
Citation: Noble, F.; Xu, M.; Alam, F.

Static Hand Gesture Recognition

Using Capacitive Sensing and

Machine Learning. Sensors 2023, 23,

3419. https://doi.org/10.3390/

s23073419

Academic Editor: Alessandro Leone

Received: 3 March 2023

Revised: 23 March 2023

Accepted: 23 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Static Hand Gesture Recognition Using Capacitive Sensing and
Machine Learning
Frazer Noble , Muqing Xu and Fakhrul Alam *

Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology,
College of Sciences, Auckland Campus, Auckland 0632, New Zealand; f.k.noble@massey.ac.nz (F.N.);
muqing.xu@outlook.co.nz (M.X.)
* Correspondence: f.alam@massey.ac.nz; Tel.: +64-9213-6564

Abstract: Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces
(HMIs) and smart living. This paper reports the development and testing of a static hand gesture
recognition system using capacitive sensing. Our system consists of a 6× 18 array of capacitive
sensors that captured five gestures—Palm, Fist, Middle, OK, and Index—of five participants to create
a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer
Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each
classifier was trained five times; each time, the classifier was trained using four different participants’
gestures and tested with one different participant’s gestures. The MLP classifier performed the best,
achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that
the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable
method for implementing a non-contact, static hand gesture recognition system.

Keywords: hand gesture recognition; Human-to-Machine Interface; capacitive sensing; machine learning

1. Introduction

Hand gestures are an important aspect of human interaction and are used by people to
communicate using non-verbal, visual cues. Automated hand gesture recognition systems
have a multitude of applications in gaming, virtual and augmented reality, home automa-
tion, and Human-to-Machine Interfaces (HMIs) [1]. Hand gesture recognition systems
can provide contactless interaction with machines and equipment. One of the lessons
learned during the pandemic is that machines that are used by many, e.g., elevators, vend-
ing machines, etc., can spread the SARS-CoV-2 virus and would benefit from contactless
operation [2].

Wearable device-based gesture recognition systems have shown promising results [3].
However, they are not contactless and can be inconvenient [4], resulting in a negative user
experience due to the requirement of having to wear a sensor system, e.g., a glove [5] or
band [6]. Vision-based gesture recognition systems have been heavily investigated, e.g., see
the review article [7]. These techniques utilize a camera-based system for image and/or
video acquisition. While such systems are very accurate within controlled environments
and provide contactless recognition, their performance can be adversely impacted by
occlusion, busy backgrounds, poor illumination, etc. In addition, camera-based systems
can also be perceived to be intrusive to privacy, especially in homes [8], and people with
disability, one of the intended beneficiary groups, feel that the presence of a camera brings
unwelcome attention to their disability [9].

Alternative techniques for hand gesture recognition have therefore started to gain
traction. Table 1 summarizes the salient points of such recent works. Researchers have
investigated various sensing modalities, e.g., visible light sensing using Photodiodes
(PDs) [4,10] and solar cells [11,12], Wi-Fi signal sensing [13,14], micro-Doppler signatures

Sensors 2023, 23, 3419. https://doi.org/10.3390/s23073419 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073419
https://doi.org/10.3390/s23073419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4415-9403
https://orcid.org/0000-0002-2455-3131
https://doi.org/10.3390/s23073419
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073419?type=check_update&version=1

Sensors 2023, 23, 3419 2 of 15

acquired from low-cost Doppler radars [2,15,16], etc., for hand gesture recognition. One
of the inherent limitations of these techniques is that they are only capable of recognizing
dynamic hand gestures [17], where the hand is making a sequence of movements. However,
for many applications, it is only necessary to recognize static gestures with the hand shape
or posture remaining stationary [18]. Since only a single “image” is fed as the input to the
classifier, the static approach has the advantage of having a lower computational cost [19].

Table 1. The proposed system benchmarked against a collection of recent works on hand gesture
recognition. It is one of the few systems that is capable of accurately identifying static hand gestures.

Article Sensing
Method

Participant
Details

No. of
Gestures (Type) Accuracy (%) Sensor–Hand

Distance (cm) Remarks

Duan et al. [10]
(2020)

Ambient light
sensing using

PD

Trained with
4 subjects, tested

on 3 “unseen”
7

(Dynamic) 82.57–85.67 10

Accuracy is 96.83% if
trained and tested

(90–10 split of data) on
the same set of

4 subjects.

Yu et al. [4]
(2021) IR

Trained with 4
and tested on

1 “unseen”
8

(Dynamic) 92.13 20
Significantly degraded

accuracy with
Visible light.

Ma et al. [11]
(2022) Solar cell

Trained with
2 subjects, tested

on 1 “unseen”
6

(Dynamic) 94 10
99% accuracy if trained

and tested on the
same subject.

Skaria et al. [16]
(2019)

Micro-Doppler
Signatures

Trained with
1 subject, tested
on 1 “unseen”

14
(Dynamic) 45.50–51.20 10–30

When trained and
tested on the same
subject, accuracy

ranged between 90.30%
and 95.50%.

Tian et al. [13]
(2018) Wireless (Wi-Fi) 10 9

(Dynamic) ~ 50–250

Accuracy is 96% when
trained and tested
(train–test split not

given) on the same set
of 10 subjects.
Can recognize

two-handed gestures

Singh et al. [9]
(2016)

Capacitive
sensing 5 16

(Dynamic) ~ <10

Accuracy is 93% when
trained and tested
(train–test split not

given) on the same set
of 5 subjects.

Wei et al. [18]
(2019)

Capacitive
sensing 4 4

(Static) ~ 6–9

Accuracy is 91.6% when
trained and tested

(50–50 split of data) on
the same set of

4 subjects.

Noble et al.
Proposed

(2022)

Capacitive
sensing

Trained with 4
and tested on 1

“unseen”
5

(Static) 96.87 5–8

Accuracy is 100% if
trained and tested

(90–10 split of data) on
the same set of

5 subjects.

Capacitive sensing [20], sometimes termed electric field sensing, techniques underpin
many human sensing applications ranging from localization [21], subject recognition [22],
and occupancy estimation [23]. It has also shown the ability to provide both dynamic [9]
and static [18] gesture recognition in a contactless manner. In this paper, we present a
sensing system that uses a capacitive sensor array to capture static hand gestures in a
contactless manner.

A trained classifier is required to identify the various hand gestures from the captured
data. The literature shows that a variety of Machine Learning (ML)-based classifiers have
been employed, with neural-network-based approaches being the most popular [1]. In
this paper, we employ Multi-Layer Perceptron (MLP) and Convolutional Neural Network
(CNN) neural-network-based multi-class classifiers to identify hand gestures. The perfor-
mance of these neural-network-based classifiers was benchmarked against Naïve Bayes
and Decision Tree classifiers. Given that the hand gestures were static with no temporal

Sensors 2023, 23, 3419 3 of 15

features, we did not consider Recurrent Neural Network (RNN)-based classification for
our work.

Our work on the proposed hand gesture recognition system using capacitive sensing
offers the following novel contributions:

• It is one of the first reported works that achieve contactless, static hand gesture
recognition without using a camera. We developed a novel, bespoke system using a
capacitive sensor array and a neural-network-based classifier.

• The performance, unlike many of the reported works in the literature, was tested with
“unseen” subjects and achieved high accuracy.

