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Abstract: This study presents a novel approach to cope with the human behaviour uncertainty during
Human-Robot Collaboration (HRC) in dynamic and unstructured environments, such as agriculture,
forestry, and construction. These challenging tasks, which often require excessive time, labour
and are hazardous for humans, provide ample room for improvement through collaboration with
robots. However, the integration of humans in-the-loop raises open challenges due to the uncertainty
that comes with the ambiguous nature of human behaviour. Such uncertainty makes it difficult
to represent high-level human behaviour based on low-level sensory input data. The proposed
Fuzzy State-Long Short-Term Memory (FS-LSTM) approach addresses this challenge by fuzzifying
ambiguous sensory data and developing a combined activity recognition and sequence modelling
system using state machines and the LSTM deep learning method. The evaluation process compares
the traditional LSTM approach with raw sensory data inputs, a Fuzzy-LSTM approach with fuzzified
inputs, and the proposed FS-LSTM approach. The results show that the use of fuzzified inputs
significantly improves accuracy compared to traditional LSTM, and, while the fuzzy state machine
approach provides similar results than the fuzzy one, it offers the added benefits of ensuring feasible
transitions between activities with improved computational efficiency.

Keywords: human activity recognition and modelling; deep learning; human-robot collaboration;
fuzzy logic; finite state machine; long short—term memory

1. Introduction
1.1. Importance of Human Activity Recognition for Human-Robot Collaboration

For years, robots and humans have been separated in different workspaces, whether
it be industrial or field applications. The reason for this separation is primarily for safety.
Even though robots have been designed for specific tasks, in most cases, they are not aware
of the environment and surrounding dynamic agents. As a result, these robots are often
placed in cages or in a completely separate environment from human operators [1]. This
separation has resulted in issues, such as low adaptability in different environments, costly
setup, and limited flexibility, which do not align with the ideals of Industry 4.0, which
demands fast production and efficiency.

To address these demands, Human-Robot Collaboration (HRC) has become a major
trend in robotics in recent years. The goal is to improve efficiency and productivity by
combining the benefits of humans’ critical thinking and empathy, with robots’ physical
robustness in demanding and often dangerous conditions [2]. The idea is for humans
and robots to work together towards a common goal. Research has demonstrated that
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interaction and collaboration between humans and robots are crucial factors in achieving
ergonomic systems and enhancing the quality and efficiency of the production process [3].

Collaborative robots, also known as “co-bots”, have become increasingly prevalent
in industrial settings in recent years. However, they have also been utilized in a variety
of other domains. For example, in the healthcare field, researchers are developing robotic
walkers [4], wheelchairs [5], and elderly care robots [6]. Collaborative robots have the
potential to assist humans in heavy and dangerous tasks as well, such as construction and
search-and-rescue [7]. They can also be used in a range of industries and even in smart
home applications. These robots can come in various forms, such as manipulators [8] and
fully humanoid robots [2].

However, incorporating humans into the process presents many challenges, primarily
due to the unpredictable nature of human behaviour. This can lead to difficulties with
robots adaptability and robustness in changing and uncertain situations and environments.
In HRC systems, robots are expected to understand human activities and intentions and, at
times, even predict future human behaviour in order to efficiently achieve the shared goal.
This can be a difficult task due to the inherent uncertainty of human behaviour.

Significant research has been dedicated to understanding human behaviour patterns
through Human Activity Recognition (HAR), which involves analysing various sensor data
to identify and detect simple and complex human activities. HAR has been applied not only
to domains related to human daily life, such as healthcare, smart home applications, and
elderly assistance [9], but also in robotics solutions where HRC is foreseen, being critical
for the robot to have awareness of human actions. Traditional machine learning methods,
such as Bayesian networks [10], random forest [11] and support vector machines [12]
have been used to understand human behaviours. In addition to understanding human
behaviour, some researchers have focused on predicting the most likely sequence of human
actions. Probabilistic methods, such as Hidden Markov Models (HMM) [13] have been
proposed to understand and predict human activities. Finite State Machines (FSM) have
also been used as a tool to model dynamic changes over time and, when combined with
fuzzy logic, to even handle uncertainty from sensor data through the use of linguistic
variables [14]. Recently, deep learning has emerged as a new trend, as it has the ability to
learn and identify complex patterns among large datasets. The major difference between
deep learning and the previously described approaches is that it offers multiple hidden
layers that are capable of feature extraction and transformation, thus significantly reducing
the workload of human designers and developers. As a result, deep learning has been used
in various other domains as well, such as image classification [15], speech recognition [16]
and so on, and several deep learning algorithms, such as convolutional neural networks
(CNNs) [17] and recurrent neural networks (RNNs) [18], have been key to improve the
accuracy and robustness of HAR systems.

While these methods have shown promise, dealing with human uncertainty remains a
challenge. One of the main difficulties is the high variability of human behaviour across
different contexts, as well as the noise in the sensor data, which makes it difficult to
generalize from training data. This uncertainty problem has a negative impact on trust and
safety, which are critical measurements for any HRC system [19]: if the robot is unable to
understand or anticipate human intention, this may lead it to make wrong decisions and
even cause accidents and injuries, which will affect both acceptability and trustworthiness.
Several authors point out to a panoply of solutions to eliminate uncertainty by extracting
more information and rapid processing. However, there is no clear plan established for
a constrained computing system, as robots and other facilitators of HRC (e.g., wearable
technologies) often have. Given the complexity and addressed challenges associated with
uncertainty in human behaviours, further research is still required to fully understand and
address this problem.
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1.2. Research Question and Objectives

This paper proposes a HAR framework capable of coping with uncertainty in human
behaviours, resulting in positive improvements in trust and safety for HRC tasks. To this
end, this paper presents three key incremental developments:

i Enhance Long Short-Term Memory (LSTM) networks by incorporating fuzzy logic to
model human uncertainty (Fuzzy-LSTM), building upon the work of [20]: the goal
is to improve the performance of LSTM networks by incorporating fuzzy logic to
model human uncertainty. In this method, features are extracted from sensor data,
which may be uncertain due to the ambiguity of human behaviour or noise in the
sensors. These features are then fuzzified using Tilt and Motion linguistic variables.
This fuzzification step allows the model to handle uncertain data, making it more
robust. The fuzzified features are then used as input to the LSTM network during
training. The goal of this approach is to improve the accuracy of the LSTM network in
handling uncertain sensor data.

ii Further extend Fuzzy-LSTM representing the sequence of activities through finite-
state machines (FSM), thus leading to the Fuzzy State LSTM (FS-LSTM): the goal of
this method is to enhance the predictability of human activity sequences by combining
the strengths of FSM and fuzzy logic in an LSTM-based model. In this approach,
an LSTM network is trained for each state within the FSM. The output of the LSTM
network is then used to determine the possible transitions between states.

iii Estimate human uncertainty by aggregating predicted scores of the LSTM into a
crisp output through defuzzification: this proposed method aims to estimate the
uncertainty of the LSTM classifier’s predictions by converting the classification scores
into a crisp value through defuzzification. The classification scores are first converted
into a fuzzy set to represent the degree of uncertainty in the predictions. Then, the
fuzzy set is transformed into a crisp value to indicate the certainty of the classifier’s
predictions. This process allows for quantifying the uncertainty of the predictions,
which is not only used within the FS-LSTM method to accept or reject transitions
between states, but can also be useful in our future work in HRC, where certainty
is important.

In addition to these three main contributions, a benchmark is presented to further
investigate the impact of the proposed architecture, which compares the traditional LSTM
and the incrementally developed novel architecture.

1.3. Organization of the Article

This article is structured as follows: In Section 2, a comprehensive review of relevant
literature is provided. Section 3 outlines the use case and data collection through the
developed simulator and a preliminary experimental study on generating synthetic data.
The proposed method, including feature fuzzification and FSM learning with LSTM, is
described in Section 4. At last, the results from the experimental studies are discussed in
Section 5, followed by a description of future work and conclusions in Section 6.

