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Abstract: Recently, transformer architectures have shown superior performance compared to their
CNN counterparts in many computer vision tasks. The self-attention mechanism enables transformer
networks to connect visual dependencies over short as well as long distances, thus generating a
large, sometimes even a global receptive field. In this paper, we propose our Parallel Local-Global
Vision Transformer (PLG-ViT), a general backbone model that fuses local window self-attention
with global self-attention. By merging these local and global features, short- and long-range spatial
interactions can be effectively and efficiently represented without the need for costly computational
operations such as shifted windows. In a comprehensive evaluation, we demonstrate that our PLG-
ViT outperforms CNN-based as well as state-of-the-art transformer-based architectures in image
classification and in complex downstream tasks such as object detection, instance segmentation, and
semantic segmentation. In particular, our PLG-ViT models outperformed similarly sized networks
like ConvNeXt and Swin Transformer, achieving Top-1 accuracy values of 83.4%, 84.0%, and 84.5%
on ImageNet-1K with 27M, 52M, and 91M parameters, respectively.

Keywords: transformer; self-attention; image classification; object detection; semantic segmentation

1. Introduction

In the last decade, deep convolutional neural networks (CNNs) [1–3] have emerged
as one of the standards in computer vision. A critical point in the development of new
architectures has always been the receptive field, i.e., the area of the input on which the out-
put values depend. Various methods, such as dilated [4,5] or deformable convolutions [6],
attempt to enlarge the receptive field while maintaining complexity and weights. However,
in most cases the field remains limited to (semi-)local areas. Recently, Dosovitskiy et al. [7]
introduced the first Vision Transformer (ViT), adapting the concept of self-attention [8]
to achieve a global receptive field processing non-overlapping image patches. This atten-
tion mechanism allows the modeling of dependencies over long spatial distances and has
led to transformers surpassing CNNs [1,2,9] in various vision tasks [7,10,11], especially
image classification.

Inspired by ViT, several transformer architectures [12–16] have been introduced to
further improve the accuracy and efficiency for various tasks. In general, these architectures
can be divided into local and global approaches. On the one hand, global approaches
(e.g., Pyramid Vision Transformer (PVT) [13]) usually retain the global receptive field of
ViT, but decrease the resolution of the key and value feature maps to reduce complexity.
However, the complexity of these models is often still quadratic to the resolution of the
input image, leading to challenges for high-resolution images. On the other hand, local
approaches (e.g., Swin Transformer [12]) use non-overlapping windows, slowly increasing
the receptive field by window shifting to describe interactions between different stages. As a
result, the ability of the self-attention to capture long-range information is limited. Recently,
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approaches to combine global as well as local receptive fields have been presented [15–18],
usually with added architectural complexity and computational costs.

Thus, we propose our novel hierarchical Parallel Local-Global Vision Transformer
(PLG-ViT), a general-purpose backbone that has a local as well as global receptive field be-
ginning from its first stage, but without adding architectural complexity or computational
costs. We achieve this with our efficient local-global self-attention mechanism with multiple
receptive fields at each stage for the parallel processing of fine-grained local as well as
coarse-grained global features. Furthermore, we present a light-weighted patch-sampling
technique to generate representative global tokens of a fixed window-size and a novel
convolution-based feed-forward network (CCF-FFN) for an extra inductive bias during the
forward-path for each self-attention operation. Finally, a comprehensive evaluation is pre-
sented on various computer vision benchmarks to demonstrate the superior performance
of our PLG-ViT (see Figure 1).
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Figure 1. Comparison of PLG-ViT in terms of accuracy and efficiency with state-of-the-art meth-
ods [12,13,15–17,19,20] on the benchmarks ImageNet [21] and COCO [22]. Each method is represented
by a circle whose diameter is proportional to the number of parameters. Our PLG-ViT outperforms
comparable methods in terms of accuracy with similar numbers of FLOPs and parameters on both
benchmarks. (a) Classification on ImageNet [21]. (b) Object Detection on COCO [22].

2. Related Works

Transformers were first introduced in natural language processing for machine trans-
lation [8] and quickly displaced LSTMs as the state-of-the-art method in this area. The
main reason for this is the multihead self-attention mechanism, which flexibly models the
relationship of individual input tokens, even over long distances.