The remainder of this article is organized as follows: Materials and Methods, where
we describe our system’s components, the data collected, and our experimental process;
Results, where we present the results from the experiments; and Conclusion and Future
Works, where we discuss the presented results and propose future work.

2. Materials and Methods

In this section, the proposed gesture recognition system, data collected, classifiers
used, training process, and metrics used are presented and described.

2.1. System Overview

The proposed system consists of three parts: (1) the Sensor Board, (2) the Motherboard,
and (3) the Classifier. The Sensor Board consists of an array of sensing pads and male
board connectors. The Motherboard consists of power electronics, a Microcontroller (MCU),
capacitance-to-digital converters, and female board connectors. The classifier is a program
running on the host PC. The Sensor Board connects with the Motherboard using the
board connectors (see Figure 1a). The Sensor Board’s sensing pads and the Motherboard’s
capacitance-to-digital converters form the basis of the system’s capacitive sensors. Each
sensor’s output is sent to the MCU via I2C. The MCU aggregates all the data into a single
data frame, which is sent to the host PC via a USB-to-serial communication (COM) port.
The Classifier processes the data and predicts what gesture is being made (see Figure 1b).

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16

Motherboard’s capacitance-to-digital converters form the basis of the system’s capacitive

sensors. Each sensor’s output is sent to the MCU via I2C. The MCU aggregates all the data

into a single data frame, which is sent to the host PC via a USB-to-serial communication

(COM) port. The Classifier processes the data and predicts what gesture is being made

(see Figure 1b).

(a)

(b)

Figure 1. The proposed system: (a) Motherboard and connected Sensor Board; (b) Gesture recogni-

tion pipeline.

2.2. Sensor Board

The Sensor Board is a two-layer PCB that uses capacitance to detect the presence of a

hand. It consists of a 6 × 18 array of copper sensing pads (see Figure 2a).

(a) (b)

Figure 2. Sensor Board: (a) The Sensor Board; (b) Illustration of the loading mode capacitance.

Its design is based on the formation of loading mode capacitance. The concept is il-

lustrated in Figure 2b. When a hand is place over the board, it, and each sensing pad, form

two plates of a capacitor, which can be expressed as:

Figure 1. The proposed system: (a) Motherboard and connected Sensor Board; (b) Gesture
recognition pipeline.

Sensors 2023, 23, 3419 4 of 15

2.2. Sensor Board

The Sensor Board is a two-layer PCB that uses capacitance to detect the presence of a
hand. It consists of a 6× 18 array of copper sensing pads (see Figure 2a).

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16

Motherboard’s capacitance-to-digital converters form the basis of the system’s capacitive
sensors. Each sensor’s output is sent to the MCU via I2C. The MCU aggregates all the data
into a single data frame, which is sent to the host PC via a USB-to-serial communication
(COM) port. The Classifier processes the data and predicts what gesture is being made
(see Figure 1b).

(a)

(b)

Figure 1. The proposed system: (a) Motherboard and connected Sensor Board; (b) Gesture recogni-
tion pipeline.

2.2. Sensor Board
The Sensor Board is a two-layer PCB that uses capacitance to detect the presence of a

hand. It consists of a 6 × 18 array of copper sensing pads (see Figure 2a).

(a) (b)

Figure 2. Sensor Board: (a) The Sensor Board; (b) Illustration of the loading mode capacitance.

Its design is based on the formation of loading mode capacitance. The concept is il-
lustrated in Figure 2b. When a hand is place over the board, it, and each sensing pad, form
two plates of a capacitor, which can be expressed as:

Figure 2. Sensor Board: (a) The Sensor Board; (b) Illustration of the loading mode capacitance.

Its design is based on the formation of loading mode capacitance. The concept is
illustrated in Figure 2b. When a hand is place over the board, it, and each sensing pad,
form two plates of a capacitor, which can be expressed as:

C = ε
A
dγ

, (1)

where C is the capacitance, A is the overlapped area of the two “plates”, ε is the permittivity
of air, d is the distance between the plates, and γ is an environmental parameter [24].

When capacitance between the hand and the Sensor Board is measured, it results in an
array of capacitance values that can be interpreted as a low-resolution “capacitive image”.

The size of the sensing pads affects the detectable range of the sensors and the spatial
resolution of the image. A trade-off must be made between pad size, sensitivity, noise
immunity, and coupling effects [25]. After considering these factors, pads of 5 mm× 27 mm
were chosen for the final design.

2.3. Motherboard

The Motherboard (please see Figure 3) is a four-layer PCB that connects to the Sensor
Board and communicates with the host PC. It consists of the Power Supply section, the Mi-
crocontroller (MCU) section, the Sensor section, and the female board connectors. EdgeRate
connectors from Samtec [26] allow the Sensor Board to connect to the Motherboard. The
Motherboard reads the capacitance values from the Sensor Board, processes the data, and
communicates with the host PC via the MCU’s USB-to-serial COM port.

Sensors 2023, 23, 3419 5 of 15

Sensors 2023, 23, x FOR PEER REVIEW 5 of 16

𝐶 = 𝜀 𝐴𝑑ఊ , (1)

where 𝐶 is the capacitance, 𝐴 is the overlapped area of the two “plates”, ε is the permit-
tivity of air, 𝑑 is the distance between the plates, and γ is an environmental parameter
[24].

When capacitance between the hand and the Sensor Board is measured, it results in
an array of capacitance values that can be interpreted as a low-resolution “capacitive im-
age”.

The size of the sensing pads affects the detectable range of the sensors and the spatial
resolution of the image. A trade-off must be made between pad size, sensitivity, noise
immunity, and coupling effects [25]. After considering these factors, pads of 5 𝑚𝑚 ×27 𝑚𝑚 were chosen for the final design.

2.3. Motherboard
The Motherboard (please see Figure 3) is a four-layer PCB that connects to the Sensor

Board and communicates with the host PC. It consists of the Power Supply section, the
Microcontroller (MCU) section, the Sensor section, and the female board connectors.
EdgeRate connectors from Samtec [26] allow the Sensor Board to connect to the Mother-
board. The Motherboard reads the capacitance values from the Sensor Board, processes
the data, and communicates with the host PC via the MCU’s USB-to-serial COM port.

Figure 3. Motherboard. The Power Supply section (red) provides power for the whole board. The
MCU section (blue) contains an STM32F7 Nucleo development board, which is used for data pro-
cessing and communication with the host PC. The Sensor section (green) contains FDC1004 capaci-
tance-to-digital converters and STM32G03 MCUs, which are used to collect capacitance data from
the Sensor Board and transfer it to the STM32F7. The female board connectors (yellow) are used to
connect the Sensor Board to the Motherboard.