2. Literature Review

HAR has gained significant attention for its ability to detect and identify human
activities from sensor data [21]. The importance of HAR lies in its ability to handle the
uncertainty that arises from the variability in human behaviour and ambiguity in activities.
In robotics, understanding human behaviour and adapting accordingly is crucial for natural
and safe interaction and collaboration with humans [22]. This literature review will examine
the uncertainty problem in HAR and the methodologies used to address it, as well as the
challenges and open research questions in the field.

Human uncertainty poses a significant challenge in HRC from various perspectives.
One major aspect is the complex sequential decision-making required in dynamic envi-
ronments during collaborative tasks, as discussed by Osman in her study [23] on complex
dynamic control tasks. These tasks often require multiple decisions that have to accommo-
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date many elements of the system to achieve a desired goal, which implies that there is a
high degree of uncertainty introduced by humans regarding how they will behave in these
changing conditions and environments. This makes it a difficult task for robots to predict
and adapt. In addition to the dynamic nature of the environment and the complexity of
collaborative tasks, the variability of human physical and cognitive abilities also contributes
to their uncertainty. Human factors, such as fatigue, learning ability, and attentiveness can
significantly impact a worker’s efficiency and accuracy and even cause errors or safety
issues in HRC systems [24]. This is aligned with the work of Vuckovic et al. [25], that
highlighted the importance of human subjectiveness in creating uncertainty in human be-
haviours. According to the authors, individuals judge a stimulus and adapt their decisions
accordingly to their judgments. This implies that human subjectivity has an important role
in introducing uncertainty in human behaviours, as it leads them to perceive and react to
situations differently based on their own experiences. Another important aspect in which
uncertainty plays a role is in building trust between humans and robots in collaborative
tasks. Trust is a crucial element in HRC, as it allows humans to rely on robots to safely
perform tasks together. According to Law and Scheutz [26], understanding human needs
and intentions, and effectively responding to them, is key to building trust.

Other researchers have emphasized the significant impact of human uncertainty on
proactive planning for HRC. According to Kwon et al. [27], proactive planning involves a
robot’s ability to adapt to a dynamic environment by handling uncertainty. The authors
note that the nature of the dynamic environment is not only affected by the robot’s actions
but also by human activities, which have complex temporal relationships. The uncertainty
in these activities must be considered during planning as they are not easily predictable
due to the robot’s limited observation of the environment and the humans. Therefore,
understanding and addressing uncertainty in collaborative tasks is essential for efficient
planning in HRC.

Based on the literature reviewed, it is well understood that uncertainty introduced by
humans poses a significant challenge in Human-Robot Collaboration (HRC). Therefore, a
significant amount of research has been conducted in this field with the aim of mitigating
the negative effects of uncertainty. These solutions mostly focus on the efficient and effective
inference of human behaviour as a means of addressing uncertainty within the HRC context.
One approach is the use of multimodal systems that combine different sensor types, such
as video cameras, wearables, and even ambient sensors, such as infrared motion detectors.
Video cameras are popular for HRC tasks, but they raise privacy concerns [28]. On the
other hand, wearable sensors, such as inertial measurement units (IMUs), are widely used
to cope with privacy and security concerns, but they also come with many challenges,
such as limited representativeness of similar activities. Despite these challenges, wearable
sensors are the most commonly used set of sensors in human activity monitoring. In [29],
the authors proposed to use wearable sensors, such as accelerometers and gyroscopes
worn at different positions on the human body, to capture activity data that are sampled
at regular intervals to be used in HAR. Another study has been designing appropriate
methodologies, such as utilizing data from individual accelerometers at the waist, which
can identify basic daily activities, such as running, walking and lying down [30]. These
works reported acceptable accuracy results for basic daily activities. However, they could
not show good accuracy for more complex activities, such as transitions, e.g., standing up
or sitting down. As said before, a way of improving such results would generally imply
using a larger combination of sensors, although attaching many sensors to the human body
is unfeasible and inconvenient for people’s daily activities.

HAR is often treated as a pattern recognition problem, and many works have initially
adopted machine learning techniques to recognize activities. Support Vector Machine
(SVM) [31] and Hidden Markov Model (HMM) [32] classifiers are among the most com-
monly used methods for activity recognition. For example, Azim et al. [33] used an
SVM classifier with trajectory features for activity classification and achieved an overall
accuracy of 94.90% for the KTH online database and 95.36% for the Weizmann dataset
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(http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html (accessed on 2
February 2023)). Kellokumpu et al. [34] used HMM and affine invariant descriptors, achiev-
ing an overall accuracy of 83.00%. While these works rely on offline data, Yamato et al. [35]
used real-time sequential images and mesh features along with HMM, achieving a 90%
accuracy. However, these traditional machine learning methods often rely on carefully
designed and heuristic feature extraction methods, such as time-frequency transformation,
statistical approaches, and symbolic representation. They lack a universal or systematic
approach for effectively distinguishing human activities, and they are prone to overfitting
and may perform poorly on unseen data [36].

To overcome these drawbacks, ensemble classifiers have been proposed, which involve
training multiple models and combining their predictions to make a final decision. The
aim of ensemble classifiers is to improve the performance of the model by combining the
strengths of multiple models and mitigating their weaknesses [37]. Random forest is a
popular ensemble classifier that is computationally efficient and commonly used in various
domains, such as text and image classification. Random forest works by training multiple
decision trees and combining their predictions through a voting procedure. This method
is effective in addressing overfitting issues and has been shown to enhance accuracy by
combining the outcome of each different classifier [38].

Both traditional machine learning and ensemble classifiers methods for feature ex-
traction in HAR heavily rely on human experience and domain knowledge. However,
these may not be effective for more general environments and may result in a lower chance
of building an efficient recognition system. Additionally, the features learned by these
methods are shallow, such as statistical information, and can only be used for low-level
activity identification, such as walking or running, making it hard to detect high-level or
context-aware activities, such as cooking. In contrast, in real-life scenarios, activity data
comes in a stream and requires robust online learning from static data, which is a limitation
of many of these traditional methods [39]. Deep learning methods, on the other hand, have
been successful in learning complex activities due to their ability to learn features directly
from the raw data hierarchically by performing nonlinear transformations. The layer-by-
layer structure of deep models allows learning from simple to abstract features. Advances
in computer resources have made it possible to use deep models to learn features from
complex data from single or multimodal sensory systems. It is worth highlighting that deep
neural networks can be detached and flexibly composed into a unified network, allowing
for the integration of various deep learning techniques, such as deep transfer learning, deep
active learning, and deep attention mechanism. This enables the integration of various
effective solutions that can improve the performance of the recognition system [36].

Popular deep learning techniques include deep neural networks (DNN), convolutional
neural networks (CNN), recurrent neural networks (RNN), and long short-term memory
(LSTM) networks [28]. DNN are a type of Artificial Neural Network (ANN) that are char-
acterized by a larger number of hidden layers. In contrast to traditional ANN, which often
have only a few hidden layers, DNN can learn from large datasets more effectively. Ham-
merla et al. [40] adopted a five-hidden-layer DNN to perform automatic feature learning
and classification. Vepakomma et al. [41] fed extracted hand-engineered features obtained
from the sensors into a DNN model. CNNs are a type of neural network that exploit
three key concepts: sparse interactions, parameter sharing, and equivariant representations.
CNN have presented successful results in HAR application by utilizing local dependency,
which refers to the nearby signals in a time-series that are most likely correlated. CNN also
have shown the ability to handle variations in pace or frequency [39]. Several studies, such
as [42,43] have employed one-dimensional (1D) on the individual univariate time-series
signals for temporal feature extraction. Conventional 1D CNN have a fixed kernel size,
which limits their ability to discover signal fluctuations over different temporal ranges. To
address this, Lee et al. [17] combined multiple CNN structures of different kernel sizes to
obtain the temporal features from different time scales. Nevertheless, this approach would
demand more computational resources as well. Various deep learning methods have been

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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applied to temporal information including RNN. While traditional RNN cells suffer from
vanishing gradient problems, LSTM, as a specific type of RNN, overcomes this issue. A
sliding window is generally used to divide the raw data into individual pieces, which
are then used to feed LSTM. In a typical LSTM-based temporal feature extraction, it is
essential to carefully tune the hyper-parameters, such as the length and moving step of the
sliding window. Some researchers adopted The Bidirectional LSTM (Bi-LSTM) structure for
extracting temporal dynamics from both forward and backward directions in HAR [44]. On
the other hand, Guan and Plötz have combined multiple LSTM networks in an ensemble
approach and obtained superior results [45].

