each regressor having a
stricter IoU acceptance threshold, with work utilizing the Mask RCNN and Faster RCNN
frameworks commonly using an acceptance threshold of 0.5. The cascade detection aims to
address the problem that at higher IoU thresholds, there is a lack of examples, with one
case in Cai et al. showing that an IoU threshold of 0.7 results in less than 3% positives
examples. Cascade detection addresses by resampling the positive examples of previous
regressors with higher IoU scores, as a regessor with an IoU threshold of µ will produce
bounding boxes with an IoU score higher than µ.

3.2.3. Hybrid Task Cascade (HTC)

The motivation behind HTC [52] is to extend Cai et al.’s cascade frameworks with
a focus on improving the instance segmentation component of the framework. HTC
interleaves the mask and bounding box detector with each bounding box and mask being
connected and each regressor feeding to the next regressor in the cascade. HTC also used
a separate spatial context branch for masks instead of using the RPN, which consists of
1× 1 conv connected to the FPN, scaling them to eight times the top block of the FPN and
then adding the conv blocks. This is then followed by four 3× 3 conv blocks.

3.3. Recognition from Detection

In addition to detection and instance segmentation, we test the constancy and validity
of our best model by running a small object recognition network without pre-trained
weights. The recognition network will be trained on the bounding boxes produced by our
best instance segmentation method with the classes, and a good performance of this task
will demonstrate that the bounding boxes produced are of a good enough quality that the
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type of sign can be recognized. The small network work consists of four layers with future
details provided in Table 4.

Table 4. Small classification network. Note that the convolutional layers use the same padding and
are followed by ReLU activation [57]; the max pool is followed by dropout [58] regularization with
the dropout rate set to 0.25, and the final dense layer is followed by softmax.

Layer Kernel Input

convolutional 3× 3× 32 128× 128× 3
convolutional 3× 3× 64 128× 128× 64
max pool 2× 2 128× 128× 64
dense 128 262, 144
dense 11 128

4. Experiments and Results

This section discusses both the instance segmentation and two-stage classification
experiment. The section goes into detail about the apparatus used to run the experiment,
the metrics used to evaluated the methods, and the results of the methods.

4.1. Apparatus

The experiments were conducted using a Nvidia RTX 3090 graphics card with
12 GB memory running with CUDA 10.1 and an Nvidia driver version 460.80. All of
the instance segmentation and classification methods are provided in Open MMLab’s
model zoo framework [53] with MMDection 2.11 and torch 1.6.

4.2. Localization and Segmentation
Evaluation

For the evaluating predicted instance, we uses the metric used in the COCO detection
challenge [59]. The metrics use a class acceptance threshold called intersection over union
(IoU) to determine if a detection is valid. IoU consists of calculating the intersection of a
predicted objected (bbox or mask) with a ground truth object and dividing it by the union
of the ground truth object and the predicted object (IoU(x, y) = x∪y

x∪y ).

4.3. Results

The localisation results show that the methods handle small objects very poorly with
none of the methods resulting in an average recall (AR) or average precision (AP) over 10%.

For Average Precision (AP): AP at IoU = 0.50:0.05:0.95 (primary challenge metric)
APIoU = 0.50, AP at IoU = 0.50 (PASCAL VOC metric), AP at IoU = 0.75 (strict metric)

Across Scales: S is for small objects: 102 < area < 322 (between 10 and 30 pixels
across), M is for medium objects: 322 < area < 962 (between 30 and 90 pixels across), L is
for large objects: area > 962 (greater than 90 pixels across). No objects of a road sign were
of the area < 102; therefore, those were excluded

Similar measures are used for Average Recall (AR) as used for AP.
However, as the sign’s size increases, the AP and AR results increase significantly,

with medium-sized traffic signs having an AR and AP from 29% to 54% and 34% to 58%,
respectively. Large signs also follow this trend with an AP and AR of 62% to 73% and 69%
to 78%, respectively.

The segmentation results follow the same trends when looking at the size of the traffic
signs, with small signs having less than 10% AP and AR. Medium traffic signs have an AP
between 26% and 39% and an AR between 31% and 46%, and large signs have an AP of
between 55% and 67% and an AR between 61% and 72%.