2.3.1. Power Supply
The Power Supply section is made up of one 5 V Low Dropout (LDO) regulator, one

4.15 V buck converter, and four 3.3 V LDO regulators. It was designed based on noise and
voltage regulation requirements and extensive simulations were performed to ensure the
stability of the system. The 12 V input to the Motherboard is connected to the 5 V LDO
regulator and the buck converter. A heat sink is used with the 5 V LDO regulator to dissi-
pate heat. The buck converter is connected to the four 3.3 V LDO regulators. This two-step
conversion (12 V to 4.15 V to 3.3 V) was deemed to be a good compromise between the
safety margin of the 3.3 V LDO regulators’ operation limits and the heat generated. In
addition, the buck regulator is protected by a fuse and a Zener diode, and a ferrite bead is
used to mitigate the buck converter’s output noise. The 5 V LDO is used to power the
MCU section. The 3.3 V LDOs are used to power the Sensor section’s STM32G03 MCUs

Figure 3. Motherboard. The Power Supply section (red) provides power for the whole board.
The MCU section (blue) contains an STM32F7 Nucleo development board, which is used for data
processing and communication with the host PC. The Sensor section (green) contains FDC1004
capacitance-to-digital converters and STM32G03 MCUs, which are used to collect capacitance data
from the Sensor Board and transfer it to the STM32F7. The female board connectors (yellow) are used
to connect the Sensor Board to the Motherboard.

2.3.1. Power Supply

The Power Supply section is made up of one 5 V Low Dropout (LDO) regulator, one
4.15 V buck converter, and four 3.3 V LDO regulators. It was designed based on noise
and voltage regulation requirements and extensive simulations were performed to ensure
the stability of the system. The 12 V input to the Motherboard is connected to the 5 V
LDO regulator and the buck converter. A heat sink is used with the 5 V LDO regulator
to dissipate heat. The buck converter is connected to the four 3.3 V LDO regulators. This
two-step conversion (12 V to 4.15 V to 3.3 V) was deemed to be a good compromise between
the safety margin of the 3.3 V LDO regulators’ operation limits and the heat generated. In
addition, the buck regulator is protected by a fuse and a Zener diode, and a ferrite bead
is used to mitigate the buck converter’s output noise. The 5 V LDO is used to power the
MCU section. The 3.3 V LDOs are used to power the Sensor section’s STM32G03 MCUs
and FDC1004 converters. Each of the 3.3 V LDO regulators power half of the STM 32G03s
or half of the FDC1004s. This split was used to isolate high-frequency signals generated by
the STM32G03s internal PLL and buck converters. Figure 4 illustrates the LDO regulators
and the Motherboard’s sections they power.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 16

and FDC1004 converters. Each of the 3.3 V LDO regulators power half of the STM 32G03s
or half of the FDC1004s. This split was used to isolate high-frequency signals generated
by the STM32G03s internal PLL and buck converters. Figure 4 illustrates the LDO regula-
tors and the Motherboard’s sections they power.

Figure 4. The LDO regulators powering the Motherboard’s sections. The 5 V LDO (teal) powers the
MCU section; 3.3 V LDO 1 and 2 (yellow and white) power the Sensor section’s FDC1004 and
STM32G03 Group 1s; 3.3 V LDO 3 and 4 (green and red) power the Sensor section’s FDC1004 and
STM32G03 Group 2s.

2.3.2. MCU Section
The MCU section is made up of an STM32F7 Nucleo development board. The

STM32F7 combines the data from all the STM32G03 MCUs and sends it to the host PC.
The communication between the STM32G03s and the STM32F7 is accomplished using a
custom-designed bit-bang transmission scheme.

2.3.3. Sensor Section
The Sensor section of the system is made up of 52 FDC1004 capacitance-to-digital

converters from Texas Instruments. Each FDC1004 has four sensors, allowing the system
to have up to 208 individual capacitive sensors. The FDC1004s communicate with the sys-
tem using the I2C protocol. To manage this communication, the system uses one
STM32G03 MCU per FDC1004.

The FDC1004s are used to measure capacitance by generating an excitation signal
that is sent to the sensing pads. This signal can cause noise for nearby sensors, so a
“sweep” is performed where each FDC1004 is turned on one at a time to collect data from
its four sensor pads, then turned off. This process is repeated for each FDC1004 until all
sensors have been sampled. The paired STM32G03 then combines the data from its four
sensors to create a complete frame of data, which is sent to the MCU section. Each
FDC1004 is given 50 ms to complete its sampling and data transfer.

2.3.4. Noise Mitigation
The FDC1004 capacitance-to-digital converters have a shield trace generator, which

is used to wrap the Sensor Board’s sensing pads in an active shield to protect against en-
vironmental interference and parasitic capacitance. This shield trace is kept at the same
voltage as the excitation signal going to the sensing pads, preventing current leakage, and
maintaining sensitivity and longer sensing range. However, some parasitic capacitance is
generated between the bottom of the pad and the ground, which is addressed through
background subtraction. To further minimize interference, thin PCB traces and inter-
weaved routing are used to connect the FDC1004s to the Samtec connectors. The thin

Figure 4. The LDO regulators powering the Motherboard’s sections. The 5 V LDO (teal) powers
the MCU section; 3.3 V LDO 1 and 2 (yellow and white) power the Sensor section’s FDC1004 and
STM32G03 Group 1s; 3.3 V LDO 3 and 4 (green and red) power the Sensor section’s FDC1004 and
STM32G03 Group 2s.

Sensors 2023, 23, 3419 6 of 15

2.3.2. MCU Section

The MCU section is made up of an STM32F7 Nucleo development board. The STM32F7
combines the data from all the STM32G03 MCUs and sends it to the host PC. The communi-
cation between the STM32G03s and the STM32F7 is accomplished using a custom-designed
bit-bang transmission scheme.

2.3.3. Sensor Section

The Sensor section of the system is made up of 52 FDC1004 capacitance-to-digital
converters from Texas Instruments. Each FDC1004 has four sensors, allowing the system to
have up to 208 individual capacitive sensors. The FDC1004s communicate with the system
using the I2C protocol. To manage this communication, the system uses one STM32G03
MCU per FDC1004.

The FDC1004s are used to measure capacitance by generating an excitation signal that
is sent to the sensing pads. This signal can cause noise for nearby sensors, so a “sweep”
is performed where each FDC1004 is turned on one at a time to collect data from its four
sensor pads, then turned off. This process is repeated for each FDC1004 until all sensors
have been sampled. The paired STM32G03 then combines the data from its four sensors to
create a complete frame of data, which is sent to the MCU section. Each FDC1004 is given
50 ms to complete its sampling and data transfer.

2.3.4. Noise Mitigation

The FDC1004 capacitance-to-digital converters have a shield trace generator, which
is used to wrap the Sensor Board’s sensing pads in an active shield to protect against
environmental interference and parasitic capacitance. This shield trace is kept at the same
voltage as the excitation signal going to the sensing pads, preventing current leakage, and
maintaining sensitivity and longer sensing range. However, some parasitic capacitance
is generated between the bottom of the pad and the ground, which is addressed through
background subtraction. To further minimize interference, thin PCB traces and interweaved
routing are used to connect the FDC1004s to the Samtec connectors. The thin traces reduce
stray capacitance and Electromagnetic Interference (EMI), while the interweaved routing
maximizes isolation between the FDC1004s’ individual sensors.

2.3.5. Calibration

The data collected from the Sensor Board’s individual sensing pads vary due to their
varying distances between each FDC1004 capacitance-to-digital converter and the sensing
pad. This issue was addressed by using hardware-programmed offsets, as suggested in the
FDC1004′s datasheet [25], through a series of I2C commands. Each sensor was calibrated
until its reading reached 1.0 pF. This hardware-based calibration is supplemented by
software-based background estimation and subtraction. This involves measuring the
“empty state” or background capacitance without a hand present over the sensor pads.
After powering up the system, 50 consecutive measurements are collected and averaged
to construct the background estimate, which is then subtracted from all subsequent data
collected. During real-world use, the background estimation may drift due to various
factors. This can be mitigated through periodic recalibration, which involves taking new
baseline readings when it is known that no hand is present. Another potential method is
to compute a rolling average of all capacitance readings since powering up and use this
long-term average as the baseline. This is likely to be more effective as the time when a
hand is present is likely to be much shorter than the empty state.