Another trend in HAR is combining different deep learning approaches by developing
hybrid models to exploit their different aspects. For instance, Ordóñez and Roggen have
combined CNN and LSTM for both local and global temporal feature extraction [46]. The
idea is to exploit CNN’s ability to capture the spatial relationship, while LSTM can extract
the temporal relationship. According to the reported results, CNN combined with LSTM
outperforms CNN combined with dense layers. Differently, in [47], the authors presented a
hybrid model for HAR which first identifies the abstract activity by using random forest
to classify it as static and moving. For static activities the authors have used SVM, while
for moving activities they have adopted 1D CNN. Even though the overall accuracy of the
system was 97.71%, their system was evaluated over a dataset and has not been tested in
real environments and/or in runtime.

Despite these models having shown significant accuracy in HAR, the uncertainty
of the activities remains a challenge due to several reasons, such as noise in sensors and
human factors. Several studies adopted different methodologies to investigate the degree of
certainty, or uncertainty, of a given performed activity. One of the methods adopted was a
dynamic Bayesian mixture model (DBMM), which is a type of ensemble probabilistic model
that combines the likelihood of multiple classifiers into a single form by attaching different
weights to each classifier. DBMM uses an uncertainty measure, such as the posterior
probability, as a confidence level, which is updated during the online classification [48].
Therefore, the classifier with the highest confidence level is the outcome of the classification
process. In [49], the authors presented an architecture that recognises seven different
actions performed by athletes using a single-channel electromyography (EMG) combined
with positional data obtained by benchmarking ANN, LSTM and DBMM. According to
the results, ANN and LSTM models were not the most reliable choice to identify these
actions due to the low number of trials in the dataset. On the other hand, DBMM led to
better results, with 96.47% accuracy and 80.54% F1-score. Similarly, in [50], human daily
activities were recognized by using DBMM. The authors proposed a set of spatio-temporal
features, including geometrical, energy-based and domain frequency features to represent
the different daily activities which were then fed into DBMM. The overall classification
performance for DBMM and LSTM, in terms of precision and recall, was 86.63% and
85.01%, respectively.

Other studies have explored fuzzy-based architectures in HAR, which allows for the
incorporation of uncertainty in the decision-making process. While traditional probabilistic
models represent the likelihood of an event using crisp values, fuzzy-based models use
fuzzy membership values to represent the degree of partial truth by providing semantic
expressiveness through the use of linguistic variables to handle uncertain data. Karthigasri
and Sornam [20] fuzzified the input features to be used in a fuzzy FSM (FFSM), which
is a methodology used to model dynamic sequences of events. The reported results of
the approach outperformed decision trees, K-nearest neighbors, SVM, Gaussian naïve
Bayes and quadratic discriminant analysis. Mohmed et al. [14] proposed a HAR architec-
ture using data obtained from low-level sensory devices by enhancing FFSM with deep
learning methods, namely LSTM and CNN. While both models have shown high scores
of accuracy, the CNN-FFSM model showed more robust and reliable performance when
applied to a larger dataset, while LSTM-FFSM outperformed CNN-FFSM for simple sce-
narios with a short period of a dataset. Despite the paper presenting promising results for
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HAR, the methodology is presented in a high-level manner, lacking relevant technical and
scientific details, which makes it impossible for the reader to understand and fully asses
its reproducibility.

In conclusion, the literature reviewed in this study highlights the importance for robots
to understand human activities and cope with uncertainty in HRC applications. To this
end, a variety of studies have been conducted in this field to understand human behaviour
by exploring HAR architectures. However, it is clear that there is still a need for further
research in this area in order to not only measure human uncertainty during collaborative
tasks with robots in runtime, as well as to use such knowledge to adapt accordingly.

3. Use Case and Data Collection
3.1. Use Case: The FEROX Project

FEROX https://ferox.fbk.eu/ (accessed on 10 February 2023) is a project that aims
to support workers collecting wild berries and mushrooms in wild and remote areas of
Nordic countries by using robotic technologies. One of the key aspects of the project is its
focus on HRC by deploying unmanned aerial vehicles (UAV) to monitor and assist groups
of workers during field operations. This improves workers safety in remote environments,
where access to help or assistance may be limited. The expected end results will be an
increased worker trust in collaborating with robots, leading to larger number of berries
harvested, higher quality berries for consumers, more efficient picking times, new level of
worker safety in remote environments, and reduced worker exhaustion levels. Figure 1
depicts a view of the work field of the FEROX Project.

To achieve its aim, the FEROX project is exploring the use of wearable technology
to infer the needs and states of the workers. One possible solution is to use a wearable
device with integrated IMU (i.e., accelerometer, gyroscope and magnetometer) that can
enable the identification of different activities, such as walking, running, sitting, collecting,
and loading berries. Additionally, data from a global navigation satellite system (GNSS)
(e.g., from the worker smartphone) can be used to infer activities performed over distance,
such as driving a vehicle. It is foreseen that the combination of these two commonly
adopted cheap devices would allow for more accurate and real-time monitoring of the
workers’ activities and needs, enabling the project to better support and assist them.

Figure 1. A view on the work field of the FEROX Project.

Figure 2 illustrates the conceptual overview of the architecture aimed to be imple-
mented in the FEROX Project. As stated above, human workers are equipped with wear-
ables and other technologies, which feed the herein proposed FS-LSTM architecture to
assess their behaviors and the associated uncertainty for a high-level decision-making
system. The system may integrate human physiological and kinematic data to identify
human activities, such as (1) human locomotive activities, including idle and walking;
(2) human work-related activities, such as berry picking; (3) potential detection of human
injury, combining physiological data, such as heart rate, in the future; and (4) a multi-UAV
system that provides assistance to the human workers based on the output of the high-level
decision-making system, which takes into account the human state defined by FS-LSTM.
The next phase of the study will focus on developing the high-level decision-making system
to explore the areas, track human location, and assist with loading the collected berries to
the collection point (see Section 6).

https://ferox.fbk.eu/
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Figure 2. An overview of the use case scenario.

3.2. Data Collection: FEROX Simulator and Synthetic Data

In recent years, the performance of HAR systems has seen significant advancement
due to the use of deep learning techniques. However, the acquisition and labelling of
large datasets for training and evaluating these methods can be time-consuming and costly.
To address these limitations, one solution is to use synthetic datasets that do not require
manual labelling or expensive hardware for data capturing [51]. This approach has several
advantages, such as producing labelled data without human input, being beneficial in
fields where data acquisition is costly, such as field robotics [52].

As a preliminary study, we present a simulator that generates automatically labelled
synthetic data by simulating a human character with a chest-worn virtual IMU and smart-
phone GNSS sensors. The first goal of this study is to develop a simulation environment
that can produce synthetic human motion data to feed a HAR system capable of recognizing
different locomotive actions. The focus of this research is on developing a system that can
be trained using only synthetic labelled data, and then tested and evaluated with real data
to justify its reliability for further studies.