In the field of computer vision, transformers were first presented by Vision Transformer
(ViT) [7], directly applying transformer-encoders [8] on non-overlapping image patches
for classification. Further, ViT achieves an impressive trade-off in speed and accuracy
for the task of image classification when compared to classic convolutional networks
(CNNs) [1–3]. In contrast to CNNs, ViT has a global receptive field, which can be used
to capture long-range spatial image dependencies and is also free of an inductive bias.
However, the major drawbacks of ViT are the need for large-scale datasets (e.g., JFT-
300M [23]), the computational quadratic complexity, and the slow convergence during
training. To overcome most of these drawbacks, DeIT [14] introduced different strategies for
data-efficient training, making it possible to effectively train ViT on smaller datasets such
as ImageNet-1K [21]. Further extensions [24–28] of ViT were also presented to improve the
classification accuracy.

The mentioned methods work well for image classification, but are less suitable as
general-purpose backbones for dense downstream tasks. This can be attributed to the
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lack of downsampling and the generation of single-resolution feature maps. In dense
tasks such as object detection, multi-scale feature pyramids [29] are utilized to accomplish
scale-invariant recognition of objects and to achieve state-of-the-art results. In addition,
the high computational cost of the self-attention technique for high-resolution images
is a significant challenge due to the quadratic increase in complexity with image size.
To overcome these issues and make transformers suitable for downstream tasks, several
methods [12,13,15,16,19,30] adapt the pyramid structures of CNNs [1,3]. Pyramid Vision
Transformer (PVT) [13] and Swin Transformer [12] were the first approaches in which
transformer-based hierarchical architectures were utilized for dense computer vision tasks.
PVT retains the global receptive field of the original ViT, but decreases the resolution of the
key and value matrices to reduce the model complexity. PVTv2 [19] further improves accu-
racy and efficiency compared to the original PVT by adding a convolutional feed-forward
network, linear attention, and overlapping patch embedding. For both, the complexity is
still quadratic to the resolution of the image. In comparison, Swin Transformer introduces
non-overlapping window partitions and performs self-attention for each local window.
This results in a linear complexity to the number of input tokens. For communication be-
tween each window, Swin performs window shifting for the subsequent transformer-layers.
Initially, these designs support only local receptive fields within the attention. Similar
to a CNN, the resulting effective receptive field enlarges with every transformer layer,
eventually encompassing the entire image, but limiting the ability of self-attention to grasp
long-range dependencies. Furthermore, the window shifting is not optimized for use on
GPUs and proves to be memory-inefficient [16].

In addition to methods that use global [7,13,14] or local [12,31,32] receptive fields,
there are also first methods [15–18] that target a combination of both. For example, Focal
Transformer [15] introduces focal self-attention to incorporate fine-grained local and coarse-
grained global interactions. However, this is only achieved with a very complex architecture
in conjunction with a high computing effort. Another approach is DAT [18], which uses
a complex network-in-network structure to determine the key and value pair depending
on the data in the way of deformable convolutional networks [6]. Multi-Path ViT [20]
embeds features of the same size with patches of different scales by using overlapping
patch embedding. Then, tokens of different scales are fed into the transformer encoders
via multiple paths. The resulting features are concatenated and connect fine and coarse
feature representations at the same feature level. Global Context ViT [17] generates the
global receptive field via alternating global and local query tokens. This means that each
layer can capture either exclusively local or exclusively global features.

In our approach, we implement the parallel generation of local and global features
within each layer. These features are combined in a learned manner by the feed-forward
part of the PLG-ViT block, removing the need for complex fusion of these features. Our
method allows the extraction of local information in a global context through the network,
while efficiently generating global as well as local receptive fields. This keeps the complexity
of the model manageable when using high-resolution images for sophisticated downstream
tasks such as object detection.