2.4. Classifier

The Classifier receives data from the Motherboard and predicts what gesture is being
made. The input data is a 1× 104 vector of capacitive values. The Classifier transforms the
input data into a 1× 5 vector of gesture class-membership values. The class corresponding
to the largest value is chosen as the predicted gesture. In our work, Decision Tree, Naïve

Sensors 2023, 23, 3419 7 of 15

Bayes, Multi-layer Perceptron (MLP) neural network, and Convolutional Neural Network
(CNN) classifiers were trained, and their performance was evaluated.

2.4.1. Decision Trees

A Decision Tree classifier is a non-parametric classifier, which consists of a root node,
internal nodes, and leaf nodes [27]. We decided to evaluate a Decision Tree classifier
because it can perform multi-class classification, is easy to interpret, and is relatively fast to
train. We used the Classification and Regression Tree (CART) algorithm to implement our
Decision Tree classifier. The algorithm used can be summarized as follows: (1) calculate the
weighted average of the Gini impurity for each sensing pad’s value; (2) use the smallest
calculated value as the node; and (3) repeat for all remaining sensing pads’ values until all
sensing pads have been evaluated.

2.4.2. Naïve Bayes

A Naïve Bayes classifier is a probabilistic-based classifier, which uses Bayes’ theorem
while assuming that the features in the input data are all independent (a strong, or “naïve”
assumption) [28]. We decided to evaluate a Naïve Bayes classifier because it can perform
multi-class classification, is easy to implement, and is fast to train. We used a Gaussian
Probability Density Function (PDF) to implement our Naïve Bayes classifier. The algo-
rithm used can be summarized as (1) calculate each gesture’s proportions, sample mean,
and sample standard deviation; and (2) substitute the calculated values into the Naïve
Bayes formula.

2.4.3. Multi-Layer Perceptron Neural Network

A Multi-Layer Perceptron (MLP) classifier is a neural-network-based classifier, which
consists of densely connected layers that process 1D input data [29]. We decided to evaluate
an MLP classifier because it can perform multi-class classification, is relatively easy to train,
and can model complex, non-linear relationships. Figure 5 illustrates the MLP used in
our work. The network’s architecture was experimentally determined using a grid-search-
based approach; where, the number of layers, each layer’s type, and each layer’s attribute
were increased/changed until the validation accuracy did not improve during training by
further changes.

The MLP was trained for 100 epochs with a batch size of 16. A Sparse Categorical
Cross-Entropy loss function was used to compute the loss. A Stochastic Gradient Descent
(SGD) with a momentum optimizer was used to update the network’s weights. An initial
learning rate of 0.001 and a momentum value of 0.9 were used.

2.4.4. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a neural-network-based classifier, which
consists of convolutional layers that process 2D input data [30]. We decided to evaluate
a CNN classifier because it can perform multi-class classification and is suited to data
with a grid-like structure. Figure 6 illustrates the CNN used in our work. The network’s
architecture was experimentally determined using a grid-search-based approach; where,
the number of layers, each layer’s type, and each layer’s attribute were increased/changed
until the validation accuracy did not improve during training by further changes.

Sensors 2023, 23, 3419 8 of 15

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16

used in our work. The network’s architecture was experimentally determined using a

grid-search-based approach; where, the number of layers, each layer’s type, and each

layer’s attribute were increased/changed until the validation accuracy did not improve

during training by further changes.

Figure 5. MLP classifier’s architecture. The network consists of six layers: an input dense layer, two

dense + dropout blocks, and a dense output layer. The input layer has 104 neurons, the first hidden

layer has 100 neurons, the second layer has 50 neurons, and the output layer has 5 neurons. A drop-

out rate of 20% was used for each dropout layer. The network takes a 1 × 104 vector (x1–x104) and

produces a 1 × 5 vector (y1–y5). The network’s architecture was experimentally determined using

a grid-search-based approach.

The MLP was trained for 100 epochs with a batch size of 16. A Sparse Categorical

Cross-Entropy loss function was used to compute the loss. A Stochastic Gradient Descent

(SGD) with a momentum optimizer was used to update the network’s weights. An initial

learning rate of 0.001 and a momentum value of 0.9 were used.

2.4.4. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a neural-network-based classifier, which

consists of convolutional layers that process 2D input data [30]. We decided to evaluate a

CNN classifier because it can perform multi-class classification and is suited to data with

a grid-like structure. Figure 6 illustrates the CNN used in our work. The network’s archi-

tecture was experimentally determined using a grid-search-based approach; where, the

number of layers, each layer’s type, and each layer’s attribute were increased/changed

until the validation accuracy did not improve during training by further changes.

Figure 5. MLP classifier’s architecture. The network consists of six layers: an input dense layer,
two dense + dropout blocks, and a dense output layer. The input layer has 104 neurons, the first
hidden layer has 100 neurons, the second layer has 50 neurons, and the output layer has 5 neurons. A
dropout rate of 20% was used for each dropout layer. The network takes a 1× 104 vector (x1–x104)
and produces a 1× 5 vector (y1–y5). The network’s architecture was experimentally determined
using a grid-search-based approach.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16

Figure 6. CNN classifier’s architecture. The network has eight layers: an input convolutional layer,

two convolutional + pooling blocks, and an output dense layer. Each layer’s input and output are

specified using the “NHWC” format: (batch size, height, width, channels), where appropriate. The

network takes in a 6 × 18 × 1 matrix (x) and produces a 1 × 5 vector (y1–y5). The network’s archi-

tecture was experimentally determined using a grid-search-based approach.

The CNN was trained for 100 epochs with a batch size of 16. A Sparse Categorical

Cross-Entropy loss function was used to compute the loss. A Stochastic Gradient Descent

(SGD) with a momentum optimizer was used to update the network’s weights. An initial

learning rate of 0.001 and a momentum value of 0.9 were used.

2.5. Data Acquisition

The calibrated system was used to measure the capacitance of five test participants

as they performed five different hand gestures (see Figure 7) 200 times. This resulted in a

total of 5000 samples being collected. The variable of interest was the difference in the size

and shape of the participants’ hands. To ensure the integrity of the data, the experiments

were conducted on separate days for each participant in a controlled environment.

(a) (b) (c)

Figure 6. CNN classifier’s architecture. The network has eight layers: an input convolutional layer,
two convolutional + pooling blocks, and an output dense layer. Each layer’s input and output
are specified using the “NHWC” format: (batch size, height, width, channels), where appropriate.
The network takes in a 6× 18× 1 matrix (x) and produces a 1× 5 vector (y1–y5). The network’s
architecture was experimentally determined using a grid-search-based approach.

The CNN was trained for 100 epochs with a batch size of 16. A Sparse Categorical
Cross-Entropy loss function was used to compute the loss. A Stochastic Gradient Descent
(SGD) with a momentum optimizer was used to update the network’s weights. An initial
learning rate of 0.001 and a momentum value of 0.9 were used.

