
Citation: Rahaman, M.S.; Tisha, S.N.;

Song, E.; Cerny, T. Access Control

Design Practice and Solutions in

Cloud-Native Architecture: A

Systematic Mapping Study. Sensors

2023, 23, 3413. https://doi.org/

10.3390/s23073413

Academic Editors: Bartłomiej Płaczek

and Marcin Bernaś

Received: 1 March 2023

Revised: 20 March 2023

Accepted: 21 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Access Control Design Practice and Solutions in Cloud-Native
Architecture: A Systematic Mapping Study
Md Shahidur Rahaman, Sadia Nasrin Tisha , Eunjee Song and Tomas Cerny *

Department of Computer Science, ECS, Baylor University, Waco, TX 76798, USA
* Correspondence: tomas_cerny@baylor.edu

Abstract: Protecting the resources of a cloud-native application is essential to meet an organization’s
security goals. Cloud-native applications manage thousands of user requests, and an organization
must employ a proper access control mechanism. However, unfortunately, developers sometimes
grumble when designing and enforcing access decisions for a gigantic scalable application. It is
sometimes complicated to choose the potential access control model for the system. Cloud-native
software architecture has become an integral part of the industry to manage and maintain customer
needs. A microservice is a combination of small independent services that might have hundreds
of parts, where the developers must protect the individual services. An efficient access control
model can defend the respective services and consistency. This study intends to comprehensively
analyze the current access control mechanism and techniques utilized in cloud-native architecture.
For this, we present a systematic mapping study that extracts current approaches, categorizes access
control patterns, and provides developers guidance to meet security principles. In addition, we have
gathered 234 essential articles, of which 29 have been chosen as primary studies. Our comprehensive
analysis will guide practitioners to identify proper access control mechanisms applicable to ensuring
security goals in cloud-native architectures.

Keywords: security; access control; cloud-native; microservice; authentication; authorization

1. Introduction

Cloud-native architecture refers to a set of practices and technologies that enable
the development and deployment of applications in the cloud. It is an approach that
emphasizes using microservices, containers, and container orchestration platforms such
as Kubernetes. Cloud-native architecture is designed to take advantage of the cloud’s
scalability, flexibility, and agility. It allows applications to be built and deployed faster and
with more excellent reliability than traditional approaches, and it also enables organizations
to better manage their resources and reduce costs. Overall, cloud-native architecture is
a way of building and deploying optimized applications for the cloud environment [1].
Microservices are a fundamental component of cloud-native architecture, as they give the
developers advantages to meet the challenges and growing demand from the customer
end, which the monolithic applications sometimes fail to execute. Dr. Peter Rogers first
introduced the topic of microweb services at a cloud computing conference in 2005 [2].
Later, in 2011, the developer community of Netflix and Amazon presented the concept of
microservice architecture [3]. The purpose of a microservice is to decompose the application
logic into fine-grained components with clear, coordinated boundaries of responsibility.
As each element is deployed separately, microservices in a gigantic codebase address the
breakdown of the complex tasks in a monolithic architecture. The flexibility, robustness,
and scalability provided by the microservice architecture give the industry more incredible
infrastructure to think extensively and quickly about a problem. The microservice design
employs HTTP and JSON for user-to-system connections and internal service commu-
nications [4]. This rising architectural approach improves the maintenance, scalability,

Sensors 2023, 23, 3413. https://doi.org/10.3390/s23073413 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073413
https://doi.org/10.3390/s23073413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4360-830X
https://orcid.org/0000-0002-8680-9411
https://orcid.org/0000-0002-5882-5502
https://doi.org/10.3390/s23073413
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073413?type=check_update&version=1

Sensors 2023, 23, 3413 2 of 22

availability, and resilience of complex systems and introduces new challenges, especially
security [5,6]. IoT-based applications have adopted security measures such as encryption,
access control, authentication, and regular software updates to prevent cyber attacks and
ensure the integrity, confidentiality, and availability of data transmitted and processed by
IoT devices. Multi-access edge computing fueled the deployment of IoT-based applications
where security concerns, especially authentication and accountability issues, are tackled
with a prominent approach [7]. A monolithic program will have an average of 39 vulner-
abilities for every 100 KLOC, but a microservice application would have an average of
180 vulnerabilities [8].

As the system may have a large number of services and it can acquire thousands or
millions of users, it is imperative to secure communication. Moreover, security concerns
evolve with the emerging number of responsibilities. For this reason, the system needs
to identify authentic users who can acquire the intended resources they request. This
verification is necessary because the system needs users to obtain only the resources for
which they are authorized for a specific time. If an unwanted user somehow manages
to circumvent a particular service’s security, they can access all of the resources. As the
services inside the architecture are internally connected, the scenario can quickly make
the system vulnerable and marginalized. Therefore, securing the microservice-based
application with a proper access control model is essential. Access control is a crucial
component of every company’s security framework. Every security system aspires to
implement reduced concession, zero-trust, separation of roles, and other best practices
without impairing business operations. An access management system can be organized
in a variety of ways. The developers often find it challenging to choose which access
control model they can implement as the implementation depends on many criteria such as
customer’s needs, number of services, the design patterns, the responsibilities managed by
the service discovery, etc. According to Hinkley’s industrial assessment, several firms have
seen significant attacks on their microservice-based systems in recent years, ranging from
single services to the entire system [9]. These security issues must be addressed during a
program’s design and implementation phases. Authentication and authorization are the
fundamental security criteria that must be handled throughout the design process.

We identified these patterns in our study and recommended how application security
architects should leverage them. Our main findings show that most authentication and
authorization challenges involving microservices are related to communication between
them and the complexity of implementing security in each microservice, resulting in
complexity both in development and in the increase in the attack surface because individual
attention must be given to each microservice. Furthermore, our study identified those
challenges and discussed the potential access control model currently implemented in
the industry. Finally, our study provides a comprehensive analysis for developers to
efficiently select the proper access control model and prospects of the security analysis in a
cloud-native architecture.

This study does a systematic mapping analysis to identify the access control method
employed in cloud-native systems. It thoroughly identifies existing research on static analy-
sis of the defensive strategy to safeguard cloud-native systems, classifying potential access
control design patterns, authentication, authorization techniques, tools, and procedures
addressing the abovementioned mechanisms and managing the present difficulties and
gaps. The contributions of the research are, in brief, as follows:

• Categorize the access control mechanism addressed in microservices and cloud-
native architecture.

• Classify the authentication and authorization techniques in microservices and cloud-
native architecture.

• Study the possible access control mechanism’s relationship to software vulnerabilities
resulting from inappropriate access control.

Sensors 2023, 23, 3413 3 of 22

• Description of the problems with MSA access control and the open challenges with
a broader statement of purpose for the community of researchers and practitioners
involved in that area.

The structure of this research is as follows: Section 2 describes the Related Works.
Section 3 then discusses our Research Methods, which includes a summary of our ap-
proach for conducting a systematic literature review, research questions, and inclusion
and exclusion criteria. The Research Findings and Results are presented in Section 4.
Threats to Validity are discussed in Section 5. Finally, Section 6 covers the Discussion, then
Conclusions and Future Work are in Section 7.

2. Related Works

This section reviews the existing literature on the access control model of microservice
architecture. We searched the relevant studies in all significant scholarly databases and found
many studies. An overview of the articles that have been evaluated is presented below.

In addition to extracting the existing security solutions, Pereira-Vale et al. [10] con-
ducted a multivocal literature review. They introduced categorizations into variations of
standard security mechanisms and scopes related to security settings. They referred to
authentication and authorization as the most mentioned security mechanisms. They also
analyzed the frequency of publications they found where the adapted security mechanism
was authentication and authorization. However, the security mechanisms for microservices
do not precisely depend on the access control mechanism, but it creates a vast open scope to
which practitioners need to adapt. Those can address the attacks or vulnerabilities, potential
tools, or mitigation strategies for those attacks. In our previous study [11], we thoroughly
analyzed the effective mechanisms that can be applied to consider the protection strategy
of cloud-native systems.

Hannousse and Yahiouche et al. conducted a thorough mapping analysis to highlight
the critical vulnerabilities to the security of microservice-based systems [12]. They also
discussed methodologies and tools used to investigate and validate the solutions provided
and security mechanisms utilized to recognize, mitigate, and prevent such risks. Although it
covered some of the same ground as our study, it placed more emphasis on risks and
classifies them differently than we do.