3. PLG-ViT Architecture

The hierarchical framework of the proposed PLG-ViT for obtaining multi-scale features
is presented in Figure 2. The structure of the proposed method follows the model of
established convolutional networks (CNNs) [1–3] and transformers [12,13,16,33]. We reduce
the spatial resolution of the input and in return increase the depth of the features during
propagation through the network. Furthermore, our work focuses on the parallel extraction
of global and local features, which are subsequently fused together by our convolutional
feed-forward network. Due to the different receptive fields, a wide variety of semantic and
representative features are extracted for further processing.
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Figure 2. Architecture of our PLG-ViT. Overlapping patches are generated by a CNN stem followed
by 3 stages of our parallel local-global self-attention blocks. In the last stage, only local features are ex-
tracted. Between the individual stages, convolutional downsampling generates overlapping patches.

To obtain features with different spatial resolutions, we divide the model into five
stages, with the last four stages consisting of transformer layers. At the first stage, over-
lapping patches of a given input-image with the resolution z ∈ RH×W×3 are generated
from a CNN stem inspired by GC ViT [17]. This CNN stem with a total stride of s = 4
projects the patches into a C-dimensional embedding space, generating the input of the
first transformer-stage with a shape of z ∈ R H

4 ×W
4 ×C. This transformer stage consists of

N1× proposed PLG blocks as shown in Figure 3a, which extract and merge local as well as
global features in parallel. After each transformer stage, the spatial resolution of the output
features is reduced and the channel size is increased by a factor of 2. Transformer stages 2
and 3 have an identical layout to stage 1. The final stage 4 performs only local self-attention
due to the low spatial resolution of the features at this stage.
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(a) PLG-ViT Block (b) Parallel Local-Global Self-attention
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Figure 3. Model architecture of our PLG-SA block. The PLG-ViT block consists of the parallel
local-global self-attention and the convolutional feed-forward network (CCF-FFN). The parallelism
of window self-attention and global self-attention enables efficient as well as effective recognition of
fine-grained local in addition to coarse-grained global features and interactions in the image.

3.1. Parallel Local-Global Self-Attention

As mentioned earlier, PLG blocks for parallel local-global self-attention (PLG-SA) are
the core element of our model and are presented in Figure 3a. The structure was inspired
by the original transformer-encoder block [7,8], but we replaced standard multihead self-
attention with a parallel local-global self-attention operation. This allows the global analysis
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of the image complemented by a local view. Furthermore, our CCF feed-forward network
(CCF-FFN) replaces the linear MLP of the original transformer for further improvements in
accuracy (see Section 4.4). Before self-attention and CCF-FFN, layer normalization [34] is
performed. The i-th PLG block can be described by

z∗i = PLG-SA(LN(zi−1)) + zi−1,

zi = CCF-FFN(LN(z∗i )) + z∗i ,
(1)

where LN refers to layer normalization.
For efficient processing of local and global features, we perform parallel local and

global self-attention (PLG-SA) as shown in Figure 3b. For this purpose, we assume that
the input features of the PLG-SA have the shape z ∈ RH×W×C, where H and W indicate
the spatial dimension of the features and C refers to the feature depth. In the first step
of PLG-SA, we split the input z along the feature depth and generate the local features
zl ∈ RH×W× C

2 and the global features zg ∈ RH×W× C
2 . By splitting the feature maps, the

number of calculations is decreased, which reduces the model complexity in terms of FLOPs
and parameters. In contrast to well-known approaches such as PVT [13], our self-attention
mechanism has a linear complexity to the image resolution instead of a quadratic one. More
details about the complexity in terms of image size can be found in Section 4.5.

To create windows with a spatially limited receptive field for fine-grained features, we
follow the window partitioning strategy of Swin Transformer [12]. This allows us to apply
multihead self-attention to the local feature maps zl (see Figure 3c). For global self-attention,
we first perform the patch-sampling operation illustrated in Figure 4. Patch-sampling
performs adaptive max- and average-pooling to the global features zg and reduces the

spatial resolution to z∗g ∈ RHgw×Wgw× C
2 , where (Hgw, Wgw) refers to the global window-size.