Sensors 2023, 23, 3419 9 of 15

2.5. Data Acquisition

The calibrated system was used to measure the capacitance of five test participants as
they performed five different hand gestures (see Figure 7) 200 times. This resulted in a total
of 5000 samples being collected. The variable of interest was the difference in the size and
shape of the participants’ hands. To ensure the integrity of the data, the experiments were
conducted on separate days for each participant in a controlled environment.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16

Figure 6. CNN classifier’s architecture. The network has eight layers: an input convolutional layer,

two convolutional + pooling blocks, and an output dense layer. Each layer’s input and output are

specified using the “NHWC” format: (batch size, height, width, channels), where appropriate. The

network takes in a 6 × 18 × 1 matrix (x) and produces a 1 × 5 vector (y1–y5). The network’s archi-

tecture was experimentally determined using a grid-search-based approach.

The CNN was trained for 100 epochs with a batch size of 16. A Sparse Categorical

Cross-Entropy loss function was used to compute the loss. A Stochastic Gradient Descent

(SGD) with a momentum optimizer was used to update the network’s weights. An initial

learning rate of 0.001 and a momentum value of 0.9 were used.

2.5. Data Acquisition

The calibrated system was used to measure the capacitance of five test participants

as they performed five different hand gestures (see Figure 7) 200 times. This resulted in a

total of 5000 samples being collected. The variable of interest was the difference in the size

and shape of the participants’ hands. To ensure the integrity of the data, the experiments

were conducted on separate days for each participant in a controlled environment.

(a) (b) (c)

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16

(d) (e)

Figure 7. The five hand gestures used in our work: (a) Palm, (b) Fist, (c) Middle, (d) OK, and (e)

Index.

The gestures used combine a mixture of similar gestures (Middle, OK, and Index)

and non-similar gestures (Palm and Fist) to thoroughly evaluate each classifier’s perfor-

mance. For example, one would expect a classifier to have more difficulty with the Middle,

OK, and Index gestures than with the Palm and Fist gestures. The collected data were

subsequently used to train, validate, and test various classifiers to identify the hand ges-

tures.

2.6. Training

To train the classifiers used in our work, we used a K-fold-like approach. The col-

lected samples were divided into Participants 1, 2, 3, 4, and 5 sets. Each classifier was

trained five times, each time using a different Participant set as the test data and the re-

maining sets as the training and validation sets. The training and validation sets were ran-

domly shuffled and divided up into a ratio of 80:20, where 80% of the data was used for

training and 20% was used for validation. Table 2 tabulates the combination of participant

training and validation sets, and the test set used.

Table 2. Training, validation, and test sets. Each classifier was trained five times, each time using a

different Participant set as the test data and the remaining sets as the training and validation sets.

Iteration Participant Training and Validation Sets Participant Testing Set

1 2, 3, 4, 5 1

2 1, 3, 4, 5 2

3 1, 2, 4, 5 3

4 1, 2, 3, 5 4

5 1, 2, 3, 4 5

2.7. Evaluation

To evaluate each model’s performance, accuracy, precision, recall, and the balanced

𝐹-score (𝐹1 score) were used.

Accuracy is defined as:

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 × 100 %, (2)

where 𝑇𝑃 denotes true positives, 𝑇𝑁 denotes true negatives, 𝐹𝑃 denotes false posi-

tives, and 𝐹𝑁 denotes false negatives.

Precision measures the proportion of positives that were correct. It is defined as:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 %, (3)

where 𝑇𝑃 denotes true positives, and 𝐹𝑃 denotes false positives.

Figure 7. The five hand gestures used in our work: (a) Palm, (b) Fist, (c) Middle, (d) OK, and
(e) Index.

The gestures used combine a mixture of similar gestures (Middle, OK, and Index) and
non-similar gestures (Palm and Fist) to thoroughly evaluate each classifier’s performance.
For example, one would expect a classifier to have more difficulty with the Middle, OK, and
Index gestures than with the Palm and Fist gestures. The collected data were subsequently
used to train, validate, and test various classifiers to identify the hand gestures.

2.6. Training

To train the classifiers used in our work, we used a K-fold-like approach. The collected
samples were divided into Participants 1, 2, 3, 4, and 5 sets. Each classifier was trained
five times, each time using a different Participant set as the test data and the remaining
sets as the training and validation sets. The training and validation sets were randomly
shuffled and divided up into a ratio of 80:20, where 80% of the data was used for training
and 20% was used for validation. Table 2 tabulates the combination of participant training
and validation sets, and the test set used.

Sensors 2023, 23, 3419 10 of 15

Table 2. Training, validation, and test sets. Each classifier was trained five times, each time using a
different Participant set as the test data and the remaining sets as the training and validation sets.

Iteration Participant Training and
Validation Sets Participant Testing Set

1 2, 3, 4, 5 1

2 1, 3, 4, 5 2

3 1, 2, 4, 5 3

4 1, 2, 3, 5 4

5 1, 2, 3, 4 5

2.7. Evaluation

To evaluate each model’s performance, accuracy, precision, recall, and the balanced
F-score (F1 score) were used.

Accuracy is defined as:

A =
TP + TN

TP + FP + TN + FN
× 100 %, (2)

where TP denotes true positives, TN denotes true negatives, FP denotes false positives,
and FN denotes false negatives.

Precision measures the proportion of positives that were correct. It is defined as:

P =
TP

TP + FP
× 100 %, (3)

where TP denotes true positives, and FP denotes false positives.
Recall measures the proportion of actual positives that were identified correctly. It is

defined as:
R =

TP
TP + FN

× 100 %, (4)

where TP denotes true positives, and FN denotes false negatives. The F1 score is the
harmonic average of Precision and Recall. It is defined as:

F1 = 2· P·R
P + R

× 100 %, (5)

where P denotes precision, and R denotes recall. To compute each model’s final precision,
recall, and F1 score, each class’s values were computed, and then averaged.

As discussed, each classifier was trained five times, each time using a different Partici-
pant set as the test data and the remaining sets as the training and validation sets (please
see Table 2). At each iteration the classifier was tested; afterwards, a confusion matrix was
prepared and the accuracy, precision, recall, and F1 score computed. Here, the sum of the
confusion matrices is referred to as the “combined confusion matrix”; the average of the
computed values is referred to as the “average” value.

3. Results

In this section, the results from testing the trained Decision Tree, Naïve Bayes, MLP
neural network, and CNN classifiers are presented and described.

3.1. Decision Tree

Figure 8 illustrates the combined confusion matrix for the Decision Tree model. The
average accuracy, precision, recall, and F1 score for this model were 91.18%, 77.95%, 77.96%,
and 77.85%, respectively. Considering Figure 8, it looks like the model classified the gestures
adequately, but confused the OK gesture with the Index and Middle gesture a lot.

Sensors 2023, 23, 3419 11 of 15

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16

Recall measures the proportion of actual positives that were identified correctly. It is

defined as:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 %, (4)

where 𝑇𝑃 denotes true positives, and 𝐹𝑁 denotes false negatives. The 𝐹1 score is the

harmonic average of Precision and Recall. It is defined as:

𝐹1 = 2 ⋅
𝑃 ⋅  𝑅

𝑃 + 𝑅
 × 100 %, (5)

where 𝑃 denotes precision, and 𝑅 denotes recall. To compute each model’s final preci-

sion, recall, and 𝐹1 score, each class’s values were computed, and then averaged.