4.4. Recognition from Detection

To evaluate the performance of our model’s recognition, we use the following metrics.
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4.4.1. Evaluation

For the classification experiment, each road sign type is shown in Figure 5. The false-
positive FP represents a predicted class for a sign that does not equate to the ground truth
class, and FN represents a ground truth class of a sign that was not predicted as the ground
truth class.

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2Recall · Precision
Recall + Precision

(5)

With the multi-class classification dataset generated from the location results, we spilt
into training and testing with a 4:1 ratio. The results presented in Table 5 are the results of
the testing statistics.

Table 5. Classification recognition from the detection results.

Class Accuracy Precision Recall F1

Advisory 0.985 0.985 0.941 0.962
Chevron board 0.996 1.000 0.979 0.989
Derestriction 1.000 1.000 1.000 1.000
Directional 0.993 1.000 0.750 0.857
Give way 1.000 1.000 1.000 1.000
Information blue 1.000 1.000 1.000 1.000
Information brown 0.989 0.818 0.900 0.857
Information green 0.978 0.944 0.944 0.944
Information yellow 0.981 0.915 0.977 0.945
Railcross 1.000 1.000 1.000 1.000
Speed limit 0.970 0.920 0.958 0.939

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Cont.
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(k) (l) (m) (n)

(o) (p)

(q) (r)

(s) (t)

Figure 5. Examples of the traffic signs [60] (a,b) being classified as Chevron boards, (c–e) as Advisory,
(f) as Give way, (g) as Railcross, (h) as Directional, (i) as Speed limit, (j) as Unrestricted, (k–n) as Infor-
mation yellow, (o,p) as Information brown, (q,r) as Information blue, and (s,t) as Information green.

4.4.2. Results

The results from the classification experiment show that given that a traffic sign is
detected, there is above a 95% chance that it is classified correctly (Table 5).

The mean percentage of FP in positive predictions was 3.8% across the classes, and the
mean percentage of FN in positive cases was 5.0% across the classes. When broken down
by class, the classes with the least FN equally were Derestriction, Give way, Information
blue, and Railcross. The class with the most FN was Directional at 25% of ground truth
positive cases missed. The fixed experimental setup of Step 1 to Step 2 in our proposed
pipeline (Figure 1) ensured image consistency for each scene. In Figure 6, in the Advisory
example, the motion-blurring effect can be seen with a high prediction probability of 0.99.
The Directional example demonstrates a pixel value change due to damage.
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Figure 6. Examples of TP detected and TP classified traffic signs for each class. Softmax Estimated
Probability (prob) is provided for each in green. Although extracted traffic signs vary in size and
resolution, our pipeline still manages to classify correctly with above 95% test performance and
strong estimated probabilities in a multinomial setting.

5. Discussion and Conclusion

This work has provided a framework for using state-of-the-art methods for detecting,
segmenting and classifying traffic signs. The accuracy calculations are based on instances
appearing in images rather than each individual road sign. As a driver drives passes a road
sign, the size of the sign would start off being small and then medium and then large in the
image dataset. Therefore, the accuracy for each road sign should be similar or higher than
the accuracy of APL and ARL.

For localization (see Table 6), either a Cascade method with an HRNet backbone or
HTC method with the ResNeXt backbone performed best for most metrics except for APM,
where the HTC method with the HRNet backbone performed best. For large signs, the
HTC method with the ResNeXt backbone performed best, obtaining 73% APL and 78%
ARL.

For direct instance segmentation (see Table 7), a variety of methods performed best for
different metrics. For large signs, the best APL of 67% was obtained by the Mask RCNN
method with Swin backbone, while the best ARL of 72% was obtained by the Cascade
method with ResNeXt backbone.

Mask RCNN is a commonly used and easy to tune CNN method for localization,
segmentation and the localization of features within an image. Cascade and HTC take
into account more of the contextual information within the image, while Mask RCNN
was shown to be position invariant. Three SOTA backbones were tested due to their
difference in structure and feature generation abilities. ResNeXt is the more commonly
used method, while Swin takes into account more of the context. The HRNet takes in
multiple high-resolution features within an image.
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Table 6. Localization Results, with bold to show the best performing algorithm.