Due to the combination of average- and max-pooling, which is inspired by attention blocks
such as CBAM [35], we are able to extract a rich feature description of each image region.
In effect, a single window with a global receptive field is created, to which multihead
self-attention is subsequently applied. The self-attention for local and global self-attention
are computed as

Attention(q, k, v) = Softmax(
qkT
√

d
+ b)v, (2)

where q, k, v are query, key, and value matrices; d is a scaling factor; and b is a trainable
relative position bias term [36,37]. As shown in Section 4.4, a relative position bias b
improves the accuracy, especially for downstream tasks such as object detection. After
applying self-attention to z∗g, a bilinear interpolation is performed to recover the original
spatial resolution of zg. Finally, the local zl and global zg features are concatenated again
to z∗ ∈ RH×W×C. Due to the fusion of local and global features, we are able to generate
representative and highly semantic feature maps for later usage in different sparse and
dense downstream tasks.

AvgPool MaxPool

Figure 4. Patch-sampling to generate global windows. Patch-sampling consists of max- and average-
pooling, which are added together at the end.
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3.2. Additional Blocks

Inspired by MixFFN [11], we implement a convolution-based feed-forward network
(FFN) that combines fully connected and convolutional layers. As shown in Section 4.4,
an FFN with an inductive bias of convolutional layers enables the transformer to encode
position and local information, further improving accuracy. Our CCF-FFN consists of a
1× 1 point-wise convolution (PWConv) to expand the dimensions of the input zin by the
ratio of α = 4 followed by a 3× 3 depth-wise convolution (DWConv). Finally, summation
is performed with the inputs immediately after applying a last fully-connected layer (FC)
to the features. The complete CCF-FFN is formulated as

z∗ = GeLU(LN(PWConv(zin))),

z∗ = GeLU(LN(DWConv3×3(z∗))),

zout = FC(z∗) + zin,

(3)

where LN refers to layer normalization and GeLU refers to Gaussian error linear units [38].
For downsampling we use a modified version of Fused-MBConv [17,39]. The complete
downsampling can be described by

z∗ = SE(GeLU(DWConv3×3(zin))),

zout = LN(SConv3×3(PWConv(z∗) + zin)),
(4)

where LN, GeLU, and SE denote layer normalization, Gaussian error linear units, and a
squeeze and excitation block [40]. SConv3×3 refers to a 3× 3 convolutional layer with a
stride of 2. For CNN-Stem, we add an additional strided 3× 3 convolutional layer in front
of the complete downsampling operation.

3.3. Architecture Variants

In this paper, we consider three network configurations: PLG-ViT Tiny, Small, and
Base; these are similar to related methods [1,12,13,33]. The Tiny and Small versions are only
0.25× and 0.5× the size and computational complexity of PLG-ViT Base, respectively. We
set the local and global window sizes to 7 and 14 by default. A more detailed analysis
of the impact of the global window size can be found in Section 4.4. The dimension d of
each head is 32 for Base and Tiny, and 24 channels for PLG-ViT Small. The expansion ratio
of CCF-FFN is α = 4 for all experiments. The other hyperparameters of the three model
variants are

• Tiny: C = 64, layer numbers = {3, 4, 16, 4}, d = 32
• Small: C = 96, layer numbers = {3, 3, 16, 3}, d = 24
• Base: C = 128, layer numbers = {3, 3, 16, 3}, d = 32,

where C is the channel number of the hidden layers in the first transformer-stage, which
doubles for each subsequent stage.

4. Evaluation

In the following evaluation, we demonstrate the usability of our network in gen-
eral computer vision tasks. Therefore, we perform comprehensive experiments on the
benchmarks ImageNet-1K [21] for image classification, COCO [22] for object detection and
instance segmentation, and ADE20K [41] for semantic segmentation. Domains such as
autonomous driving [42,43] and medical technology [44,45] are some of the most important
areas for the application of computer vision tasks. For this reason we also investigate
the effectiveness of our network in these domains using the two datasets BDD100K [46]
and AGAR [45]. In the following, a comparison of our method with the state-of-the-art is
conducted. Then, the individual network components are examined in the context of an
ablation study. Visual examples of the individual tasks and more detailed explanations of
the different training strategies are presented in Appendix C.
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4.1. Image Classification

For the task of image classification we use ImageNet-1K [21], which consists of 1.28M
images for training and 50K images for validation, including 1000 classes. The classifi-
cation task is solved by combining global average pooling of the output features of the
last transformer-stage with a subsequent linear classifier. For evaluation of the Top-1 ac-
curacy, we report the results on a single crop and use an identical configuration to Swin
Transformer [12]. To allow a fair comparison, we have only listed methods of similar size
and complexity. There are various approaches [31,47,48] that achieve significantly higher
accuracy using more parameters, more FLOPs, additional data, and pre-training strategies.
However, these methods are not considered in the following evaluation.