As discussed, each classifier was trained five times, each time using a different Par-

ticipant set as the test data and the remaining sets as the training and validation sets

(please see Table 2). At each iteration the classifier was tested; afterwards, a confusion ma-

trix was prepared and the accuracy, precision, recall, and 𝐹1 score computed. Here, the

sum of the confusion matrices is referred to as the “combined confusion matrix”; the av-

erage of the computed values is referred to as the “average” value.

3. Results

In this section, the results from testing the trained Decision Tree, Naïve Bayes, MLP

neural network, and CNN classifiers are presented and described.

3.1. Decision Tree

Figure 8 illustrates the combined confusion matrix for the Decision Tree model. The

average accuracy, precision, recall, and 𝐹1 score for this model were 91.18%, 77.95%,

77.96%, and 77.85%, respectively. Considering Figure 8, it looks like the model classified

the gestures adequately, but confused the OK gesture with the Index and Middle gesture

a lot.

Figure 8. Combined confusion matrix for decision tree model. Rows represent actual classes; col-

umns represent predicted classes. Dark blue shading indicates a large value; light blue shading in-

dicates a small value. The average accuracy, precision, recall, and 𝐹1 score for this model were

91.18%, 77.95%, 77.96%, and 77.85%, respectively.

Figure 8. Combined confusion matrix for decision tree model. Rows represent actual classes; columns
represent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a
small value. The average accuracy, precision, recall, and F1 score for this model were 91.18%, 77.95%,
77.96%, and 77.85%, respectively.

3.2. Naïve Bayes

Figure 9 illustrates the combined confusion matrix for the Naïve Bayes model. The
average accuracy, precision, recall, and F1 score for this model were 88.34%, 73.68%, 70.86%,
and 71.78%, respectively. Considering Figure 9, it looks like the model classified the gestures
poorly, confusing the OK gesture with the Index and Middle gesture a lot.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16

3.2. Naïve Bayes

Figure 9 illustrates the combined confusion matrix for the Naïve Bayes model. The

average accuracy, precision, recall, and 𝐹1 score for this model were 88.34%, 73.68%,

70.86%, and 71.78%, respectively. Considering Figure 9, it looks like the model classified

the gestures poorly, confusing the OK gesture with the Index and Middle gesture a lot.

Figure 9. Combined confusion matrix for Naive Bayes model. Rows represent actual classes; col-

umns represent predicted classes. Dark blue shading indicates a large value; light blue shading in-

dicates a small value. The average accuracy, precision, recall, and 𝐹1 score for this model were

88.34%, 73.68%, 70.86%, and 71.78%, respectively.

3.3. Multi-Layer Perceptron (MLP)

Figure 10 illustrates the combined confusion matrix for the MLP model. The average

accuracy, precision, recall, and 𝐹1 score for this model were 96.87%, 92.25%, 92.16%, and

92.16%, respectively. Considering Figure 10, it, again, looks like the model classified the

Palm and Fist gestures accurately, but struggled to classify the OK gesture, confusing it,

again, with the Index and Middle gestures.

Figure 10. Combined confusion matrix for MLP model. Rows represent actual classes; columns rep-

resent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a

small value. The average accuracy, precision, recall, and 𝐹1 score for this model were 96.87%,

92.25%, 92.16%, and 92.16%, respectively.

Figure 9. Combined confusion matrix for Naive Bayes model. Rows represent actual classes; columns
represent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a
small value. The average accuracy, precision, recall, and F1 score for this model were 88.34%, 73.68%,
70.86%, and 71.78%, respectively.

3.3. Multi-Layer Perceptron (MLP)

Figure 10 illustrates the combined confusion matrix for the MLP model. The average
accuracy, precision, recall, and F1 score for this model were 96.87%, 92.25%, 92.16%, and
92.16%, respectively. Considering Figure 10, it, again, looks like the model classified the
Palm and Fist gestures accurately, but struggled to classify the OK gesture, confusing it,
again, with the Index and Middle gestures.

Sensors 2023, 23, 3419 12 of 15

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16

3.2. Naïve Bayes

Figure 9 illustrates the combined confusion matrix for the Naïve Bayes model. The

average accuracy, precision, recall, and 𝐹1 score for this model were 88.34%, 73.68%,

70.86%, and 71.78%, respectively. Considering Figure 9, it looks like the model classified

the gestures poorly, confusing the OK gesture with the Index and Middle gesture a lot.

Figure 9. Combined confusion matrix for Naive Bayes model. Rows represent actual classes; col-

umns represent predicted classes. Dark blue shading indicates a large value; light blue shading in-

dicates a small value. The average accuracy, precision, recall, and 𝐹1 score for this model were

88.34%, 73.68%, 70.86%, and 71.78%, respectively.

3.3. Multi-Layer Perceptron (MLP)

Figure 10 illustrates the combined confusion matrix for the MLP model. The average

accuracy, precision, recall, and 𝐹1 score for this model were 96.87%, 92.25%, 92.16%, and

92.16%, respectively. Considering Figure 10, it, again, looks like the model classified the

Palm and Fist gestures accurately, but struggled to classify the OK gesture, confusing it,

again, with the Index and Middle gestures.

Figure 10. Combined confusion matrix for MLP model. Rows represent actual classes; columns rep-

resent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a

small value. The average accuracy, precision, recall, and 𝐹1 score for this model were 96.87%,

92.25%, 92.16%, and 92.16%, respectively.

Figure 10. Combined confusion matrix for MLP model. Rows represent actual classes; columns
represent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a
small value. The average accuracy, precision, recall, and F1 score for this model were 96.87%, 92.25%,
92.16%, and 92.16%, respectively.

3.4. Convolution Neural Network (CNN)

Figure 11 illustrates the combined confusion matrix for the CNN model. The average
accuracy, precision, recall, and F1 score for this model were 95.94%, 89.75%, 89.84%, and
89.77%, respectively. Considering Figure 11, it looks like the model classified the Palm
and Fist gestures accurately, but struggled to classify the OK gesture, confusing it with the
Index and Middle gestures.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16

3.4. Convolution Neural Network (CNN)

Figure 11 illustrates the combined confusion matrix for the CNN model. The average

accuracy, precision, recall, and 𝐹1 score for this model were 95.94%, 89.75%, 89.84%, and

89.77%, respectively. Considering Figure 11, it looks like the model classified the Palm and

Fist gestures accurately, but struggled to classify the OK gesture, confusing it with the

Index and Middle gestures.

Figure 11. Combined confusion matrix for CNN model. Rows represent actual classes; columns rep-

resent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a

small value. The average accuracy, precision, recall, and 𝐹1 score for this model were 95.94%,

89.75%, 89.84%, and 89.77%, respectively.

3.5. Performance Comparison

Table 3 tabulates the average metrics achieved by each model. The MLP model per-

formed the best, achieving an average accuracy, precision, recall, and 𝐹1 score of 96.87%,

92.25%, 92.16%, and 92.16%, respectively. The Naïve Bayes model performed the worst,

achieving an average accuracy, precision, recall, and 𝐹1 score of 91.18%, 73.68%, 70.86%,

and 71.8%, respectively. The neural-network-based models (MLP and CNN) all per-

formed better than the other models (Decision Tree and Naïve Bayes). From the combined

confusion matrices, it is evident that the models classified the Palm and Fist gestures more

consistently than the Index, Middle, and OK gestures.