3.2.1. FEROX Simulator Development and Virtual Sensor Modelling

We have developed the simulator using the Unity (https://unity.com/ (accessed on 10
February 2023)) game engine with the ultimate goal of creating a game-like environment for
HRC. To achieve this, we initially focused on setting up the forestry scenario by using the
Unity Terrain High-Definition Render Pipeline (https://assetstore.unity.com/packages/
3d/environments/unity-terrain-hdrp-demo-scene-213198 (accessed on 10 February 2023))
and the avatar using the Mixamo library (https://www.mixamo.com/ (accessed on 10
February 2023)), contemplating simple actions, such as idle, walking, running, sitting,
falling down and getting up as shown in Figure 3. We also implemented work-related
actions, such as collecting and loading berries, driving a vehicle, etc. To generate the
animations, we used a keyframe-based method that models connected virtual human body
joints in a sequence of frames.

https://unity.com/
https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198
https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198
https://www.mixamo.com/
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To establish communication between the different agents in the simulation and the
developed framework, we integrated the ROS TCP Connector (https://github.com/Unity-
Technologies/ROS-TCP-Connector (accessed on 10 February 2023)) to set up a TCP connec-
tion between Unity and the widely popular Robot Operating System (ROS) framework [53].
This allows us to generate C# classes to serialize and deserialize ROS messages, specifically
the synthetic data obtained by the virtual IMU and GNSS sensors. The GNSS coordi-
nate data is published at a rate of 5 Hz to the ROS network as a sensor_msgs/NavSatFix
standard message. The synthetic IMU data is published at 50 Hz to the ROS network as
a sensor_msgs/Imu standard message that stores the data over. Additionally, we also
publish the current activity (label) being performed at 50 Hz to the ROS network under the
message type std_msgs/String. All these three types of messages include a timestamp,
which ensures that the activity labels can be synchronized with a given GNSS and IMU
data stream.

a) Idle b) Sit

c) Fall Down

d) Get Up

Figure 3. The avatar performs locomotive actions.

In this study, we implemented a virtual model of the RION AH200C IMU sensor
(http://en.rion-tech.net/products_detail/productId=158.html, (accessed on 10 February
2023)) which integrates an accelerometer, a gyroscope and a magnetometer, thus combining
them and providing readings of linear acceleration, angular velocity and orientation. It
is possible to place a virtual sensor in any desired position, as long as it is attached to a
human joint. In our case, the virtual IMU sensor was placed on the chest of the avatar, as it
is shown with a blue mark in Figure 3. The linear acceleration was calculated by taking
into account the discrete derivative of the velocity with respect to the time as shown in
Equation (1):

a(tn) = K
(

v(tn)− v(tn−1)

Ts

)
(1)

where a, K, v, and T stands for the linear acceleration, gain factor, velocity and time of the
cycle, respectively. More particularly, we captured the position of the virtual IMU attached

https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
http://en.rion-tech.net/products_detail/productId=158.html
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to the chest joint of the avatar and calculated its second discrete derivative every 20 ms
on its own frame. In order to do that, we made use of the parent-child concept of Unity,
which relies on a hierarchical structure between transform frames (position and rotation),
as the pose of the child changes accordingly to the pose of the parent. The position of the
child is applied from the current position of the avatar’s chest. The rotation of the parent is
adopted from the current rotation of the avatar’s chest, while the position of the parent is
adopted from the avatar’s chest position in the previous frame as illustrated in the Figure 4
in which the transparent human figure represents the virtual IMU position of the previous
cycle. This concept allows us to obtain the position of the virtual IMU in its local frame.

World Frame

The position of the Parent 
of the Virtual Imu

The position of the  Virtual
Imu as the child

Hierarchical
Window

Parent Object

Child Object (Imu)

Figure 4. The parent-child relationship is adopted to obtain the position data in virtual IMU’s
local frame.

It is noteworthy that, due to the successive discrete derivative, the linear acceleration
is greatly affected by noise, which is not observable in the data retrieved from the real
IMU sensor. Therefore, we have applied a linear interpolation followed by smoothing the
data using an exponential smoothing algorithm commonly employed in time-series data to
remove high-frequency noises, as in Equation (2), where xt is the data sequence, st is the
output of the exponential smoothing algorithm, t is time and α is the smoothing factor:

st = xt, t = 0

st = αxt + (1− α)st−1, t > 0 and 0 < α ≤ 1
(2)

Additionally, and because real-world accelerometers are generally affected by gravita-
tional acceleration, we have calculated the gravity vector in the local frame of the sensor by
making use of the Unity physics engine.

In order to have the orientation information, we extracted the virtual sensor’s rotation
in quaternions. Quaternions provide a convenient mathematical notation for representing
the orientation of objects in space, being represented with complex numbers in the following
form as shown in Equation (3), where qx, qy, qz are the vector units and qw is the scalar
unit. Then, similarly to acceleration, we applied smoothing algorithm to smooth the
quaternion data.

q = qx + qy + qz + qw (3)

At last, to obtain the angular velocity, we made use of the orientation described above,
converting quaternions to Euler angles, and applying the related discrete derivative at
every 20 ms, as represented in Equation (4), where ω, θ, and t represent angular velocity,
rotation angle in radians, and time, respectively.

ω =
∆θ

∆t
(4)
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In line with the approach taken to model the virtual IMU, a similar methodology was
adopted to model GNSS data. Specifically, a smartphone positioning system was utilized
as a reference for modelling GNSS data. To simulate the GNSS data, the avatar’s position
in space was leveraged and converted into longitudinal and latitudinal coordinates using
the GpsConverter package (https://github.com/MichaelTaylor3D/UnityGPSConverter
(accessed on 10 February 2023)). It should be noted that the smartphone GNSS data
had already undergone filtering, thus negating the need for additional data smoothing
techniques [54].

While the data generated closely matches its real counterpart, real sensors are often
affected by noise. Preliminary tests using the data generated from the aforementioned
approach led to the overfitting of the models. The real IMU and GNSS sensors have noise
characteristics due to some calibration errors or environmental noise that affects the sensor
readings. Therefore, in order to make the synthetic data more realistic, a Gaussian Noise
was injected on both sensors, more specifically affecting the longitude, latitude, linear
acceleration and angular velocity variables. Noise was not added to quaternion data as
the data provided by the real IMU sensor already comes from Extended Kalman Filter,
which leads to a noiseless signal [55]. To add variability to the virtual IMU sensor data,
the velocity and sequence of movements in the virtual avatar were adjusted in runtime.
Different velocity levels can result in different patterns in the sensor data, while different
sequences of activities can affect the overall variability of the data.

3.2.2. Data Preparation

To justify the reliability of the synthetic data, we conducted a preliminary study by
using MatLab to deploy the sequence classifier for training and testing, benefiting from
both Deep Learning Toolbox (https://www.mathworks.com/products/deep-learning.html
(accessed on 10 February 2023)) (for sequence data classification) and ROS Toolbox (https:
//www.mathworks.com/products/ros.html (accessed on 10 February 2023)) (for seemless
communication with the ROS master).

We have started by building our own dataset, containing the synthetic data obtained
by the virtual IMU and GNSS sensors, as well as the real data obtained by the real RION
AH200C IMU sensor and GNSS data of a smartphone. At this stage, the dataset included
data from only four activities (Sit, Fall Down, Get Up and Idle) with automatic labelling
being performed for the synthetic data as described in the previous section, and manual
labeling being performed for the real data, which would be required to not only assess
the feasibility of the virtual IMU and GNSS models, but also to validate and evaluate
the classifier.

We have implemented a method for synchronizing the timestamps of IMU and GNSS
sensors. For each timestamp of the label data, the closest GNSS and IMU timestamps are
found. The GNSS data is associated with the IMU and label data over a short time of
10 timestamps. Then the GNSS route involving longitude (φ) and latitude (λ) has been
converted to Cartesian x and y coordinates.