Trnka et al. [13] systematically presented an analysis to discover the Internet of Things
security solutions. They provide insight into the standard approaches and benchmarks
applied for authentication and authorization. Although their research focused on au-
thentication and authorization, the semantic procedure of microservices or cloud-native
architecture still needs to be answered. De Aguiar Monteiro et al. [14] surveyed security,
privacy, and standardization in cloud computing environments for microservices’ archi-
tectures. They identified four critical protection features as their primary conclusions:
containers, data, permissions, and network. Additionally, they provide a set of protections
against security risks, including host-authenticated TLS with in-band authentication, mu-
tual transport layer security, and principal propagation through security tokens. The prime
difference between their document survey and ours was how they focused on the develop-
ment perspective of the microservice-based system, which did not shed light on several
aspects in detail.

A strategy for distributed services was proposed by Rudrabhatla et al. [15], who also
discussed how specific security measures employed in software solutions for microservices
need to be revised. However, no effective technique for microservice authentication and
authorization was suggested in this study.

A comprehensive literature review was performed by Almeida et al. [16] focusing on
the issues, solutions, and tools related to authentication and authorization in microservices.
They identified that the literature concentrated on identifying the open-source solutions of
the specifications. However, considering the relative topics and findings, this study needs
to comprehensively analyze which access control mechanism we can integrate.

Sensors 2023, 23, 3413 4 of 22

Ponce et al. [17] presented a multivocal literature review for identifying ten bad smells
indicating security issues in microservices. They showed that the issue of insufficient access
control appears if a microservice-based application fails to implement access control in
one or more of its microservices, potentially breaching the confidentiality of the data and
business operations of the microservices where access control is missing. They also provide
a mitigation strategy for this issue by implementing OAuth2.0., and Open Authorization
(OAuth) 2.0, an established security protocol. The difference between their analysis and
ours is that we comprehensively focused on systematically mapping the current research
areas. Finally, our analysis covered the full scope of research with thorough details, merging
the smells and the issues of access control mechanisms, and the security aspects of cloud-
native systems. Similar to the previous study, Soldani et al. [18] considered the access
control mechanisms one of the pains of the microservice-based systems. They conducted
a systematic grey literature review to address the pains and gains of microservice-based
systems. Their investigation led to defining access control as one of the pains of designing
concern of the development. Finally, they presented a mitigation strategy by delivering
studies on addressing the pain by providing tools supporting a consistent, decentralized
access control.

The studies mentioned above have addressed work on microservices relevant to the
procedures and techniques of developing systematic mapping studies in microservices
outlining security challenges, authentication, and authorization, following the combined
study themes in Table 1. However, significant research has yet to analyze the potential
pattern of access control in a microservice architecture.

Table 1. Research questions of existing secondary studies in related work.

Research Questions Addressed in Related Works

Research Question Citation

1. RQ1: How has the frequency of publications on security in microservice-based systems varied along time?
Furthermore, how have the selected publication publishers changed?

2. RQ2: What research methodologies have been used to study security of microservice-based systems?
3. RQ3: Security Solutions Classification

• RQ3.1: What security mechanisms have been proposed or studied in microservice-based systems?
• RQ3.2: What is the security scope of studies in microservices- based systems?

4. RQ4: What security contexts have been addressed by research?

[10]

1. RQ1: What are the most-common defense mechanisms for microservices to face security-related issues based on
static analysis?

• What is the taxonomy/categorization of these strategies?

2. RQ2: What attacks and vulnerabilities are addressed by these strategies?

• What is the taxonomy/categorization of these attacks?

3. RQ3: What tools or approaches exist in the literature?

• What features do they support?

4. RQ4: What are the current gaps in the defense mechanism based on static analysis?

[11]

1. RQ1: What are the most addressed security threats, risks, and vulnerabilities of microservices and microservice
architectures, and how they can be classified?

2. RQ2: What are existing approaches and techniques used for securing microservices and microservice architectures,
and how they can be classified?

3. RQ3: At what level of architecture are the proposed techniques and approaches applicable for securing microservices?
4. RQ4: What domains or platforms are the focus of existing solutions for securing microservices and microser-

vice architectures?
5. RQ5: What kind of evidence is given regarding the evaluation and validation of proposed approaches and

techniques for securing microservices and microservice architectures?

[12]

Sensors 2023, 23, 3413 5 of 22

Table 1. Cont.

Research Questions Addressed in Related Works

Research Question Citation

1. RQ1: What is the taxonomy of security solutions?
2. RQ2: Which topologies, communication types, and perspectives are most dominant in the authentication and

authorization IoT research?
3. RQ3: What are the applicability domains and requirements of identified solutions?

[13]

1. RQ1: What are the challenges mentioned in the literature to perform authentication and authorization in the
context of microservice architecture systems?

2. RQ2: What mechanisms are used in the literature to deal with the challenges related to authentication and
authorization in a microservices architecture?

3. RQ3: What are the main open-source technology solutions that implement the authentication and authorization
mechanisms identified in the literature?

[16]

1. RQ1: What are the issues indicating possible security violations in microservice-based applications?
2. RQ2: How can microservice-based applications mitigate the effects of security issues therein? [17]

1. RQ1: How much evidence of microservices experimentation from industry is available online?
2. RQ2: What are the technical and operational “pains” of microservices?
3. RQ3: What are the technical and operational “gains” of microservices?

[18]

3. Research Methodology

This section outlines our in-depth review of the protocol and customized tactics used
in the systematic mapping study. We begin by identifying the research questions, looking
up relevant papers in the literature using various data sources, personally vetting the
automatically selected publications to weed out those irrelevant to our study, and then
snowballing. Then, we examined these papers to compile statistical and clear responses to
our study questions.

3.1. Research Questions

Microservices have brought significant security issues regarding the gigantic architec-
tural structure. The prime attack surface for the microservice is the API gateway, which
the developers and security analysts consider the policy enforcement point [19]. The ac-
cess control mechanism should be defined, and the pattern the system should follow
must validate this point. Practitioners need to understand the basic functionalities and
approaches considering the architectural bindings and security issues that might arise
due to the improper access control mechanism. Thus, we must define the challenges and
consider the potential strategies we can apply to adopt the justifiable access control pattern
in cloud-native systems. We aim to shed light on those strategies and provide awareness of
comprehensive access control methods to the developers that can be used as an asset to
microservice development and design. Therefore, the research objectives we can adapt are
as follows:

1. Identify and classify attacks or vulnerabilities resulting from improper implementa-
tion of access control mechanisms in cloud-native architectures.

2. Determine the access control strategy to defend against attacks.
3. Determine the appropriate authentication and authorization mechanism which can

contribute to maintaining the security life goals of cloud-native systems.
4. Identify existing tools or approaches implemented for access control.
5. Discover the shortcomings found and concentrate on the strategies and challenges for

each objective mentioned above.

3.2. Research Questions

RQ1: What are the most common access control mechanisms that are practitioner utilized
in cloud-native architecture?

Sensors 2023, 23, 3413 6 of 22

a What classification or taxonomy does each of these techniques fit into?

RQ2: What authentication and authorization techniques are addressed in the current litera-
ture?

a What is the taxonomy or classification of these tactics?

RQ3: What tools or approaches addressing the techniques align with proper access control
mechanisms in the literature?

a What functionalities are supported by them?

RQ4: What are the existing limitations and challenges in the cloud-native architecture’s
access control implementation?

We offer some explanations below to support our decision to consider the above
research questions.

• RQ1: The first research question aims to provide an overview of current access control
mechanisms used in cloud-native architecture. This question is foundational, as it
provides a basis for understanding the current state of access control mechanisms in
cloud-native architecture.

• RQ2: The second research question builds on the first, exploring the factors influencing
the selection and implementation of authentication/authorization techniques in cloud-
native architecture. Authentication and authorization techniques are a subset of access
control mechanisms. Access control encompasses a broad range of security measures
that control access to resources, including authentication and authorization.

• RQ3: The third research question takes a more technical perspective, exploring the
integration of access control and authentication/authorization with other cloud-native
technologies and the challenges of managing these mechanisms effectively in complex,
multi-cloud environments. This question is important because it considers the practical
implications of implementing access control and authentication/authorization in
cloud-native architecture.

• RQ4: The fourth research question is more forward-looking, focusing on the future
research challenges and opportunities in access control and authentication/autho-
rization in cloud-native architecture. This question is important because it highlights
potential areas for future research, such as developing new tools and frameworks to
support the implementation of these mechanisms, and exploring new approaches to
optimizing their performance, scalability, and security.