We report our results on ImageNet-1K validation in Table 1 after training for 300 epochs.
As can be seen, our PLG-ViT achieves significant improvements on Top-1 accuracy with a
similar number of parameters and model complexity (FLOPs). We are able to outperform
established state-of-the-art methods like Pyramid Vision Transformer (PVT) v1/v2 [13,19],
Swin Transformer [12], and Focal Transformer [15] at all three scales. Specifically, PLG-ViT
outperforms its Swin counterparts by +2.1, +0.7, and +1.0 Top-1 accuracy for Tiny, Small,
and Base model configurations, respectively. GC ViT [17] and our model are on par in terms
of Top-1 accuracy. However, we will show later that we are able to outperform GC ViT in
the tasks of object detection (see Section 4.2) and semantic segmentation (see Section 4.3).
Our PLG-ViT also surpasses SoTA-CNNs (e.g., ConvNeXt [9]). For the Tiny version of our
network, we have also listed the results for a smaller window size of 7 instead of 14. Even
in this case, our network shows competitive results. A comparison of image classification
Top-1 accuracy in terms of model complexity (i.e., FLOPs) and number of parameters is
visualized in Figure 1a.

Table 1. Comparison of Top-1 image classification accuracy on the ImageNet-1K [21] validation set.
Params refers to the number of parameters in millions and GFLOPs are calculated at a resolution of
2242. Our networks are highlighted in gray. 7 refers to a global window of size 72. All values are
taken from the official publications.

Method Params (M) GFLOPs Top-1 (%)

ResNet [1]
-50 25 4.1 76.1
-101 44 7.9 77.4
-152 60 11.6 78.3

ResNeXt [49]
-50-32x4d 25 4.3 77.6
-101-32x4d 44 8.0 78.8
-101-64x4d 84 15.6 79.6

ViT [7] -Base/16 86 17.6 77.9

DeIT [14] -Small/16 22 4.6 79.9
-Base/16 86 17.6 81.8

CrossViT [28] -Small 26 5.6 81.0
-Base 104 21.2 82.2

T2T-ViT [24]
-14 22 4.8 81.5
-19 39 8.9 81.9
-24 64 14.1 82.3

PVT [13]
-Small 24 3.8 79.8
-Medium 44 6.7 81.2
-Large 61 9.8 81.7
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Table 1. Cont.

Method Params (M) GFLOPs Top-1 (%)

PVTv2 [19]
-B2 25 4.0 82.0
-B3 45 6.9 83.2
-B4 62 10.1 83.6

DPT [50] -Small 26 4.0 81.0
-Medium 46 6.9 81.9

Twins-PCPVT [16]
-Small 24 3.8 81.2
-Base 44 6.7 82.7
-Large 61 9.8 83.1

Twins-SVT [16]
-Small 24 2.9 81.7
-Base 56 8.6 83.2
-Large 99 15.1 83.7

-0 25 4.2 81.6
-1 42 8.4 83.3CoAtNet [47]
-2 75 15.7 84.1

-Tiny 29 4.5 81.3
-Small 50 8.7 83.2Swin [12]
-Base 88 15.5 83.5

-Tiny 29 4.6 82.0
-Small 50 9.0 83.7DAT [18]
-Base 88 15.8 84.0

PoolFormer [51] -S24 21 3.6 80.3

-Tiny 29 4.5 82.1
-Small 50 8.7 83.1ConvNeXt [9]
-Base 89 15.4 83.8

-Tiny 29 4.9 82.2
-Small 51 9.1 83.5Focal [15]
-Base 90 16.0 83.8

-Tiny 23 4.3 82.7
-Small 35 6.9 83.6CSwin [52]
-Base 78 15.0 84.2

MPViT [20]
-XSmall 11 2.9 80.9
-Small 23 4.7 83.0
-Base 75 16.4 84.3

-Tiny 22 4.0 82.8
-Small 50 8.8 83.8HorNet [53]
-Base 87 15.6 84.2

-B2 27 5.0 82.8
-B3 45 9.0 83.9VAN [54]
-B4 60 12.2 84.2

-Tiny 28 4.7 83.4
-Small 51 8.5 83.9GC ViT [17]
-Base 90 14.8 84.4
-Tiny-7 27 4.0 82.9
-Tiny 27 4.3 83.4
-Small 52 8.6 84.0PLG-ViT (ours)