Taking into account the use of a single IMU and GNSS, be it virtual or real, we have
considered a feature vector s(t) that includes linear acceleration (ax, ay, az), angular velocity
(ωx, ωy, ωz), quaternion (qx, qy, qz, qw), x and y being represented as follows:

s(t) =
[

ax ay az ωx ωy ωz qx qy qz qw x y
]

(5)

To tackle this classification problem, we adopted a Long Short-Term Memory (LSTM)
network, which is known to be state-of-the-art supervised method for sequence data
classification. As previously stated, LSTM is an improved type of recursive neural network
and, instead of having a single neural network layer, it has four interacting layers, namely,
cell state layer, input gate layer, forget gate layer and output gate layer. This enables
it with the ability to “remember” information for a certain period, enabling learning-
term dependencies [49]. Further detailed information on LSTM structure can be found in
Section 4.2.

https://github.com/MichaelTaylor3D/UnityGPSConverter
https://www.mathworks.com/products/deep-learning.html 
https://www.mathworks.com/products/ros.html
https://www.mathworks.com/products/ros.html
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3.2.3. Synthetic Data Validation

We conducted a preliminary experiment to investigate if the synthetic data is as
adequate as the real data. For real-world experiments, we have used a smartphone and the
RION AH200C IMU sensor in a chest-worn sensor setup. For both real-world and virtual
experiments, we have recorded 192 activities as 48 samples of each action, for up to 3 s,
at 5 Hz and 50 Hz, respectively for GNSS and IMU data. We also created the categorical
array that holds the labels corresponding to these actions. The LSTM network was trained
with the synthetic data and subsequently tested with the real data. The adaptive moment
estimation optimizer was adopted, with a maximum epoch of 200.

The results of these experiments are presented in Figure 5 with the confusion matrix
depicting the accuracy of the experiment including the performance of each activity. A
result of 84.9% indicates that although the model performs with acceptable accuracy, several
Sit and Get Up actions were incorrectly classified as Idle. While the initial findings indicate
that the model trained using synthetic data can accurately classify the four specified
activities when presented with real-world data, the upcoming sections will delve deeper
into the evaluation of HAR using synthetic data across a wider range of activities. Within
the context of the FEROX project, and to propose a more encompassing architecture, more
complex activities will be included, such as forestry-work-related ones. Therefore, due to
the simulator feasibility for generating data, the next sections encompass data collection
from 13 different activities and, likewise, a novel approach for HAR under uncertainty.

Figure 5. The confusion matrix of the LSTM network.

4. Fuzzy State Long-Short Term Memory (FS-LSTM)

The proposed FS-LSTM framework for HAR under uncertainty is presented in Figure 6.
The framework is comprised of five blocks, labeled A, B, C, D, and E. Block A is responsible
for collecting human-related data through multimodal sensors, hereby assessed using a
chest-worn IMU and a GNSS smartphone positioning system. Block B processes the IMU
and GNSS data, including linear acceleration, angular velocity, orientation from the IMU
sensor, as well as longitude and latitude from the GNSS, which are published at 50 Hz and
5 Hz, respectively and as previously described in Section 3. This data is then transformed
into linguistic labels for Motion and Tilt through a fuzzification process in Block C, as
further described in Section 4.1. These fuzzified Motion and Tilt features serve as inputs
for both Block D and E. In Block D, the fuzzified feature set is used as input in LSTM
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state machine learning, where multiple networks are trained for each state to be executed
during runtime, including a recovery state called Lost. This process is further detailed
in Section 4.2. In Block E, uncertainty is managed through defuzzification in a closed-
loop. The fuzzified inputs are used in the classification network, which was established
in the previous iteration, and the generated classification score is first fuzzified and then
defuzzified into a crisp value to determine whether to progress to the next state or remain
in the current one. The details of this process will be further explained in Section 4.3.

With the condition of
uncertainty is low

E

With the condition of
uncertainty is high

Set Predicted State
network 

Fuzzifier for Uncertainity

Low Medium High

Current State
Net

Classification
Scores
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RunTime Execution

Fuzzified Input Set
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CollectNet
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Figure 6. The diagram of the proposed architecture.

4.1. Fuzzification of Features

This section presents the design of the feature fuzzification process for converting IMU
and GNSS data into linguistic variables that will serve as inputs in the proposed FS-LSTM
model. This stage is marked as C block in Figure 6.
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Fuzzy logic allows computer systems to mimic the human-like thinking and make
decisions under uncertain and imprecise information. For instance, the subjective and
ambitious statement “the food is good” is enough for a person to decide how much to
tip. This way of handling uncertainty is important when the reliable exact information is
not available.

The numeric data collected by the FEROX simulator, as described in Section 3, includes
linear acceleration (ax, ay, az), angular velocity (ωx, ωy, ωz), and quaternion (qx, qy, qz,
qw), as well as the x and y coordinates. The process of fuzzification involves converting
these crisp numerical data from sensors (either synthetic or real) into linguistic variables
for use in the proposed FS-LSTM model. In particular, we have selected Motion and Tilt
variables for fuzzification. We obtained velocity information as crisp data inputs for Motion
and y-axis Euler angle (or pitch) for Tilt. To calculate the velocity, we benefit from the
synchronized GNSS and IMU data (previously addressed in Section 3) to first generate a
smooth 2D Cartesian position, x and y. The initial velocity is calculated as the derivative of
the position:

Vx0(t) =
x(t)− x(t− 1)

δt
,

Vy0(t) =
y(t)− y(t− 1)

δt

(6)

At each time step, we then calculate the velocity along the x and y axis as:

Vx(t) = Vx0(t) + ax(t) ∗ t,

Vy(t) = Vy0(t) + ay(t) ∗ t
(7)

where t is the elapsed time and ax and ay are the linear acceleration measurements along
x and y axis, respectively, obtained after applying a rotation to the linear acceleration
measurements provided by the IMU, so as to align the body frame with the world frame.
Finally, V is calculated as the magnitude of the velocity vector:

V(t) =
√

Vx(t)2 + Vy(t)2 (8)

To quantify Tilt, the y-axis Euler angle θ (pitch), which represents the tilt of the chest
forward or backward was calculated. The extracted quaternion values were converted to
Euler angles in degrees following the principle presented in Equation (9):

φ = atan2(2(qwqx + qyqz), 1− 2(q2
x + q2

y))

θ = arcsin(2(qwqy − qzqx))

ψ = atan2(2(qwqz + qxqy), 1− 2(q2
y + q2

z))

(9)

The calculated V and θ are inputs utilized in the fuzzification process. In particular,
V is mapped into five linguistic labels for Motion, while pitch (θ) is translated into five
linguistic labels for Tilt. The numerical data for both Motion and Tilt were mapped into
five linguistic variables by Gaussian membership function using MatLab’s Fuzzy Logic
Toolbox as follows:

SU(t) =
{

Motion→
{

S, L, M, H, E
}

Tilt→
{

MLB, LB, ST, LF, ELF
} (10)

where S, L, M, H and E represent the linguistic variables Stopped, Low, Medium, High,
and Extreme for Motion, respectively, while MLB, LB, ST, LF and ELF represent Medium
Lean Back, Lean Back, Straight, Lean Front, and Extremely Lean Front, for Tilt, respectively.
SU(t) represents the feature vector which then is used as input for the FS-LSTM method.

In Figure 7, the five linguistic variables for Motion and Tilt are displayed, alongside
an activity sequence in which the human is first idle, then walks, then becomes idle again,
and finally opens the bag and collects some berries.
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Inputs

Fuzzified Features

Ground Truth 

Figure 7. Motion and Tilt plotting along an activity sequence.

The activity sequence in this short period is represented as: Idle, Walk, Idle, Open Bag,
and Collect, which are shown in the figure in the ground truth section. Additionally, the
figure shows the precise numerical values of the Velocity (V) and pitch (θ) as the inputs
for Motion and Tilt, respectively. It can be seen from the figure that the chosen linguistic
variables effectively depict the activities. For instance, one can easily recognize when the
human is walking by noticing that the Motion value falls between Low and Medium. The
Open Bag and Collect activities also showcase distinct characteristics, such as leaning back
while opening the bag and leaning forward while collecting berries. Thus, these activities
and their fuzzified representations are clearly illustrated and may be used as features to the
HAR architecture.
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4.2. State Machine Learning

This section presents the modelling of human activity by exploring the transitions
between different activity states. These states may involve specific activity sequences or
individual activities. As an example, the use case discussed in Section 3 is depicted through
a state diagram in Block E of Figure 6. This particular use case models the sequential
activities of a human picker, including locomotive movements (such as Idle, Walk, Run),
berry collection and loading, and vehicle driving. The flow is represented by 14 states
(with the recovery state Lost) and includes states that occur in a sequential manner, such as
sitting and driving a car, and transitions that occur between these states, such as Sit Down
to Sit, Sit to Stand Up or Enter Car to Drive. There are also states that lead to multiple
possibilities, such as the Idle state, which can transition to activities such as Open Bag,
Walk, Run, Enter Car, or Sit Down.