Table 3. Performance comparison among the classifier models used for the proposed hand gesture

recognition system. The MLP classifier is the best performing across all performance metrics.

Model Average Accuracy Average Precision Average Recall Average F1 Score

Decision Tree 91.18% 77.95% 77.96% 77.85%

Naïve Bayes 88.34% 73.68% 70.86% 71.78%

MLP 96.87% 92.25% 92.16% 92.16%

CNN 95.94% 89.75% 89.84% 89.77%

As can be seen from Table 1, our proposed system is more accurate than the recently

reported hand gesture recognition systems. While some of those works can recognize

more gestures, most of those systems are not able to identify static hand gestures. The

novel work reported by Wei et al. [18] is based on capacitive sensing and like our proposed

system, can recognize static hand gestures. Its operating Sensor–Hand distance (6–9 cm)

Figure 11. Combined confusion matrix for CNN model. Rows represent actual classes; columns
represent predicted classes. Dark blue shading indicates a large value; light blue shading indicates a
small value. The average accuracy, precision, recall, and F1 score for this model were 95.94%, 89.75%,
89.84%, and 89.77%, respectively.

Sensors 2023, 23, 3419 13 of 15

3.5. Performance Comparison

Table 3 tabulates the average metrics achieved by each model. The MLP model
performed the best, achieving an average accuracy, precision, recall, and F1 score of 96.87%,
92.25%, 92.16%, and 92.16%, respectively. The Naïve Bayes model performed the worst,
achieving an average accuracy, precision, recall, and F1 score of 91.18%, 73.68%, 70.86%,
and 71.8%, respectively. The neural-network-based models (MLP and CNN) all performed
better than the other models (Decision Tree and Naïve Bayes). From the combined confusion
matrices, it is evident that the models classified the Palm and Fist gestures more consistently
than the Index, Middle, and OK gestures.

Table 3. Performance comparison among the classifier models used for the proposed hand gesture
recognition system. The MLP classifier is the best performing across all performance metrics.

Model Average
Accuracy

Average
Precision Average Recall Average F1

Score

Decision Tree 91.18% 77.95% 77.96% 77.85%

Naïve Bayes 88.34% 73.68% 70.86% 71.78%

MLP 96.87% 92.25% 92.16% 92.16%

CNN 95.94% 89.75% 89.84% 89.77%

As can be seen from Table 1, our proposed system is more accurate than the recently
reported hand gesture recognition systems. While some of those works can recognize more
gestures, most of those systems are not able to identify static hand gestures. The novel work
reported by Wei et al. [18] is based on capacitive sensing and like our proposed system, can
recognize static hand gestures. Its operating Sensor–Hand distance (6–9 cm) is like ours
(5–8 cm). However, their system was trained and evaluated on the same group of (four)
subjects and not with “unseen” or unregistered subjects, the subjects who were not part
of the training dataset. The classification accuracy for a 50–50 train–test split is 91.6%. If
we train and test our proposed system in a similar manner, our system’s accuracy is 100%.
However, during real-world operation, a gesture recognition system needs to identify the
gestures of unregistered subjects. Therefore, our proposed system was tested with “unseen”
subjects and achieved an accuracy of 96.87%. It should be noted that Wei et al. trained
their capacitive system to recognize four static gestures, whereas our proposed system was
trained to identify five gestures. One of the strong features of the work of Wei et al. is
their system’s ability to recognize dynamic hand gestures, which is a current limitation of
our system.

4. Conclusion and Future Works

In conclusion, we successfully developed a capacitive sensing and neural-network-
based hand gesture recognition system, which recognized gestures with a best average
accuracy of 96.87%.

The proposed system was used to capture five gestures of five participants to create
a dataset of 2D gesture “capacitive images”. The dataset was then used to train Decision
Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional
Neural Network (CNN) classifiers. Each classifier was trained five times; each time,
the classifier was trained using four different participants’ gestures and tested with one
different participant’s gestures.

After training, the Naïve Bayes and Decision Tree classifiers achieved average F1 scores
of 71.78% and 77.85%, respectively, and the MLP and CNN classifiers achieved average F1
scores of 92.16% and 89.77%, respectively. Our results show that the neural-network-based
classifiers outperformed the other classifiers, and that the MLP classifier outperformed all
the other classifiers.

Sensors 2023, 23, 3419 14 of 15

It is interesting that the MLP classifier outperformed the CNN classifier. In general,
a CNN is expected to outperform an MLP. This is because CNNs are designed to process
spatial data, e.g., images, by exploiting the data’s structure. We reason that due to the
6× 18 resolution of the data captured, the CNNs pooling layers may have reduced the
data’s dimensionality too much, removing important features.

We observed that all classifiers were able to differentiate between non-similar gestures
(Palm and Fist) relatively easily; however, they were less able to differentiate between
similar gestures (Middle, OK, and Index), with OK having the largest confusion observed,
on average. We reason this was due to the Sensor Board’s sensing pads’ physical size and
layout, limiting the spatial resolution of the collected data, which, in turn, made it harder
for the classifiers to differentiate between similar gestures.

In the future, we plan to capture gestures from more users, use more gestures, use more
non-similar gestures, capture left- and right-hand gestures, and investigate the amended
dataset’s effects on the system’s performance; capture dynamic gestures and investigate the
system’s performance when using a Recurrent Neural Network (RNN) to classify gestures;
use alternative capacitive sensing modes, e.g., shunt mode, and investigate the system’s
performance; and implement a Field-Programmable Gate Array (FPGA)-based design to
optimize our system’s performance.

Author Contributions: Conceptualization, F.A.; methodology, F.N., M.X. and F.A.; software, M.X.;
validation, M.X.; formal analysis, F.N., M.X. and F.A.; investigation, M.X.; resources, F.N. and F.A.;
data curation, M.X.; writing—original draft preparation, F.N., M.X. and F.A.; writing—review and
editing, F.N. and F.A.; visualization, F.N.; supervision, F.N. and F.A.; project administration, F.A.;
funding acquisition, F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Yasen, M.; Jusoh, S. A systematic review on hand gesture recognition techniques, challenges and applications. PeerJ Comput. Sci.

2019, 5, e218. [CrossRef] [PubMed]
2. Pramudita, A.A. Contactless hand gesture sensor based on array of CW radar for human to machine interface. IEEE Sens. J. 2021,

21, 15196–15208. [CrossRef]
3. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A

wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.
[CrossRef]

4. Yu, L.; Abuella, H.; Islam, M.; O’Hara, J.; Crick, C.; Ekin, S. Gesture recognition using reflected visible and infrared lightwave
signals. IEEE Trans. Hum. Mach. Syst. 2021, 51, 44–55. [CrossRef]

5. Caeiro-Rodríguez, M.; Otero-González, I.; Mikic-Fonte, F.; Llamas-Nistal, M. A systematic review of commercial smart gloves:
Current status and applications. Sensors 2021, 21, 2667. [CrossRef]

6. Zhang, Y.; Harrison, C. Tomo: Wearable, low-cost electrical impedance tomography for hand gesture recognition. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 8–11 November 2015;
pp. 167–173.