-Base 91 15.2 84.5

4.2. Object Detection and Instance Segmentation

For training and evaluation of object detection and instance segmentation, we utilize
mainly the COCO [22] dataset, which contains 118K training and 5K validation images of
everyday objects from 80 classes. Our pre-trained models are used as backbones for the
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typical frameworks of Faster RCNN [55] and RetinaNet [33] for pure object detection, and
Mask RCNN [56] for instance segmentation. Like most competing methods [12,16,17,33],
we follow the two standard schedules, a 1× schedule with 12 epochs and single-scale
inputs and a 3× schedule with 36 epochs and multi-scale inputs. The implementation of all
methods is based on the MMDetection Framework [57].

In Table 2 we report the results in terms of mAP for bounding boxes (APbox) and
segmentation masks (APmask) of our PLG-ViT Mask RCNN model with a 3× training
schedule and multi-scale training. It can be seen that our transformer is able to outperform
all CNN-based methods by 2.0 up to 6.2 APbox and 1.2 to 5.0 APmask. The network also
performs very well in comparison with the other vision transformers. PLG-ViT outperforms
its Swin Transformer [12] counterparts from 0.5/0.2 to 2.0/1.3 APbox/APmask at comparable
settings. Even though GC ViT-T [17] and our PLG ViT-T are on par in terms of image
classification accuracy, our model is able to outperform it by 0.3 APbox for object detection.
In terms of the accuracy of instance segmentation (APmask), our method is outperformed
by MPViT. However, a comparison of APbox in terms of model complexity (i.e., FLOPs)
and number of parameters is visualized in Figure 1b. Our method demonstrates the best
tradeoff in terms of complexity to accuracy, even compared to MPViT.

Table 2. COCO [22] instance segmentation results with Mask RCNN [56]. All models were trained
with a 3× schedule and multi-scale inputs. GFLOPs were calculated with image size (1280, 800). Our
networks are highlighted in gray. All values are taken from the official publications.

Backbone Param (M) GFLOPs APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

ResNet50 [1] 44.2 260 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S [13] 44.1 245 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T [12] 47.8 264 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T [9] 48.0 262 46.2 67.9 50.8 41.7 65.0 44.9
DAT-T [18] 48.0 272 47.1 69.2 51.6 42.4 66.1 45.5
Focal-T [15] 48.8 291 47.2 69.4 51.9 42.7 66.5 45.9
MPViT-S [20] 43.0 268 48.4 70.5 52.6 43.9 67.6 47.7
GC ViT-T [17] 48.0 291 47.9 70.1 52.8 43.2 67.0 46.7
PLG-ViT-T 46.3 250 48.2 69.5 53.0 42.9 66.9 46.1
ResNet101 [1] 63.2 336 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d [49] 62.8 340 44.0 64.4 48.0 39.2 61.4 41.9
PVT-M [13] 63.9 302 44.2 66.0 48.2 40.5 63.1 43.5
Swin-S [12] 69.1 354 48.5 70.2 53.5 43.3 67.3 46.6
DAT-S [18] 69.1 378 49.0 70.9 53.8 44.0 68.0 47.5
Focal-S [15] 71.2 401 48.8 70.5 53.6 43.8 67.7 47.2
PLG-ViT-S 71.2 335 49.0 70.2 53.8 43.5 67.2 46.5
ResNeXt101-64x4d [49] 102.0 493 44.4 64.9 48.8 39.7 61.9 42.6
PVT-L [13] 81.0 364 44.5 66.0 48.3 40.7 63.4 43.7
Swin-B [12] 107.0 496 48.5 69.8 53.2 43.4 66.8 46.9
Focal-B [15] 110.0 533 49.0 70.1 53.6 43.7 67.6 47.0
MPViT-B [20] 95.0 503 49.5 70.9 54.0 44.5 68.3 48.3
PLG-ViT-B 110.5 461 49.5 70.6 54.0 43.8 67.7 47.3