We believe we highlight the structured approach taken toward exploring a focused
area of research. The foundation of the research area is established, and then specific
components or subsets of the concepts are analyzed in detail. The practical implementation
of these concepts is also addressed, highlighting their relevance in real-world scenarios.
Furthermore, we end the analysis by providing insight into the potential areas of future
research. By categorizing and identifying these areas, it is clear that this research is ongoing
and that there is a desire to continue to explore and improve upon these concepts.

3.3. Searching Methodology

We had to choose a sufficiently broad selection query to collect relevant research
papers. The primary research was retrieved through a search of five major digital libraries.
The following is a list of the databases:

• ACM Digital Library;
• IEEE Xplorer;
• Springer Link;
• Scopus;
• Science Direct.

Sensors 2023, 23, 3413 7 of 22

The search queries we used to search the above databases are given in Listing 1.

Listing 1. Search Query.

(" a c c e s s c o n t r o l " OR " a c c e s s r i g h t " OR " a u t h e n t i c a t i o n "
OR " a u t h o r i z a t i o n " OR " i d e n t i t y ")

AND
(" design pat te rn ")

AND
(" micro s e r v i c e " OR " micro− s e r v i c e "

OR " cloud −nat ive " OR " cloud nat ive ")

3.4. Study Selection

Before collecting papers, two filtering stages were produced by the automated search.
In the first phase, titles and abstracts were examined to determine relevance. The second
stage involved looking at the full texts of publications to see whether they complied with
our inclusion criteria. Then, using the works cited in the already selected articles, we
employed snowballing to locate more relevant sources for our research. After the first two
steps, each reference obtained this way underwent screening. All referred publications
were included in the dataset for the selected papers, and these actions were approved.
For these recently added articles, snowballing was applied repeatedly until it reached a
fixed point or until no more documents were added to the dataset.

3.5. Inclusion Criteria

When strict inclusion and exclusion criteria are applied, the number of publications
in online academic libraries falls. Only peer-reviewed publications from journals and
conferences are included in this study. We define the inclusion criteria as follows:

• Publications published since 2012;
• Articles written in English;
• Publications including studies conducted with access control design patterns of mi-

croservice architectures as their primary topics;
• Articles addressing security solutions covering the authentication and authoriza-

tion mechanism;
• Publications with full text available in the specified databases;
• Research publications recommending strategies, frameworks, methodologies, or tools

to deal with the prevalent access control pattern used by cloud-native systems.

Exclusion Criteria

• Articles that have not undergone peer review;
• Available research papers in the chosen databases without the full text;
• Publication addressing only the development and design aspects of cloud-

native architecture;
• Editorials and tutorial papers;
• Publications that outline the overall architectural concept but do not mention access

control in microservices;
• Papers published as short paper (fewer than 3 pages).

3.6. Data Extraction and Synthesis

We gathered and encoded the pertinent data from each primary study after choos-
ing them from the academic literature. We began by removing the metadata, which had
entries for the title, publication year, source, and type of publishing. In addition, we per-
formed document scanning in response to each of the research questions we created, taking
into account the microservice access control design pattern, authentication, authorization
techniques, and already-used solutions.

Sensors 2023, 23, 3413 8 of 22

4. Result

This section will outline the mapping studies’ results and offer a thorough response to
the research questions we have established.

4.1. Result Analysis

We searched in February 2023 and eliminated any publications from before 2012.
The number of articles we discovered is shown in Table 2, which summarizes our article
search results from the five web databases we used. We initially gathered 234 research
publications using our search terms. Then, we used our inclusion and exclusion criteria to
remove 172 items from consideration. The study’s consistency with prior findings was then
determined after looking at the titles and abstracts of 19 papers. We gathered 43 papers
and reviewed them to choose their applicability in light of the study’s objectives, and 15
were excluded by reading the full text. Afterward, we removed two duplicate articles,
added three more documents, and used the snowballing procedure for the selected study.
Eventually, we considered 29 research papers as the proposed main references for the study.
Figure 1 shows the selection process. In addition, we analyzed the year-wise research trend
in the databases by finding the number of articles in those databases in Figure 2. A detailed
analysis of the chosen studies is presented in Table 3.

Initial Search with
search query

Result: 234
Papers

Employing
Filtering with

Exclusion Criteria

Result: 62
Papers Scanning Title and

Abstract

Result: 43
Papers

Full Text Filtering Snowballing

Result: 28
Papers

- 172

- 19 - 15

Result: 29
Papers

+3

2 iterations

Duplicate
Removal

Result: 26
Papers

- 2

Figure 1. Selection procedure.

Figure 2. Selected studies distribution by year.

Sensors 2023, 23, 3413 9 of 22

Table 2. Papers extracted from particular digital libraries.

Documents by Each Journal

Journal Name Results

ACM 58
IEEE 64

SpringerLink 49
Scopus 31

Science Direct 32

Table 3. Extracted and analyzed primary studies.

Articles Selected from Journals

No Article Name Year Journal Cite

1 Integrating Continuous Security Assessments in Microservices and Cloud Native Applications 2017 ACM [20]

2 On the Nature of Issues in Five Open Source Microservices Systems: An Empirical Study 2021 ACM [21]

3 Can Container Fusion Be Securely Achieved? 2019 ACM [22]

4 Interface Representation Patterns: Crafting and Consuming Message-Based Remote APIs 2017 ACM [23]

5 SoK: Security of Microservice Applications: A Practitioners’ Perspective on Challenges and
Best Practices 2022 ACM [24]

6 XSS Vulnerabilities in Cloud-Application Add-Ons 2020 ACM [25]

7 Security and Encryption at Modern Databases 2020 ACM [26]

8 Bypassing the load balancer without regrets 2020 ACM [27]

9 Current Research and Open Problems in Attribute-Based Access Control 2017 ACM [28]

10 Design of Cloud Native Application Architecture Based on Kubernetes 2021 IEEE [29]

11 Migrating Monoliths to Microservices-based Customizable Multi-tenant Cloud-native Apps 2021 IEEE [30]

12 Reference Service Model Framework for Identity Management 2022 IEEE [31]

13 Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices 2019 IEEE [32]

14 Semantically Rich Access Control in Cloud EHR Systems Based on MA-ABE 2022 IEEE [33]

15 A cloud-based architecture for an interoperable, resilient, and scalable C2 information system 2018 IEEE [34]

16 A Full Stack Microservices Framework with Business Modelling 2018 IEEE [35]

17 A Multi-Tenant Framework for Cloud Container Services 2021 IEEE [36]

18 Designing Microservice Systems Using Patterns: An Empirical Study on Quality Trade-Offs 2022 IEEE [37]

19 Enhanced cloud patterns: A case studyof multi-tenancy patterns 2015 IEEE [38]

20 Fog Native Architecture: Intent-Based Workflows to Take Cloud Native toward the Edge 2022 IEEE [39]

21 Authentication and authorization orchestrator for microservice-based software architectures 2018 IEEE [40]

22 An identity and access management architecture in cloud 2014 IEEE [41]

23 Microservices Orchestration vs. Choreography: A Decision Framework 2021 IEEE [42]

24 Development of Web Business Applications with the Use of Micro-services 2019 Springer-Link [43]

25 Understanding the challenges and novel architectural models of multi-cloud native applications–a
systematic literature review 2023 Springer-Link [44]

26 Design and Application of Security Gateway for Transmission Line Panoramic Monitoring Platform
based on Microservice Architecture 2022 Scopus [45]

27 Addressing Expressiveness for a UML Microservices-Based Modeling within the Life Cycle of the
Ubiquitous System Development 2021 Scopus [46]

28 Security mechanisms used in microservices-based systems: A systematic mapping 2019 Scopus [47]

29 Design, monitoring, and testing of microservices systems: The practitioners’ perspective 2021 Science-Direct [48]

4.2. Access Control and Design Patterns in Cloud-Native Systems: RQ1

Cloud-native systems’ access control traditionally depends on using the strategies
from practitioners. They focused mainly on the design pattern related to development,

Sensors 2023, 23, 3413 10 of 22

deployment, secure development, access control, and the corresponding performance
evaluation. The classification is illustrated in Table 4, In Figure 3, we show how the
category is distributed and go into further depth after that.

Table 4. Access Control and Design Pattern of Cloud-Native.

Pattern Methodology References

Design patterns related to deployment [27]
Design patterns related to development [23,37,39,46,48]
Secure multi-tenancy cloud pattern [36,38]
Secure access control management [45]

9%

46%
18%

27%
Design pattern related to Deployment

Design Pattern related to Development

Secure multi-tenancy cloud pattern

Secure Access Control Management

Figure 3. Distribution of Access Control and Design Patterns of Cloud-Native Architecture.