Method Backbone AP AP0.50 AP0.75 APS APM APL AR ARS ARM ARL

Mask RCNN [36] ResNeXt 0.259 0.394 0.287 0.000 0.302 0.665 0.311 0.000 0.372 0.756
Swin 0.249 0.368 0.297 0.000 0.283 0.691 0.290 0.000 0.338 0.759

HRNet 0.248 0.360 0.295 0.000 0.292 0.616 0.300 0.000 0.365 0.693

Cascade [51] ResNeXt 0.327 0.468 0.385 0.008 0.399 0.691 0.377 0.005 0.477 0.741
Swin 0.335 0.453 0.394 0.013 0.410 0.715 0.386 0.007 0.485 0.770

HRNet 0.369 0.537 0.432 0.068 0.459 0.685 0.459 0.069 0.579 0.759

HTC[52] ResNeXt 0.362 0.553 0.399 0.072 0.433 0.732 0.438 0.078 0.538 0.777
HRNet 0.367 0.520 0.429 0.032 0.460 0.684 0.424 0.029 0.544 0.732

Table 7. Instance Segmentation Results, with bold to show the best performing algorithm.

Method Backbone AP AP0.50 AP0.75 APS APM APL AR ARS ARM ARL

Mask RCNN ResNeXt 0.238 0.387 0.260 0.000 0.266 0.647 0.287 0.000 0.341 0.704
Swin 0.236 0.361 0.287 0.000 0.263 0.670 0.274 0.000 0.318 0.719

HRNet 0.229 0.359 0.276 0.000 0.257 0.617 0.279 0.000 0.332 0.678

Cascade ResNeXt 0.279 0.461 0.381 0.004 0.336 0.627 0.325 0.002 0.406 0.677
Swin 0.292 0.453 0.359 0.012 0.352 0.666 0.338 0.007 0.418 0.721

HRNet 0.263 0.518 0.224 0.048 0.315 0.553 0.329 0.051 0.402 0.612

HTC ResNeXt 0.179 0.500 0.079 0.047 0.210 0.380 0.242 0.051 0.292 0.447
HRNet 0.318 0.511 0.368 0.026 0.390 0.639 0.369 0.023 0.466 0.685

For classification from detection (see Table 5), this task produced good results, which
were mostly above 90%. This high accuracy, precision, recall and F1 score is due to our
method’s ability to extract pixel information from the image data specific to the instance
itself. This coupled with the consistent design [61] of the road signs in New Zealand’s SH
allows for the multiclass-CNN to perform well despite gross noise, warping, and varying
pixel resolution.

The localization and instance segmentation results still leave room for improvement.
However, there are significant challenges in the dataset, which include blinding by the sun,
motion blurs, occlusion, and shadows.

Our results on the projected images should provide a path to use omnidirectional
images to perform image processing, which has the potential to enable full surrounding
awareness from one image source.

We present a new processing pipeline for extracting objects within omnidirectional
images in the wild with included demonstration in a Traffic Sign Detection and Recognition
(TDSR) system.

6. Future Works for Readers

Our work on processing and learning omnidirectional image data through the equirect-
angular projection could be applied to other road learning applications, smart robotics and
virtual reality feature mapping.

Future works can be conducted to calculate the angle and distance from the traffic
sign to the origin of the camera for each predicted candidate region, which would help
suggest the viability of using panoramic images for distance metrics and void the need for
LiDAR technology investment.

Gross errors that are present in captured images may help to determine whether or
not traffic signs are damaged, e.g., reflections enhancing bends in signs. This could allow
for future applications for intelligent traffic sign damage estimations.

We background out based on 3D to 2D mapping using assumption of sign location.
Although cropping based on the height and width positioning of the annotations has
lowered the per pixel density to 43.35% of the base image, this can be reduced in the future
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by taking into account the camera lenses’ shape, and covering the annotations, a confidence
convex hull may help to determine which areas of the image can also be removed.

The results of the multiclass-CNN with and without rotations give encouragement
that with access to stronger computational resources, if the candidate regions are predicted
with a higher accuracy score, then there would be more true traffic signs captured within
bounding boxes. Subsequently, the traffic signs can be both extracted and classified with
90% and above precision and 0.85% and above recall.

ADAS researchers pursuing the use of deep learning with omnidirectional equirectan-
gular data for driver gaze or emotion classification may find our method useful in their
future work by replacing the target of traffic signs with targeting the driver’s in-vehicle
person.

Our method does not provide analysis for real-time inference with hardware system
design. Findings with our method relating to edge inference time, types and limitations
of edge hardware, memory management and the dynamics of power supply are open to
future investigation.
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