The state transitions in a given process are modelled individually through the use of
LSTM networks. As previously mentioned, LSTM is capable of extracting hidden patterns
from long-term sequential data by handling gradient exploding or vanishing gradients
problems [56]. In more detail, the internal structure of an LSTM network consists of
multiple gates, including input gate it, forget gate ft, and output gate ot, that control the
flow of information towards the final output. The input gate updates the information,
while the forget gate processes information from both the input gate it and the previous
state Ct−1, selectively removing information from the current state Ct when necessary. The
output gate forwards the final output to the next LSTM unit and retains the output value
for subsequent sequence predictions. The recurrent unit, on the other hand, estimates the
state of the previous cell Ct−1 and the current input xt using a tanh activation function. The
value of ht can then be calculated as the scalar product of the output gate ot and the tanh of
the Ct. The ultimate output is obtained by passing ht to a softmax classifier [57].

Each LSTM network within the proposed HAR architecture is designed to receive
sequential data as input (fuzzy features addressed in the previous section) and generate
output predictions for only the feasible transition states. The objective of this approach is
to ensure that there are no impossible transitions between states. For example, in a use case
where the activities include Sit Down and Stand Up, or Collect and Load, it is possible that
similar characteristics may result in an incorrect transition from one activity to the other.
However, these transitions should not occur according to the expert-designed state flow,
hereby represented as an FSM. The aim of this modelling approach is to guarantee that the
predicted next state will be one of the possible states, providing important information for
decision-making in an HRC system. Moreover, the number of possible classes significantly
affects the size of the model, and a larger number of possible classes leads to a more complex
model structure. Such a complex model demands additional computational resources,
which would result in a longer runtime execution [58]. For instance, a Sit Down LSTM
network with a reduced number of possible classes, such as Sit Down (remains in the same
state) and Sit (moves to only the next possible state), is more efficient when compared to
an LSTM network trained with all 13 possible activities, particularly when many of the
outputs are unlikely to be the actual state.

The implementation of the LSTM layer in MatLab was carried out using the Deep
Learning Toolbox. For the purpose of predicting the subsequent activity sequence, a
sequence-to-sequence classification approach was employed. Each LSTM network corre-
sponding to a specific state was trained using the same sequential input data. The input
vector SU(t) comprises ten features, including the fuzzified values for Motion and Tilt, as
described in Section 4.1 and depicted in Equation (11):

SU(t) =
[

S L M H E MLB LB ST LF ELF
]

(11)
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where,
S = Stopped MLB = Medium Lean Back
L = Low LB = Lean Back
M = Medium ST = Straight
H = High LF = Lean Front
E = Extreme ELF = Extreme Lean Front

(12)

It is noteworthy, however, that each state-based LSTM network output sets differ,
with each output set corresponding to a specific state, including the potential transitions,
and including the possibility of remaining in the same state, as it is shown in Figure 8.
Any non-feasible state names are labelled as Lost. The Lost network, which uses the same
sequential input data and an output dataset of all states, serves as a recovery mechanism,
being only activated when such class is output by the previous LSTM network.

Idle Walk Sit 
Down Sit Stand 

UpIdle Idle Open
Bag Collect

Input Data 

Sequential Labels

Idle Walk Sit 
Down Lost LostIdle Idle Open

Bag Lost

XTrain

YTrain

Idle State Network
Training Dataset

Lost Lost Sit 
Down Sit LostLost Lost Lost Lost

XTrain

YTrain

Sit Down State Network
Training Dataset

Lost Lost Lost Lost LostLost Lost Open
Bag Collect

XTrain

YTrain

Open Bag State Network
Training Dataset

Training DataSet 
For Each State Network

Figure 8. LSTM training datasets.
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The data generated in this study have been made publicly available (https://gitlab.
ingeniarius.pt/ingeniarius_public/ferox/hrc-ferox.git (accessed on 22 February 2023)).
The dataset includes the following features, as shown in Equation (13): ts is the timestamp,
s(t) is the feature vector containing the raw sensor data shown in Equation (5), sU(t) is the
feature vector containing the fuzzified sensor data shown in Equation (11), and G is the
ground truth of activities presented as a string array where each element represents the
activity label at a specific timestamp.[

ts s(t) SU(t) G
]

(13)

G = [“Idle”, “Idle”, “Sit”, . . . , “Close Bag”] (14)

4.3. Coping with the Uncertainty through Defuzzification

The trained network models described in the preceding section are employed in a
closed-loop architecture to predict the subsequent state, as depicted in Block E of Figure 6.
The fuzzified outputs generated by Block C serve as inputs to the trained network model
associated with the current state, which is referred to as the Lost network in the first iteration
and is updated in subsequent iterations in accordance with the flow of the architecture.

The proposed architecture makes use of network model classification scores as poste-
rior probabilities based on the fuzzified input set. These probabilities are calculated based
on Bayes’ Theorem:

P̂(B | A) =
P(A | B)P(B)

∑R
j=1 P(A | j)P(j)

(15)

where P̂(B | A) is the posterior probability that an observation A of given class B, P(A | B)
is the conditional probability of A given class B, P(B) is the prior probability for class B
and R is the number of classes in the response variable [59]. The classification scores are
represented as an z-by-R matrix, where z is the number of observations in the data and R
is the number of unique classes. The matrix indicates the probability of each observation
belonging to a specific class, with the predicted class being determined by the class with
the highest score.

FS-LSTM falls on the assumption that state network models may struggle to make
confident predictions if the highest score is low or if the scores are similar across classes,
leading to a certain level of uncertainty. Yet, it uses such level of uncertainty to still
generate a prediction based on the class with the highest score. It is therefore important to
consider the level of confidence in the prediction and interpret the scores before making
any decisions based on the model’s output. The uncertainty in the scores is evaluated using
the fuzzy logic system.

Hence, similar as carried out for Motion and Tilt fuzzy variables, classification scores
are used for the fuzzification to produce fuzzy linguistic labels for Uncertainty as Low,
Medium, and High. The triangular fuzzifier is used to determine the degree of membership
for each value. Unlike Motion and Tilt fuzzy variables, however, inference is followed
by adopting a set of rules designed for each state, which are then later utilized to assess
the uncertainty in the classification scores generated by the current state network. An
example of fuzzy rules is presented for the Close Bag state. The uncertainty is assessed in
the classification scores generated for the possible transition outputs of the Idle, Close Bag,
and Lost recovery state by implementing these rules:

1. IF Idle is Low and Close Bag is Low and Lost is Low THEN Uncertainty is High
2. IF Idle is Medium and Close Bag is Medium and Lost is Medium THEN Uncertainty

is High
3. IF Idle is High and Close Bag is High and Lost is High THEN Uncertainty is High
4. IF Idle is High and Close Bag is Low and Lost is Low THEN Uncertainty is Low
5. IF Idle is Low and Close Bag is High and Lost is Low THEN Uncertainty is Low

https://gitlab.ingeniarius.pt/ingeniarius_public/ferox/hrc-ferox.git
https://gitlab.ingeniarius.pt/ingeniarius_public/ferox/hrc-ferox.git
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6. IF Idle is Low and Close Bag is Low and Lost is High THEN Uncertainty is Low
7. IF Idle is High and Close Bag is not Low and Lost is not Low THEN Uncertainty

is High
8. IF Idle is not Low and Close Bag is High and Lost is not Low THEN Uncertainty

is High
9. IF Idle is not Low and Close Bag is not Low and Lost is High THEN Uncertainty

is High

In the fuzzy inference, the rules are applied to the fuzzified inputs to calculate the
degree of fulfilment for each rule through aggregation. The following step is defuzzification,
which transforms the fuzzy outputs into crisp outputs by using the fuzzy sets and their
corresponding membership degrees. The result of the aggregation is converted into a
crisp output value through the centroid method. The output of this system expresses the
uncertainty as a crisp value between 0 and 1. This crisp value coming from the fuzzy
logic system is then used to assess the confidence level of each network model before
determining the next state. This is performed by comparing it to an experimentally-defined
threshold. If the crisp value of uncertainty generated through defuzzification is lower than
the threshold, this implies the model is confident in the prediction and the classification
is carried out based on the highest score, which is identified as the next state. This state
could be a different state or remain unchanged. The network model that corresponds to
the predicted state is then selected for use in the next iteration. If the level of uncertainty
exceeds the established threshold, the system remains in the same state. In this case, the
next iteration performs the classification utilizing the current network model. This iterative
process continues in accordance with the closed-loop architecture until the model reaches a
sufficient level of confidence in its prediction.