• Design pattern related to deployment: The deployment of an internal cloud service,
positioned behind an internal load balancer that spawns new service instances fol-
lowing load requirements and registers them with the load balancer, resulting in
seamless scalability and elasticity is part of Kogias et al.’s [27] focus on the practice
of pattern. Concerning removing the load balancer from the critical channel, they
provide direct communication latencies. For example, the proposed system CRAB,
a Connection Redirect Load Balancer, enables traffic redirection to handle complex
load balancing policies. This approach’s advantage is managing the workload for the
load balancer, which includes user authentication and gives the service communica-
tion flexibility. However, the web tier and the backend layer can scale separately and
remain independent due to utilizing the two load balancers in this design pattern.

• Design pattern related to development: Vale et al. [37] presented the rationality of
the design pattern practitioners employed in developing microservice-based systems.
They also provided the pains and gains in those patterns and evaluated the quality
attributes by tracking key facets of software quality. Finally, they asserted that practi-
tioners only sometimes use QAs as the word to express and assess the properties of
their systems. They divided the design patterns into seven categories, where security
is one of them. The practitioner’s survey indicates that gateway routing is considered
a gain among those patterns, providing a single access layer decoupling between
the client and the services. Waseem et al. [48] conducted a survey and responses
from practitioners and found six results, including business capability, domain-driven,
API gateways, and backend, where the most common MSA patterns are an API gate-
way and backend for the frontend. They provided answers to the problems that
microservice-based systems’ security issues raised due to unauthorized access to the
system. They recommended combining DevSecOps [49] with microservices to handle
security issues and adopt modern security solutions from cloud service providers.

Sensors 2023, 23, 3413 11 of 22

Carranza-García et al. [46] pointed out some of the key UML language components
that should be customized or enhanced to make it easier to create microservice-based
software for ubiquitous systems. These UML features are identified using the case
study scenario of an intelligent approach to verify attendance in a ubiquitous learning
environment. Sebrechts et al. [39] described a sophisticated disconnection of cloud-
native architecture and fog computing and proposed a set of design patterns and a
fog-native architecture to utilize the fog fully. Applications are built using intent-based
workflow building, consisting of loosely coupled microservices chosen to meet user
needs best. Microservice grouping under a single proxy, frictionless user-microservice
and inter-microservice connections, and request aggregation are all made possible by
a new fog mesh. The design presents a unique softwarized fog mesh that supports
end-user aggregation, external communication, and inter-microservice connection.
Secure API communications are crucial in microservice development, considering
the gigantic architecture. Platform-agnostic design patterns or standard remote API
technologies such as RESTful HTTP and Web services (WSDL/SOAP) are described
by Zimmermann et al. [23]. They introduced attribute-based access control manage-
ment to address security issues for data privacy and integrity. They emphasized the
importance of proper authentication over inter-service communication with API keys.

• Secure multi-tenancy cloud pattern: A multi-tenant framework that adds sufficient
multi-tenant functionality to Kubernetes was suggested by Zheng et al. [36]. They
employed role-based access control (RBAC) to reduce excessive tenant resource usage.
To offer acceptable security, though, more is required. They demonstrated how sepa-
rating the control plane for resource sharing significantly improves API compatibility
and security management with the proper access management with tenants. The focus
of Adewojo et al. [38] is on the cloud’s multi-tenancy issue, namely the tenant-isolated
and dedicated component pattern. Their research is driven by the need to service a
broad consumer base, use available resources, and benefit from economies of scale
because it is cost-effective to provide three levels of multi-tenancy patterns—shared
component, tenant-isolated component, and dedicated component—and enforce ac-
cess rights with tenants that completely secure information and data privacy.

• Secure access control management: To ensure security for the organization, it is
essential to have a proper access control mechanism. Yan et al. [45] presented the IoT
business procedures, common access technologies, and the microservice architectural
design idea. They explored the application of a unified access security gateway
in the transmission sector. The development of the security gateway indicated the
implementation of the access control center, the Identity Authentication Center, which
provides secure communication management with automated routing.

4.3. Authentication and Authorization Mechanism in Cloud-Native: RQ2

Considerably, the solutions for authentication and authorization primarily depended
on the architectural design and decision. Precisely, we found the security policy mainly
employed in an API Gateway. Thus, we classified our findings based on the criteria
below, and Table 5 lists the classification and corresponding references. We illustrate the
distribution of the category in Figure 4 before going into further detail.

Table 5. Authentication and Authorization Pattern in Cloud-Native.

Pattern Methodology References

Security Assessment in API Gateway [20]
Development Approach [30,35]
Architectural Consideration [29,40,44,47]

Sensors 2023, 23, 3413 12 of 22

14%

29%57%

Security Assessment in API Gateway

Development Approach

Architectural Consideration

Figure 4. Distribution of Authentication and Authorization Pattern in Cloud-Native Architecture.

• Security assessment in an API Gateway: The continuous security assessment is chal-
lenging while also developing and maintaining. The security team needs to monitor
and evaluate the system’s security requirements and goals based on several specific
criteria. However, the gigantic structure of how authentication and authorization can
be employed, which can be utilized in security assessment, needs attention as it can
break the confidentiality and integrity of the system. For example, Torkura et al. [20]
addressed this, defined the security assessment, and provided a token-based authenti-
cation and authorization scheme for the system.

• Development approach: Haugeland et al. [30] presented the migration strategy from
a monolithic architecture to microservice-based systems. They suggested the second
stage of the migration includes implementing an API gateway and back-end commu-
nication. The inclusion of an identity server handles the different features to provide
significant security by managing authentication and authorization for the various
tenants. In addition, it demonstrated how the TenantManager supplies the services
with endpoints for tenant-specific modifications while the API gateway acts on the
user’s behalf to obtain access to the resources and oversee user login, authentication,
and permission. Jayawardana et al. [35] provided a creative method for modeling
domain expertise and business processes in a single specification that might result
in boilerplate code that complies with microservice architecture. They utilized an
API key and JSON Web Token (JWT) token-based authentication in their framework,
which provides comprehensive insight into the authentication mechanism using Trans-
port Layer Security (TLS) and OAuth2. In addition, the framework implements the
functionality corresponding to the security protocols, which is the critical pathway of
this research.

• Architectural considerations: Researchers have established several strategies for
microservices to adapt an authentication and authorization mechanism in their ap-
plications. Pereira-Vale et al. [47] addressed the standard security mechanism of
microservice-based systems where identification, authorization, and authentication
are the most noted mechanisms. The use of authentication and authorization in
microservice-based architectures is based on the imitation in each microservice of the
techniques used for monolithic architectures by the Authenticator and Authorizer
security patterns; as a result, each service operates its database or a shared database
that stores credential data, but implements its user verification. Several studies in their
analysis support those strategies mentioned. Alonso et al. [44] carried out an in-depth
literature review on the difficulties of multi-cloud native applications, focusing on
authentication, authorization, or privacy methods to handle security-related issues.
By sharing data across several providers, using multiple clouds considerably increases
the benefit of data confidentiality while overcoming the four significant drawbacks
of cloud computing for data storage: loss of availability, corruption of data, loss of

Sensors 2023, 23, 3413 13 of 22

privacy, and vendor lock-in. Jiao et al. [29] presented an analysis to address the perfor-
mance monitoring and security issues with microservices. Designers and researchers
have developed a cloud-native application architecture based on Kubernetes. These
architecture features are present: it breaks the link between environment-related tasks
such as database deployment, performance detection deployment, and service re-
quest security verification, allowing microservice applications to focus more on the
execution of business logic. The microservice application uses the authorization and
authentication module to manage API calls, ensuring the security of the microservices
and taking the intricate nature of requests into account in the vast microservice net-
work. To incorporate several authentication and authorization mechanisms in their
application, Bánáti et al. [40] looked into several of them. Their practical use offers
a crucial examination of sensitive data security solutions, particularly the problems
with authentication and authorization.

4.4. Tools and Approaches Used in the Existing Literature: RQ3

Practitioners took several approaches and utilized tools to encounter security issues
related to access control and design pattern. Table 6 lists the references that addressed
the techniques and tools. Before getting into more specifics, we show how the category is
distributed in Figure 5.

Table 6. Tools and Approaches used in Existing Literature in Cloud-Native.