7. Oudah, M.; Al-Naji, A.; Chahl, J. Hand gesture recognition based on computer vision: A review of techniques. J. Imaging 2020, 6,
73. [CrossRef]

8. Alam, F.; Faulkner, N.; Parr, B. Device-free localization: A review of non-RF techniques for unobtrusive indoor positioning. IEEE
Internet Things J. 2020, 8, 4228–4249. [CrossRef]

9. Singh, G.; Nelson, A.; Lu, S.; Robucci, R.; Patel, C.; Banerjee, N. Event-driven low-power gesture recognition using differential
capacitance. IEEE Sens. J. 2016, 16, 4955–4967. [CrossRef]

http://doi.org/10.7717/peerj-cs.218
http://www.ncbi.nlm.nih.gov/pubmed/33816871
http://doi.org/10.1109/JSEN.2021.3073263
http://doi.org/10.1038/s41928-020-00510-8
http://doi.org/10.1109/THMS.2020.3043302
http://doi.org/10.3390/s21082667
http://doi.org/10.3390/jimaging6080073
http://doi.org/10.1109/JIOT.2020.3030174
http://doi.org/10.1109/JSEN.2016.2530805

Sensors 2023, 23, 3419 15 of 15

10. Duan, H.; Huang, M.; Yang, Y.; Hao, J.; Chen, L. Ambient light-based hand gesture recognition enabled by recurrent neural
network. IEEE Access 2020, 8, 7303–7312. [CrossRef]

11. Ma, D.; Lan, G.; Hu, C.; Hassan, M.; Hu, W.; Mushfika, U.; Uddin, A.; Youssef, M. Recognizing Hand Gestures using Solar Cells.
In IEEE Transactions on Mobile Computing; IEEE: Piscataway, NJ, USA, 2022.

12. Sorescu, C.; Meena, Y.; Sahoo, D.R. PViMat: A Self-Powered Portable and Rollable Large Area Gestural Interface Using Indoor
Light. In Proceedings of the Adjunct Publication of the 33rd Annual ACM Symposium on User Interface Software and Technology,
Online, 20–23 October 2020; pp. 80–83.

13. Tian, Z.; Wang, J.; Yang, X.; Zhou, M. WiCatch: A Wi-Fi based hand gesture recognition system. IEEE Access 2018, 6, 16911–16923.
[CrossRef]

14. Abdelnasser, H.; Youssef, M.; Harras, K.A. Wigest: A ubiquitous wifi-based gesture recognition system. In Proceedings of the
2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 1472–1480.

15. Kim, Y.; Toomajian, B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network. IEEE Access
2016, 4, 7125–7130. [CrossRef]

16. Skaria, S.; Al-Hourani, A.; Lech, M.; Evans, R.J. Hand-gesture recognition using two-antenna Doppler radar with deep convolu-
tional neural networks. IEEE Sens. J. 2019, 19, 3041–3048. [CrossRef]

17. Lien, J.; Gillian, N. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. (TOG) 2016, 35, 1–19.
[CrossRef]

18. Wei, H.; Li, P.; Tang, K.; Wang, W.; Chen, X. Alternating Electric Field-Based Static Gesture-Recognition Technology. Sensors 2019,
19, 2375. [CrossRef]

19. Pinto, R.F.; Borges, C.; Almeida, A.; Paula, I.C. Static hand gesture recognition based on convolutional neural networks. J. Electr.
Comput. Eng. 2019, 2019, 4167890. [CrossRef]

20. Grosse-Puppendahl, T.; Holz, C.; Cohn, G.; Wimmer, R.; Bechtold, O.; Hodges, S.; Reynolds, M.S.; Smith, J.R. Finding common
ground: A survey of capacitive sensing in human-computer interaction. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3293–3315.

21. Faulkner, N.; Parr, B.; Alam, F.; Legg, M.; Demidenko, S. CapLoc: Capacitive sensing floor for device-free localization and fall
detection. IEEE Access 2020, 8, 187353–187364. [CrossRef]

22. Shi, Q.; Zhang, Z.; Yang, Y.; Shan, X.; Salam, B.; Lee, C. Artificial intelligence of things (AIoT) enabled floor monitoring system for
smart home applications. ACS Nano 2021, 15, 18312–18326. [CrossRef]

23. Tang, X.; Mandal, S. Indoor occupancy awareness and localization using passive electric field sensing. IEEE Trans. Instrum. Meas.
2019, 68, 4535–4549. [CrossRef]

24. Wimmer, R.; Kranz, M.; Boring, S.; Schmidt, A. A Capacitive Sensing Toolkit for Pervasive Activity Detection and Recognition. In
Proceedings of the Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’07),
White Plains, NY, USA, 19–23 March 2007. [CrossRef]

25. Texas Instruments Capacitive Sensing: Ins and Outs of Active Shielding; Texas Instrument: Dallas, TX, USA, 2015.
26. Samtec ERF8-060-05.0-L-DV-K-TR; Samtec: New Albany, IN, USA, 2021.
27. Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends

2021, 2, 20–28. [CrossRef]
28. Rish, I. An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; IBM:

New, York, NY, USA, 2001; Volume 3, pp. 41–46.
29. Alnuaim, A.A.; Zakariah, M.; Shukla, P.K.; Alhadlaq, A.; Hatamleh, W.A.; Tarazi, H.; Sureshbabu, R.; Ratna, R. Human-Computer

Interaction for Recognizing Speech Emotions Using Multilayer Perceptron Classifier. J. Healthc. Eng. 2022, 2022, e6005446.
[CrossRef] [PubMed]

30. Gadekallu, T.R.; Alazab, M.; Kaluri, R.; Maddikunta, P.K.R.; Bhattacharya, S.; Lakshmanna, K. Hand gesture classification using a
novel CNN-crow search algorithm. Complex Intell. Syst. 2021, 7, 1855–1868. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2019.2963440
http://doi.org/10.1109/ACCESS.2018.2814575
http://doi.org/10.1109/ACCESS.2016.2617282
http://doi.org/10.1109/JSEN.2019.2892073
http://doi.org/10.1145/2897824.2925953
http://doi.org/10.3390/s19102375
http://doi.org/10.1155/2019/4167890
http://doi.org/10.1109/ACCESS.2020.3029971
http://doi.org/10.1021/acsnano.1c07579
http://doi.org/10.1109/TIM.2018.2890319
http://doi.org/10.1109/PERCOM.2007.1
http://doi.org/10.38094/jastt20165
http://doi.org/10.1155/2022/6005446
http://www.ncbi.nlm.nih.gov/pubmed/35388315
http://doi.org/10.1007/s40747-021-00324-x

	Introduction
	Materials and Methods
	System Overview
	Sensor Board
	Motherboard
	Power Supply
	MCU Section
	Sensor Section
	Noise Mitigation
	Calibration

	Classifier
	Decision Trees
	Naïve Bayes
	Multi-Layer Perceptron Neural Network
	Convolutional Neural Network

	Data Acquisition
	Training
	Evaluation

	Results
	Decision Tree
	Naïve Bayes
	Multi-Layer Perceptron (MLP)
	Convolution Neural Network (CNN)
	Performance Comparison

	Conclusion and Future Works
	References