Figure 9 shows a small section of the timeline of activity recognition handling the
uncertainty. Between 62 and 65 samples, the model experiences low confidence in its
predictions as the uncertainty is above the threshold and remains in the same state for
subsequent selections. At sample 184, the model erroneously classifies the data as Walk
while the ground truth remains Run. While it may seem like a premature classification, it
could be a coincidence since transitions from Run to Walk are possible. However, at sample
185, it is observed that the Walk state network model lacks certainty in the classification,
causing it to remain in the Walk state. The uncertainty level drops below the threshold once
the ground truth and the predicted classes align at sample 186.

Figure 9. Accessing uncertainty in the activity recognition.
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5. Results and Discussion
5.1. Benchmark of Activity Recognition Performance

In this section, we present the results of our experimental study designed to evaluate
the effectiveness of the proposed approach. We used a training dataset consisting of
13 different activities (Idle, Walk, Run, Sit Down, Sit, Stand Up, Exit Car, Drive, Enter
Car, Open Bag, Collect, Load, Close Bag) as depicted in Figure 6 block E. The training
dataset was collected over a period of 17.85 min and includes 539 activities, with a total of
53,553 samples of virtual IMU data and 5355 samples of virtual GNSS data. The testing
dataset consists of 168 activities and comprises 21,188 samples of virtual IMU data and
2118 samples of virtual GNSS data, spanning a total duration of 7.06 min. In this section,
the number of hidden layers was set to 64 for all LSTM networks considered.

We have benchmarked three different methodologies:
(a) Traditional LSTM: a LSTM model that was trained using raw sensor input, similar

to what has been presented in Section 3, though with all 13 states instead of four.
(b) Fuzzy LSTM: a LSTM model that was trained with the fuzzified features described

in Section 4.1 and outputs all 13 states.
(c) FS-LSTM: the multiple LSTM models that were trained for each state, using fuzzi-

fied features, and each model only outputs the feasible states, as per presented in Figure 6
and described in the previous Section 4.

For the Traditional LSTM model, the input feature vector s(t) is the one previously
presented in Equation (5), consisting of linear acceleration values (ax, ay, az), angular
velocity values (ωx, ωy, ωz), quaternion values (qx, qy, qz, qw), and the x and y Cartesian
coordinates. The input vector for both the Fuzzy LSTM and FS-LSTM models, SU(t),
includes the five linguistic labels previously described in Section 4.1 for each of the extracted
Motion and Tilt variables (Equation (11)).

The results of the three methodologies are presented in Figure 10 as confusion matrices,
which depict the outcomes of (i) Traditional LSTM; (ii) Fuzzy-LSTM; and (iii) FS-LSTM. The
rows represent the target classes, while the columns represent the output classes. Superior
classification accuracy results are identified in bold. The results indicate that utilizing solely
raw sensor data leads to a significantly low accuracy of 23.2%. Conversely, by utilizing
fuzzified inputs, the Fuzzy-LSTM approach markedly enhances the accuracy to 93.2%.
This demonstrates how a fuzzy logic system handles data ambiguity and achieves correct
classification, where the Traditional LSTM method frequently falls short. The proposed
FS-LSTM methodology achieved an accuracy of 90.9%. This result was obtained by treating
samples classified as Lost as unchanged. This approach ensures that the system waits
until it recovers from the Lost state, which runs the same model as the Fuzzy-LSTM
approach (with 13 state outputs), before transmitting the predicted output to a higher-level
decision-making system to ensure the correctness of the transmitted output.

Although the overall accuracy does not show a significant difference from the Fuzzy-
LSTM, being even slightly inferior in terms of accuracy, the FS-LSTM prevents transitions
that should not occur from happening. This might result in slightly superior performance
on Sit Down-Sit-Stand Up transitional states when compared to Fuzzy-LSTM. This not
only avoids passing incorrect information to the higher-level management system but also
improves the probability of predicting the next state. Figure 11 illustrates this prevention
of wrong transitions more clearly for one of the many sequences generated by the afore-
mentioned models. In the figure, a sequence of activities is given with their ground truth in
the blue dotted line and predicted outputs with the straight black line obtained through
Traditional LSTM (top), Fuzzy-LSTM (middle), and FS-LSTM (bottom). Once again, it is
shown that Traditional LSTM is unable to classify activities correctly, alternating between
Walk and Idle in this sequence. For the Fuzzy-LSTM, around sample 150, the predicted
class is Enter Car, while the ground truth class is Idle. In contrast, in the same sample
in FS-LSTM, the classification of the current network model (Idle state network) is either
correct, or the uncertainty is high, and the system remains unchanged in Idle. This prevents
the system from making infeasible transitions to Enter Car, which would break the sequence
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of predicted activities. Fuzzy-LSTM, however, makes infeasible transitions multiple times,
such as in sample 665, where it transitions from Idle to Close Bag, which should never
happen. FS-LSTM handles such infeasible transitions through uncertainty defuzzification
and the state machine approach generally well. As it is described earlier, FS-LSTM handles
misclassifications via recovery of the Lost state. In the confusion matrix Figure 10, the Lost
classified outputs are not shown as they were treated as unchanged states. However, in
practice, when the network is unable to classify a sample in any of the possible transitions,
the decision-making moves to the Lost state. For instance, in the sample around 956 marked
with a red circle, the system is in the Lost state. This occurred because the Idle network
predicted Enter Car instead of Sit Down, which was feasible but wrong. The Enter Car
state network model was unable to classify the samples in any feasible transitions, and the
system went to the Lost state before recovering to the Sit Down state.

In comparison, while Fuzzy-LSTM mostly performs poorly in the presented time win-
dow, it still achieves overall accurate classification, as demonstrated by the corresponding
confusion matrix. However, it is important to note that Fuzzy-LSTM should be regarded as
a sequence of activity flow prediction rather than individual sample prediction, underscor-
ing the superiority of FS-LSTM. Furthermore, FS-LSTM is expected to achieve the same
level of accuracy, of even higher, under constrained resources, since the multiple LSTM
networks it encompasses are expected to not require the same number of hidden layers
given the reduced number of outputs foreseen by each. This is further explored in the
next section.

Figure 10. The confusion matrix of Traditional LSTM, Fuzzy-LSTM and FS-LSTM. Superior classifica-
tion accuracy results are identified in bold.
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Figure 11. The benchmark of three predicted output sequences via Traditional LSTM, Fuzzy-LSTM
and FS-LSTM. The Lost state is marked with the red circle.

5.2. Benchmark of Efficiency

In this section, we evaluate the classification performance of the proposed FS-LSTM
compared to Fuzzy-LSTM from the perspective of GPU resource efficiency. In the previous
section, both models were trained with 64 hidden layers, and while Fuzzy-LSTM classified
13 states, FS-LSTM only used this complex network in the Lost state. To better understand
the impact of this difference on computer resources, we monitored GPU utilization and
power consumption during the classification runtime process for a period of 25 minutes.
Our experiments were conducted using an NVIDIA GeForce GTX 1050. The benchmark
chart for both models is presented in Figures 12 and 13.
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Figure 12. The benchmark of GPU utilization during testing. Fuzzy-LSTM and FS-LSTM networks
trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM (denoted with **).
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Figure 13. The benchmark of power consumption during testing. Fuzzy-LSTM and FS-LSTM
networks trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM (denoted with **).