Pattern Methodology References

Container-Based Access Control Approach [22]
Encryption-based Approach [33]
Identity Management Solution [31]
Development Approaches [32,41,43]

16%

17%

17%

50%

Container-Based Access Control Approach

Encryption-based Approach

Identity Management Solution

Development Approaches

Figure 5. Distribution of Tools and Approaches used in the Existing Literature of Cloud-Native Architecture.

• Container-based access control approach: To use the isolation advantages of having
the two microservices run in distinct containers, Suneja et al. [22] presented an alterna-
tive strategy called container fusion. The utility microservice can receive the access
and capabilities necessary to perform its functionality under the boundaries between
the two containers defined via diffusion mechanisms.

• Encryption-based approach: Dixit et al. [33] addressed the single point of attack of
cloud-based systems for health record retention that aim to protect data privacy. They
developed a system that combines Semantic Web and Multi-Authority Attribute-Based
Encryption (MA-ABE) technologies to offer a secure, semantically rich method for
facilitating data exchange across organizations that control various end-user attributes
using a uniform dataset. Their strategy implements Multi-Authority Attribute-Based

Sensors 2023, 23, 3413 14 of 22

Encryption, which can securely provide the privacy of electronic health records,
and enforces attribute-based access control to ensure the proper access rights.

• Identity management solution: Pohn et al. [31] proposed the identity management
service model framework (IMSMF), which was developed in a generic service-oriented
manner with a focus on the supporting toolkit of Enterprise Architecture using the
open enterprise modeling language ArchiMate, which is the most popular modeling
technique. They launched AuthNZ, a business solution that handles authentica-
tion and authorization and starts the access management procedure. Several forms
of authentication and permission are available through this broker. By managing
trustworthy third parties (TTPs), the business cooperation third party AuthN Broker
expands the core business. Google and Facebook may be among these TTPs.

• Architectural consideration: A dynamic granular access control approach was pro-
posed on top of several authorization frameworks by Preuveneers et al. [32]. In contin-
ually growing cloud and edge microservice federations, implementing this architecture
provides the delegation of management of access control decisions to many stakehold-
ers. Moreover, with only a relative performance overhead, the approach can effectively
accommodate many owners for each resource. Poniszewska-Marada [43] designed
and implemented a web application based on the microservice architecture to assess
the usefulness of this architecture for developing corporate online applications. How
the authentication and authorization are handled with a separate authentication mi-
croservice has been demonstrated for implementing the architectural perspective. This
microservice comprehensively manages access rights and performs Data Encryption
Standard (DES) encryption with a token-based mechanism. Yang et al. [41] provided
an architectural management solution that addressed several identity and access con-
trol issues in cloud-based systems. The comprehensive advantages of the architecture
provide secure access, standardization, scalability, and encryption, which can optimize
and enhance the security of the systems.

4.5. Challenges Practitioners Addressed: RQ4

We divided the problems researchers in the literature addressed into five groups.
Table 7 lists the categorization and the relevant references. Figure 6 illustrates the distribu-
tion of the category before going into greater detail.

Table 7. Challenges Practitioners Addressed in Cloud-Native.

Methodology References

Security Challenges on Authentication and Authorization [21,24]
Challenges related to Database [26]
Communication [42]
Challenges related to Design Patterns [34]
Challenges related to Improper Access Control [25,28]

• Security challenges on authentication and authorization: To address the problems
of flaws, errors, malfunctions, and mistakes, Waseem et al. [21] conducted a qualitative
study on 1345 issue talks taken from five open-source microservices applications. They
divided the security challenges they described into categories for authentication and
authorization, managing authorization headers, and shared authentication. Further-
more, they provided explanations for several errors that occurred when the JWT token
was implemented where the lite rest API anticipated it to be in the authorization
module. Their findings also emphasized the need for open-source microservices
systems where SSL connections could not be made while using Docker 2.3.0.3 with
Windows Subsystem for Linux 2 (WSL2) support to integrate security certificates and
standards. In-depth analysis of the security issues and solutions commonly mentioned
by microservices practitioners was presented by Billawa et al. [24]. Here, we can
acquire the challenges and corresponding guidelines in the existing literature in access
control, authentication, and authorization in microservices.

Sensors 2023, 23, 3413 15 of 22

• Challenges related to database: Secure data communication is one of the critical
challenges in microservice systems. Practitioners need to adopt several mechanisms
for that. Given this information, Oceans et al. [26] detailed and discussed conventional
methods of protecting databases through encryption, presenting use cases for cloud
and container technology, secure remote computing with SGX, homomorphic encryp-
tion, etc., and discussing their effects on security. In this study, the authors provide
an overview of database encryption and management in the cloud and microservice
architecture, which give a comprehensive analysis.

• Communication: Two communication patterns, choreography and orchestration, are
understood by Megargel et al. [42], who also provided a decision framework for
microservices collaboration patterns that aids solution architects in articulating their
objectives, contrasting the critical factors, and selecting a pattern using a weighted
scoring mechanism. Using three case studies, they demonstrated which one to pick
for secure communication.

• Challenges related to design patterns: A cloud architecture that ensures managing
failure even if crucial components briefly malfunction was given by Bau et al. [34].
They examined three-level designs, such as Software-as-a-Service (SaaS), Platform-as-
a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). They showed how to integrate
secure authentication, overcome identity management issues, and maintain by design
robustness, scalability, and flexibility.

• Challenges related to improper access control: In their discussion of cloud add-ons,
Bui et al. [25] discussed instances where attackers may deliver malicious data to cloud
services using their document-sharing and messaging capabilities. They mentioned
to prevent add-ons from having unrestricted access to user information in the host
application, cloud application suppliers often incorporate permission-based access
control. There is a list of permissions that each add-on needs to function. For example,
when users launch the host program for the first time or when it is installed, they are
often prompted to accept the permissions explicitly. Their research revealed that this
tendency is coarsely grained, requiring the user to give all requested rights for all user
data or a single document. Moreover, they think that because Cross-Site Scripting
(XSS) attackers execute their malicious scripts within the add-on context, such access
control is useless in guarding against them. Servos et al. [28] analyzed the attribute-
based access control mechanism (ABAC) and comprehended the utilization of this in
cloud computing. The introduction of a domain-centric approach to implementing
web services in cloud computing applying ABAC has been investigated. The current
process and several methodologies provide a general idea of how to employ this in
maintaining web security.

29%

14%

14%

14%

29%

Security Challenges on Authentication and Au-
thorization

Challenges related to Database

Communication

Challenges related to Design Patterns

Challenges related to Improper Access Control

Figure 6. Distribution of Challenges Practitioners Addressed in Cloud-Native Architecture.

Sensors 2023, 23, 3413 16 of 22

5. Threats to Validity

Systematic reviews, mapping studies, and surveys frequently have several validity
risks that must be addressed. For example, we have found many dangers. From the
viewpoint of Wohlin’s taxonomy, we explore the validity risks in this situation.

• Validity Construction: Our study’s identification of primary studies from the numer-
ous articles retrieved in the literature poses a threat to its construct validity. We have
followed the guideline from [50] to design the secletion of search engine. The study
topic was the primary factor in developing the search strategy, which directed us to
choose the search query. To include more research for consideration, we produced
two iterations of snowballing. Lastly, to guarantee that only the best studies were
included, we developed a set of strict inclusion and exclusion criteria where only
articles published in peer-reviewed journals and conferences were accepted because
of their quality and adequate outcomes. Since we are referring to the access control
mechanisms of a cloud-native application, some of the research on IoT-based solutions
have been skipped because of the intended scope.

• Internal validity: To retain the internal validity of our findings, we took great caution.
The data extraction from the group of included research raises a problem for internal
validity. We managed the selection by involving two authors, where the initial selection
has been considered and then we all came to a point where we considered the inclusion
of the articles. We devised a method of looking for pertinent literature using the
given keywords, then applying a snowballing procedure backward to the selected
publications to reduce the risks.

• External threats: The external validity is concerned with the usefulness of a collection
of findings in a wider context. Using the collected material, the classification tech-
niques employed in this mapping were developed. The analysis and suggestions are
given in the discussion to construct the baseline for the access control mechanism
focused on this investigation’s difficulties and potential future expansion.

• Conclusion threats: Our study focuses on using categories for access control mecha-
nisms and authentication–authorization strategies to maintain the conclusion validity
of our findings. In practice, several varieties are examined, but only some allow for
accurately classifying all the identified research. Finally, we selected a categorization
based on a more thorough examination of the articles and solutions in the identified
articles. Some of our classification categories were used just as they were or modified
to fit our study’s requirements.

6. Discussion

Analyzing the existing literature enabled us to identify three crucial aspects of the
access control mechanism. First, the design pattern to implement these and the security
pattern is also addressed. Then, we extracted the communication protocol to access the
system securely. We distributed the patterns for the specific areas of implementation and
addressed the purpose of the implementation in Table 8.

Table 8. Specific areas for Access Control and Design Patterns of Cloud-Native.

Specific Area of implementation Pattern Name Purpose of the Implementation

Efficient access control Mechanism Role-based Access Control (RBAC) access control, Authentication and Authorization

Security Design Patterns Implementation Attack Surface Protection access control, Authentication and Authorization
Security Design Patterns Implementation Defense-in-depth Authorization
Security Design Patterns Implementation Applying Security Principle: Least Privilege Scheme access control

Communication Mutual Transport Layer Security (mTLS) Microservice-Communication
Communication JSON Web Token (JWT) Microservice-Communication
Communication Encrypted Communication Data-Security

Sensors 2023, 23, 3413 17 of 22

6.1. Efficient Access Control Mechanism

Typically, in security, there are four types of access control policies that security
analysts follow: Discretionary Access Control (DAC), Mandatory Access Control (MAC),
Role-based Access Control (RBAC), and Attribute-based Access Control (ABAC). Choosing
an efficient access control mechanism is crucial due to the system’s large structure and
the need to handle many user requests and responses. Both the DAC and MAC models
explicitly provide the user subject the object’s access right, which has significant security
issues. Most research studies that support role-based access control (RBAC) base access
on users’ roles inside the system and on rules that specify which accesses are permitted
for users in specific roles. Large-scale permission control applications are compatible with
RBAC as a technology. RBAC is a proven access control method built on ongoing use. We
need to adopt the following for the implementation of the RBAC:

• Setting up the UID with access to a system;
• Defining the role;
• Assessing the permission equivalent to access rights;
• Mapping between a user and a group of roles allocated to the user during a working

period, or in a session;
• Defining an object, which is a system resource that needs access authorization;
• A protected network.

We can employ the following rules in RBAC:

• A user can only operate if the topic has a role assigned to it;
• Operations do not include identification and authentication;
• Procedures are used to carry out all user activities.

The prime advantage we can take from RBAC is individually permitting or canceling
access by grouping individuals according to their responsibilities. Establishing a set of
roles in a small or medium-sized business is easy.

6.2. Security Design Pattern of Cloud-Native Systems

Several security design patterns we can extract from the practitioner’s point of view.

• Protecting attack surfaces: Numerous services that various clients and systems may
access are often included in microservices applications. Since it is hard to keep track
of every service, it exposes them to many security vulnerabilities. Because of this, we
need to set up an API Gateway to manage, monitor over, and inspect all incoming
traffic before it is forwarded to the intended service. The API Gateway is the security
policy enforcement point, where we can define a set of rules, communication protocol,
and service registry which can protect our internal service instances.

• Defense-in-depth: Different backend services have different priority and sensitivity
levels. There cannot be a single, universal approach that applies to all services. De-
pending on the microservice, the protection level should differ. For example, there
might be open-read APIs, for instance, accessible to all callers. Once the caller has
been verified, more services may be available, including premium or administrative
services that must be approved based on the user profile and rigorously guarded
against unauthorized access. A straightforward STS cannot meet this demand with
an API gateway. We can employ in-depth defense that provides multi-layer security
controls to tackle this. There can be an additional layer of security in the form of a
private API gateway with an extra filter and authorization scheme for the use case
when a different level of protection needs to be established for premium or admin
services. To access these secure inner layers, a caller must use façade services and
complete an additional authorization step.

• Applying security principle, least privilege scheme: The least privilege concept
must guide API design. Only authenticated and authorized users should be granted
access to the API. Access to APIs should only be allowed when necessary. Begin with
the minimum necessary access and increase it only as needed.

Sensors 2023, 23, 3413 18 of 22

• Service monitoring: Proper access control mechanisms must also monitor the service
instances. We need to check the health information of the service instances regularly
and deregister the service if it is “down” for a certain period. A faulty or unaddressed
service instance can cause severe vulnerabilities in the system.

6.3. Communication Mechanism

The subject of secure communication in microservices is crucial. We need to make
HTTPS the default for entire applications. One should encrypt sensitive data as soon as
feasible before transferring it, then decode it as late as possible. Examples of sensitive data
include passwords, keys, and secrets. Sending this information in plain text is never a good
idea. The two primary communication mechanisms we can infer from our findings are
given below:

• Mutual Transport Layer Security (mTLS): A trustworthy certificate authority has
produced a public/private key pair for each microservice. The client then authenticates
using mTLS using the key pair. Each microservice is identified and established by
mTLS using x.509 certificates. Each certificate is signed by a reputable certificate
authority and includes a public encryption key and an identity (CA). To establish
encryption keys specific to each communication, each microservice in a service mesh
checks the other’s certificate using the public keys. mTLS provides a secure way to
ensure that each microservice connection is verified, authorized, and encrypted as
privacy compliance needs to increase and zero-trust security becomes the cornerstone
of enterprise cybersecurity policies.

• JSON Web Token (JWT): A very well-liked method for user authorization in mi-
croservices is JWT (JSON Web Token). This standard provides secure communication
between two parties and is used to generate access tokens for applications. In this
scheme, the client receives a token developed by the authentication server and cer-
tified as belonging to the user. For each future request, the client will transmit the
token back to the server, allowing the latter to identify the request’s origin. The client
contacts the authorization server to obtain an encrypted access token when a request
is made. User information is included in this access token, which is provided to
microservices. Services may verify and decode the token to identify the user accessing
it. JWT typically has a payload (information on the authorization and its expiration)
and a header (information on the encryption scheme), both of which are signed with
the identity service secret (HMAC) or private key (RSA).

• Encrypted communication: To obtain the most significant isolation, services can be
effectively broken down utilizing various controlling principles, such as the Single
Responsibility Principle (SRP) and the Common Closure Principle (CCP). However, be-
cause the transactions involve numerous companies, interservice contact is inevitable.
In addition, the data are stored in several heterogeneous database technologies accord-
ing to the requirements where managing data security is challenging. The security
requirements for the data at rest may be satisfied by encrypting it using methods such
as Vormetric transparent encryption or by utilizing secure keys that are changed once
every few days. Furthermore, the storage containers for the cache systems and file
storage should be encrypted using strong passwords. Data that are in transmission
should be encrypted using certificates and SSL layers.

6.4. Future Trends and Open Issues

Cloud-native systems, designed to operate in cloud environments, have access control
mechanisms and design patterns that provide security for their resources and services. We
have already addressed and categorized access control, design issues, and authentication
and authorization mechanisms and how we can utilize those to ensure robust security in
cloud-native applications. However, there are still some limitations to these access control
mechanisms and design patterns. For example, cloud-native access controls frequently
enable access at the resource or service level. Still, they need more granular access control at

Sensors 2023, 23, 3413 19 of 22

the object or data level due to a need for granular access controls, which may result in users
needing more permissions, compromising security. Then, cloud-native access controls may
need to provide complete visibility into access events, such as who accessed what resource,
when, and for what purpose. This process can make it difficult to detect and respond to
security incidents. In addition, this system can have complex access control policies that
require specialized knowledge to configure and manage, leading to configuration errors
that can compromise security. Furthermore, cloud-native access controls often depend on
the cloud provider’s security mechanisms and infrastructure, which can limit control and
visibility over security measures. Moreover, if suitable access control procedures are not
in place, this system’s capability for multi-tenancy can raise the risk of data breaches and
unauthorized access.

In addition to the limitations discussed earlier, there are several open issues with
cloud-native systems’ access control mechanisms and design patterns. For instance, many
organizations still have legacy systems that must be integrated with cloud-native systems.
However, these legacy systems’ access control mechanisms and design patterns may
not be compatible with those of the cloud-native systems, leading to potential security
vulnerabilities. Moreover, cloud-native systems frequently use the access control method
known as Role-based Access Control (RBAC), which can be rigid and might offer more
granular access control than complex situations require. Furthermore, identity and access
management (IAM) is another critical component of cloud-native systems’ access control
mechanisms. However, managing identities and access across multiple cloud environments
can be complex and challenging, leading to potential security risks. In addition, cloud-
native systems may be subject to various compliance and regulatory requirements, such
as HIPAA (Health Insurance Portability and Accountability Act), PCI (Payment Card
Industry), and GDPR (General Data Protection Regulation). Ensuring compliance with
these requirements can be challenging, particularly regarding access control. On the other
hand, these systems are still evolving, and access control mechanisms and design patterns
need to be more standardized, which can lead to clarity and consistency in security practices
across different cloud environments.