As shown in the last two rows of columns from Figure 12, despite both methods
performing with high accuracy, Fuzzy-LSTM (represented by the dark blue bars) relies
more heavily on GPU resources than the FS-LSTM approach (represented by the light
blue bars). This is a critical consideration in any long-term outdoor application where
computer resources are constrained. While in the last two rows of columns from Figure 13
the power consumption did not show any significant difference between these methods
over a short-term test, high GPU load is a critical consideration in any long-term outdoor
application where computer resources are constrained. A high GPU load indicates that
the GPU is being heavily utilized to complete the classification task, which can cause the
GPU to generate more heat and consume more power, ultimately affecting the overall
performance and energy efficiency of the system over an extended period.

A question may arise as to whether reducing the number of hidden layers in both
models can reduce its complexity, then leading to better efficiency, while still maintaining
the desired accuracy. To answer this, we extended the benchmark study to five different
combinations: both Fuzzy-LSTM and FS-LSTM networks trained with 32 layers (denoted
with *), and a hybrid version of FS-LSTM (denoted with **) trained with 32 layers, except
for the Lost network, which was trained with 64 layers. As shown in Figures 12 and 13,
reducing the number of layers significantly decreases GPU utilization and power con-
sumption. Table 1 further compares the mean and standard deviations of GPU utilization
and power consumption, demonstrating that a smaller model size with fewer output and
hidden layers leads to significantly higher efficiency. However, reducing the number of
hidden layers sacrifices accuracy, as shown in the confusion matrix in Figure 14.
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Figure 14. The confusion matrix of Fuzzy-LSTM* (i), FS-LSTM* (ii) and FS-LSTM** (iii). Superior
classification accuracy results are identified in bold.

These conclusions are not new, though what can be seen is that Fuzzy-LSTM* (i) and
FS-LSTM* (ii), show a decrease in accuracy of 74.7% and 76.0%, with FS-LSTM slightly
dethroning Fuzzy-LSTM under a lower number of resources (32 hidden layers instead of
64 hidden layers), while still requiring less GPU utilization. Furthermore, while the FS-
LSTM 64 hidden layer Lost network (with 32 hidden layers for all other states), FS-LSTM**
(iii), presents a similar GPU utilization and power consumption than the Fuzzy-LSTM
with a 32 hidden layer (Fuzzy-LSTM*), its accuracy rises to 81.7% (versus the 74.7% of
Fuzzy-LSTM*). While this is not an outstanding result, it can be a useful compromise
between model size, performance, and energy efficiency in certain applications. One
such application is covered by the FEROX Project, where the system is expected to run on
smaller portable devices, such as smartphones and wearables. In such scenarios, an efficient
utilization of computing resources becomes crucial, and the FS-LSTM model may offer a
viable solution without significantly reducing the human activity recognition accuracy.

Table 1. The mean ± standard deviation of GPU utilization and power consumption. Fuzzy-LSTM
and FS-LSTM networks trained with 32 layers (denoted with *), and a hybrid version of FS-LSTM
(denoted with **).

Mean ± SD Fuzzy-LSTM FS-LSTM Fuzzy-LSTM * FS-LSTM * FS-LSTM **

GPU
Utilization 44.55 ± 9.85 35.21 ± 9.57 28.05 ± 9.56 25.58 ± 9.46 27.54 ± 10.16

Power Con-
sumption 29.25 ± 2.04 28.14 ± 1.91 24.66 ± 0.89 24.25 ± 0.89 24.70 ± 1.34



Sensors 2023, 23, 3388 25 of 29

5.3. Discussion

As described in Section 1.2, this paper presented three key incremental developments,
which have been successfully achieved and summarized as it follows:

i Enhance Long Short-Term Memory (LSTM) networks by incorporating fuzzy logic
to model human uncertainty (Fuzzy-LSTM): the objective of this research was to
enhance the accuracy of LSTM networks by incorporating fuzzy logic to model human
uncertainty. Even though the preliminary results, as shown in Figure 5, depicted an
accuracy of 84.9% for recognizing four activities, such accuracy dropped to 23.3%
when trying to recognize 13 different activities. By utilizing fuzzified Motion and Tilt
features, the Fuzzy-LSTM model was capable to effectively handle uncertain data.
The initial results of the study showed that Fuzzy-LSTM improved the accuracy of
activity recognition by a significant margin, achieving 93.2% accuracy compared to
the traditional LSTM model using raw sensor data.

ii Extend the Fuzzy-LSTM approach by incorporating finite-state machines (FSM) to
model activity sequences, resulting in the Fuzzy State LSTM (FS-LSTM) model: the
primary objective of this research was to improve the predictability of human activity
sequences by identifying possible transitions between states. While Fuzzy-LSTM
achieved 93.2% accuracy under unconstrained GPU resources, approximately 3%
more than FS-LSTM, it often resulted in infeasible transitions. However, when using
constrained resources such as embedded systems or limited GPU resources, the
FS-LSTM showed superior performance compared to Fuzzy-LSTM. As shown in
Figure 14, FS-LSTM has a trade-off between accuracy and computational resources,
but it offers significant benefits for long-term real-time outdoor applications.

iii Develop a defuzzification-based method to estimate human uncertainty by aggregat-
ing predicted scores of the LSTM model: this proposed approach aimed to estimate the
uncertainty associated with the LSTM classifier’s predictions through defuzzification.
By waiting until the prediction became certain, the system could achieve an accuracy
of 90.0%. This development is crucial to prevent the system from making wrong
transitions between states before the model becomes certain, thereby improving the
overall performance of the system. Although this study did not show the direct impact
of this issue, it could significantly affect the high-level decision-making process for
robots, where the system needs to consider the current human state. Any infeasible
transitions could compromise the performance of the system, causing trust and safety
issues.

This study presents a few drawbacks and limitations that should be taken into con-
sideration. Firstly, the results were obtained using only synthetic data. Although the
preliminary results (Figure 5) show that models trained with such data are transferable
to real-world data, this may still not accurately reflect real-world scenarios or domains
without further modification and customization. Therefore, caution should be exercised
when applying the proposed approach to other contexts. Furthermore, while synthetic data
provides advantages such as low-cost data generation and easy labelling, it may not fully
capture the complexity and variability of real-world data. Thus, a further study is needed
to ensure the generation of data with the same characteristics as real data when using a
different type of sensor. Additionally, in a real-world setup, the sensor placement and
other aspects of the experimental setup may need to be adjusted to account for different
environmental conditions and potential interferences.

6. Conclusions and Future Work

This study presents an architecture for human activity recognition and modelling
intended for use in human-robot collaboration in field applications. The approach em-
ploys multiple LSTM networks, each trained to recognize feasible states within an FSM
architecture. The FSM architecture is further enhanced with fuzzy logic to determine the
uncertainty level of the classification made by the LSTM, thereby preventing unfeasible
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activity transitions in high-level decision-making systems. The proposed approach is com-
pared to a traditional LSTM model trained on raw sensory data and a Fuzzy-LSTM model
that used fuzzified sensory data as inputs to train a single LSTM network.

The proposed approach achieves high accuracy, with a rate of 90.9%, while efficiently
utilizing computer resources. The system’s performance is evaluated using synthetic
data generated from a berry collection use case developed in a simulator. Future work
will involve assessing the system’s performance using real-world data within the FEROX
project, as well as optimizing the developed work to operate on a small platform such as
a smartphone.

As a continuation of this work, the next step will involve developing a high-level
decision-making system that utilizes the human state predicted by the proposed FS-LSTM,
as well as its associated uncertainty, to make informed decisions for each agent in a multi-
robot and multi-human system. The decision-making system will be developed based on
explicit and implicit relationships between agents, building upon the presented study’s
understanding of human activity.
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