Future studies on access control methods and design patterns for cloud-native systems
must prioritize strengthening security, manageability, and usability while addressing
the unique challenges these environments provide. In addition, this system has various
potential future directions, which are continually developing. The following are some
possible growth areas:

• Context-aware access control: Future access control mechanisms can consider the
user’s context and the resource being accessed, such as location, device type, and time
of day, to make more informed access control decisions.

• Fine-grained access control: Fine-grained access control mechanisms may be devel-
oped that allow for more granular control over access to specific data objects and
resources within cloud-native systems.

• Zero-trust security: Zero-trust security models may become more prevalent in cloud-
native systems where access is granted on a need-to-know basis, and users are contin-
uously authenticated and authorized based on their current context.

• Artificial intelligence (AI) and machine learning (ML): AI and ML technologies
may be incorporated into access control mechanisms to enable more automated and
intelligent access decisions and reduce the risk of human error.

• Multi-cloud access control: As more organizations adopt multi-cloud strategies, ac-
cess control mechanisms may be developed that allow consistent access control policies
across multiple cloud environments.

Finally, these future directions show that access control mechanisms will continue
to evolve and become more sophisticated to address the complex security challenges
cloud-native systems pose.

Sensors 2023, 23, 3413 20 of 22

7. Conclusions

This paper presented a systemic mapping analysis of cloud-native systems’ access
control mechanisms and design patterns in great detail. The study investigated 29 research
articles from 234 utilizing inclusion, exclusion criteria, and snowballing. The results
show that the Role-based Access Control mechanism is the most efficient access control
mechanism. For secure communication to handle the client requests, we must implement
Mutual Transport Layer Security (mTLS) or JWT. The security design patterns need to
be considered at the architectural level to prevent the system from attacks. In our future
work, we would like to implement a detection mechanism using static analysis to identify
the potential attacks and vulnerabilities in service-to-service communication or in an API
Gateway, which will provide in-depth analysis of the security mindset for the attackers.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Odun-Ayo, I.; Goddy-Worlu, R.; Ajayi, L.; Edosomwan, B.; Okezie, F. A Systematic Mapping Study of Cloud-native Application

Design and Engineering. J. Phys. Conf. Ser. 2019, 1378, 032092. [CrossRef]
2. Desai, V.; Koladia, Y.; Pansambal, S. Microservices: Architecture and Technologies. Int. J. Res. Appl. Sci. Eng. Technol. 2020,

8, 679–686. [CrossRef]
3. Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil, S. Evaluating the monolithic and the

microservice architecture pattern to deploy web applications in the cloud. In Proceedings of the 2015 10th Computing Colombian
Conference (10CCC), Bogota, Colombia, 21–25 September 2015; pp. 583–590. [CrossRef]

4. Krylovskiy, A.; Jahn, M.; Patti, E. Designing a Smart City Internet of Things Platform with Microservice Architecture. In
Proceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015;
pp. 25–30. [CrossRef]

5. Lu, D.; Huang, D.; Walenstein, A.; Medhi, D. A Secure Microservice Framework for IoT. In Proceedings of the 2017 IEEE
Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017; pp. 9–18. [CrossRef]

6. Chandramouli, R. Security Strategies for Microservices-Based Application Systems. 2019. Available online: https://csrc.nist.
gov/publications/detail/sp/800-204/final (accessed on 15 March 2023).

7. Trakadas, P.; Nomikos, N.; Michailidis, E.T.; Zahariadis, T.; Facca, F.M.; Breitgand, D.; Rizou, S.; Masip, X.; Gkonis, P. Hybrid
clouds for data-intensive, 5G-enabled IoT applications: An overview, key issues and relevant architecture. Sensors 2019, 19, 3591.
[CrossRef] [PubMed]

8. Microservices. Available online: https://www.whitehatsec.com/blog/microservices-security/ (accessed on 12 July 2021).
9. Microservices. Available online: https://info.whitehatsec.com/rs/675-YBI-674/images/WhiteHatStatsReport2018.pdf (accessed

on 12 July 2021).
10. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in microservice-based systems: A multivocal

literature review. Comput. Secur. 2021, 103, 102200. [CrossRef]
11. Rahaman, M.S.; Islam, A.; Cerny, T.; Hutton, S. Static-Analysis-Based Solutions to Security Challenges in Cloud-Native Systems:

Systematic Mapping Study. Sensors 2023, 23, 1755. [CrossRef] [PubMed]
12. Hannousse, A.; Yahiouche, S. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. Comput. Sci.

Rev. 2020, 41, 100415. [CrossRef]
13. Trnka, M.; Abdelfattah, A.S.; Shrestha, A.; Coffey, M.; Cerny, T. Systematic review of authentication and authorization advance-

ments for the Internet of Things. Sensors 2022, 22, 1361. [CrossRef] [PubMed]
14. Monteiro, L.; Hazin, R.; Lima, A.; Ferraz, F.; Almeida, W. Survey on Microservice Architecture-Security, Privacy and Standardiza-

tion on Cloud Computing Environment. 2017. Available online: http://personales.upv.es/thinkmind/dl/conferences/icsea/
icsea_2017/icsea_2017_9_20_10083.pdf (accessed on 15 March 2023).

15. Rudrabhatla, C.K. Security Design Patterns in Distributed Microservice Architecture. arXiv 2020, arXiv:2008.03395.
16. de Almeida, M.G.; Canedo, E.D. Authentication and Authorization in Microservices Architecture: A Systematic Literature Review.

Appl. Sci. 2022, 12, 3023. [CrossRef]
17. Ponce, F.; Soldani, J.; Astudillo, H.; Brogi, A. Smells and refactorings for microservices security: A multivocal literature review. J.

Syst. Softw. 2022, 192, 111393. [CrossRef]

http://doi.org/10.1088/1742-6596/1378/3/032092
http://dx.doi.org/10.22214/ijraset.2020.31979
http://dx.doi.org/10.1109/ColumbianCC.2015.7333476
http://dx.doi.org/10.1109/FiCloud.2015.55
http://dx.doi.org/10.1109/SOSE.2017.27
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://csrc.nist.gov/publications/detail/sp/800-204/final
http://dx.doi.org/10.3390/s19163591
http://www.ncbi.nlm.nih.gov/pubmed/31426555
https://www.whitehatsec.com/blog/microservices-security/
https://info.whitehatsec.com/rs/675-YBI-674/ images/WhiteHatStatsReport2018.pdf
http://dx.doi.org/10.1016/j.cose.2021.102200
http://dx.doi.org/10.3390/s23041755
http://www.ncbi.nlm.nih.gov/pubmed/36850361
http://dx.doi.org/10.1016/j.cosrev.2021.100415
http://dx.doi.org/10.3390/s22041361
http://www.ncbi.nlm.nih.gov/pubmed/35214259
http://personales.upv.es/thinkmind/dl/conferences/icsea/icsea_2017/icsea_2017_9_20_10083.pdf
http://personales.upv.es/thinkmind/dl/conferences/icsea/icsea_2017/icsea_2017_9_20_10083.pdf
http://dx.doi.org/10.3390/app12063023
http://dx.doi.org/10.1016/j.jss.2022.111393

Sensors 2023, 23, 3413 21 of 22

18. Soldani, J.; Tamburri, D.A.; Van Den Heuvel, W.J. The pains and gains of microservices: A systematic grey literature review. J.
Syst. Softw. 2018, 146, 215–232. [CrossRef]

19. Siriwardena, P.; Siriwardena, P. Edge security with an API gateway. In Advanced API Security: OAuth 2.0 and Beyond; Apress:
Berkeley, CA, USA, 2020; pp. 103–127.

20. Torkura, K.A.; Sukmana, M.I.; Meinel, C. Integrating continuous security assessments in microservices and cloud native
applications. In Proceedings of the 10th International Conference on Utility and Cloud Computing, Austin, TX, USA, 5–8
December 2017; pp. 171–180.

21. Waseem, M.; Liang, P.; Shahin, M.; Ahmad, A.; Nassab, A.R. On the nature of issues in five open source microservices systems:
An empirical study. In Proceedings of the Evaluation and Assessment in Software Engineering, Trondheim, Norway, 21–23 June
2021; pp. 201–210.

22. Suneja, S.; Kanso, A.; Isci, C. Can container fusion be securely achieved? In Proceedings of the 5th International Workshop on
Container Technologies and Container Clouds, Davis, CA, USA, 9–13 December 2019; pp. 31–36.

23. Zimmermann, O.; Stocker, M.; Lübke, D.; Zdun, U. Interface representation patterns: Crafting and consuming message-
based remote APIs. In Proceedings of the 22nd European Conference on Pattern Languages of Programs, Irsee, Germany,
12–16 July 2017; pp. 1–36.

24. Billawa, P.; Bambhore Tukaram, A.; Díaz Ferreyra, N.E.; Steghöfer, J.P.; Scandariato, R.; Simhandl, G. SoK: Security of Microservice
Applications: A Practitioners’ Perspective on Challenges and Best Practices. In Proceedings of the 17th International Conference
on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022; pp. 1–10.

25. Bui, T.; Rao, S.; Antikainen, M.; Aura, T. Xss vulnerabilities in cloud-application add-ons. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020; pp. 610–621.

26. Ocenas, M.; Homoliak, I.; Hanacek, P.; Malinka, K. Security and encryption at modern databases. In Proceedings of the 2020 4th
International Conference on Cryptography, Security and Privacy, Nanjing, China, 10–12 January 2020; pp. 19–23.

27. Kogias, M.; Iyer, R.; Bugnion, E. Bypassing the load balancer without regrets. In Proceedings of the 11th ACM Symposium on
Cloud Computing, Virtual Event, 19–21 October 2020; pp. 193–207.

28. Servos, D.; Osborn, S.L. Current research and open problems in attribute-based access control. ACM Comput. Surv. (CSUR) 2017,
49, 1–45. [CrossRef]

29. Jiao, Q.; Xu, B.; Fan, Y. Design of Cloud Native Application Architecture Based on Kubernetes. In Proceedings of the 2021 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
AB, Canada, 25–28 October 2021; pp. 494–499.

30. Haugeland, S.G.; Nguyen, P.H.; Song, H.; Chauvel, F. Migrating monoliths to microservices-based customizable multi-tenant
cloud-native apps. In Proceedings of the 2021 47th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Palermo, Italy, 1–3 September 2021; pp. 170–177.

31. Pöhn, D.; Hommel, W. Reference Service Model Framework for Identity Management. IEEE Access 2022, 10, 120984–121009. [CrossRef]
32. Preuveneers, D.; Joosen, W. Towards multi-party policy-based access control in federations of cloud and edge microservices. In

Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 17–19
June 2019; pp. 29–38.

33. Dixit, S.; Joshi, K.P.; Choi, S.G.; Elluri, L. Semantically Rich Access Control in Cloud EHR Systems Based on MA-ABE. In
Proceedings of the 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Jinan, China,
6–8 May 2022; pp. 1–10.

34. Bau, N.; Endres, S.; Gerz, M.; Gökgöz, F. A cloud-based architecture for an interoperable, resilient, and scalable C2 information
system. In Proceedings of the 2018 International Conference on Military Communications and Information Systems (ICMCIS),
Warsaw, Poland, 22–23 May 2018; pp. 1–7.

35. Jayawardana, Y.; Fernando, R.; Jayawardena, G.; Weerasooriya, D.; Perera, I. A full stack microservices framework with business
modelling. In Proceedings of the 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo,
Sri Lanka, 26–29 September 2018; pp. 78–85.

36. Zheng, C.; Zhuang, Q.; Guo, F. A Multi-Tenant Framework for Cloud Container Services. In Proceedings of the 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS), Washington, DC, USA, 7–10 July 2021; pp. 359–369.

37. Vale, G.; Correia, F.F.; Guerra, E.M.; de Oliveira Rosa, T.; Fritzsch, J.; Bogner, J. Designing Microservice Systems Using Patterns: An
Empirical Study on Quality Trade-Offs. In Proceedings of the 2022 IEEE 19th International Conference on Software Architecture
(ICSA), Honolulu, HI, USA, 12–15 March 2022; pp. 69–79.

38. Adewojo, A.; Bass, J.; Allison, I. Enhanced cloud patterns: A case studyof multi-tenancy patterns. In Proceedings of the 2015
International Conference on Information Society (i-Society), London, UK, 9–11 November 2015; pp. 53–58.

39. Sebrechts, M.; Volckaert, B.; De Turck, F.; Yang, K.; Al-Naday, M. Fog native architecture: Intent-based workflows to take cloud
native toward the edge. IEEE Commun. Mag. 2022, 60, 44–50. [CrossRef]

40. Bánáti, A.; Kail, E.; Karóczkai, K.; Kozlovszky, M. Authentication and authorization orchestrator for microservice-based software
architectures. In Proceedings of the 2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 1180–1184.

http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1145/3007204
http://dx.doi.org/10.1109/ACCESS.2022.3219044
http://dx.doi.org/10.1109/MCOM.003.2101075

Sensors 2023, 23, 3413 22 of 22

41. Yang, Y.; Chen, X.; Wang, G.; Cao, L. An identity and access management architecture in cloud. In Proceedings of the 2014
Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 13–14 December 2014; Volume 2,
pp. 200–203.

42. Megargel, A.; Poskitt, C.M.; Shankararaman, V. Microservices Orchestration vs. Choreography: A Decision Framework. In
Proceedings of the 2021 IEEE 25th International Enterprise Distributed Object Computing Conference (EDOC), Gold Coast,
Australia, 25–29 October 2021; pp. 134–141.

43. Poniszewska-Marańda, A. Development of Web Business Applications with the Use of Micro-services. In Proceedings of
the Contemporary Complex Systems and Their Dependability: Proceedings of the Thirteenth International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX, Brunów, Poland, 2–6 July 2018; pp. 373–383.

44. Alonso, J.; Orue-Echevarria, L.; Casola, V.; Torre, A.I.; Huarte, M.; Osaba, E.; Lobo, J.L. Understanding the challenges and novel
architectural models of multi-cloud native applications—A systematic literature review. J. Cloud Comput. 2023, 12, 1–34. [CrossRef]

45. Yan, K.; Pan, Y.; Sui, Y.; Ye, S. Design and Application of Security Gateway for Transmission Line Panoramic Monitoring Platform
based on Microservice Architecture. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering
Conference (ITOEC), Chongqing, China, 4–6 March 2022; Volume 6, pp. 714–721.

46. Carranza-García, F.; Rodríguez-Domínguez, C.; Garrido, J.L. Addressing Expressiveness for a UML Microservices-Based
Modeling within the Life Cycle of the Ubiquitous System Development. In Proceedings of the 2021 17th International Conference
on Intelligent Environments (IE), Dubai, United Arab Emirates, 21–24 June 2021; pp. 1–8.

47. Pereira-Vale, A.; Márquez, G.; Astudillo, H.; Fernandez, E.B. Security mechanisms used in microservices-based systems: A
systematic mapping. In Proceedings of the 2019 XLV Latin American Computing Conference (CLEI), Panama, Panama, 30
September–4 October 2019; pp. 1–10.

48. Waseem, M.; Liang, P.; Shahin, M.; Di Salle, A.; Márquez, G. Design, monitoring, and testing of microservices systems: The
practitioners’ perspective. J. Syst. Softw. 2021, 182, 111061. [CrossRef]

49. DevSecOps: A Security Model for Infrastructure as Code Over the Cloud. In Proceedings of the 2022 2nd International Mobile,
Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 8–9 May 2022; pp. 284–288.

50. Kuhrmann, M.; Fernández, D.M.; Daneva, M. On the pragmatic design of literature studies in software engineering: An
experience-based guideline. Empir. Softw. Eng. 2017, 22, 2852–2891. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13677-022-00367-6
http://dx.doi.org/10.1016/j.jss.2021.111061
http://dx.doi.org/10.1007/s10664-016-9492-y

	Introduction
	Related Works
	Research Methodology
	Research Questions
	Research Questions
	Searching Methodology
	Study Selection
	Inclusion Criteria
	Data Extraction and Synthesis

	Result
	Result Analysis
	Access Control and Design Patterns in Cloud-Native Systems: RQ1
	Authentication and Authorization Mechanism in Cloud-Native: RQ2
	Tools and Approaches Used in the Existing Literature: RQ3
	Challenges Practitioners Addressed: RQ4

	Threats to Validity
	Discussion
	Efficient Access Control Mechanism
	Security Design Pattern of Cloud-Native Systems
	Communication Mechanism
	Future Trends and Open Issues

	Conclusions
	References