To prove the universal applicability of our network, we investigated the performance
for object detection in different domains with diverse characteristics. For this purpose,
training of our PLG-ViT Tiny as the backbone of RetinaNet [33] and Faster RCNN [55] on
the three datasets COCO [22], BDD100K [46], and AGAR [45] took place. BDD10K shows
daily road scenarios and contains 70K images for training and 10K images for validation. In
comparison, the AGAR dataset from the field of medical technology shows high-resolution
images of five different bacterial colonies that grew on a culture medium of agar plates and
contains approximately 5K training as well as 2K validation images. Single-scale training
was performed for 12 epochs with the described settings of a 1× scheduler. We compared
the performance of our model with the CNN-based ResNet50 [1] and ConvNeXt-T [9], as
well as the transformer backbones Swin-T [12] and PVTv2-b2 [19].
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The results of this domain analysis can be found in Table 3. We report the APbox for
different IoU thresholds and object sizes. It can be clearly seen that our network performs
better in the relevant metric of the AP than the comparative methods with a comparable
number of parameters and model complexity, regardless of the detector used.

Table 3. Object detection results for 3 vision benchmarks [22,45,46] from diverse domains. Compari-
son of our PLG-ViT-T with Swin-T [12], PVTv2-b2 [19], ConvNeXt-t [9], and ResNet50 [1] using Faster
RCNN [55] and RetinaNet [33]. FLOPs were calculated with image size (1280, 800). All models were
trained with a single-scale input and 1× scheduler and the best results are highlighted in bold . All
values are based on reproduced results.
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Param (M) 41.5 45.5 45.2 42.4 43.6 37.4 38.8 38.5 35.1 36.7
GFLOPs 207 209 211 184 197 239 243 245 218 231

C
O

C
O

[2
2]

AP 37.4 43.5 42.0 44.9 45.1 36.5 43.4 41.9 44.6 44.8
AP50 58.1 65.8 64.8 67.2 67.2 55.4 64.1 62.8 65.6 65.7
AP75 40.4 47.7 45.9 49.0 49.2 39.1 46.8 44.7 47.6 48.3

APS 21.2 26.8 26.1 29.2 27.8 20.4 26.9 25.4 27.4 28.0
APM 41.0 47.2 45.5 48.6 48.7 40.3 47.8 45.5 48.8 49.0
APL 48.1 56.6 55.5 58.8 59.4 48.1 56.6 55.1 58.6 58.6

B
D

D
10

0K
[4

6] AP 31.0 33.3 32.1 32.9 33.7 28.6 33.0 31.8 32.4 33.0
AP50 55.9 59.5 58.8 59.0 60.3 52.1 59.0 57.4 58.4 58.9
AP75 29.4 31.5 29.8 31.4 32.6 26.6 31.1 29.8 30.8 31.4

APS 14.7 16.1 15.2 16.1 16.4 10.6 13.9 13.1 13.9 14.2
APM 36.0 37.5 37.0 37.2 38.7 34.6 38.5 37.3 37.9 38.6
APL 50.9 55.2 53.7 54.3 54.6 49.6 55.9 55.1 55.1 55.5

A
G

A
R

[4
5]

AP 55.4 54.3 56.7 54.0 58.4 49.3 52.9 55.6 55.3 56.5
AP50 79.1 79.3 79.3 79.9 80.3 76.6 80.6 80.7 81.4 80.8
AP75 65.2 61.5 67.5 61.3 69.6 55.9 58.5 65.1 62.6 66.7

APS 2.4 3.4 2.8 3.7 4.6 8.2 11.5 12.2 13.8 13.9
APM 40.2 39.5 42.1 39.6 44.0 29.6 33.3 37.7 36.9 38.2
APL 62.3 60.7 63.1 60.5 64.4 57.8 60.6 62.7 61.6 63.9

These experiments demonstrate the efficiency of our network in terms of high reso-
lution input images. Especially in the field of medical data, as the example of the AGAR
dataset shows, low complexity and fewer parameters are a big advantage, because the
images have a particularly high resolution in order to represent even the smallest objects.
To ensure the applicability of the network even without expensive high-end GPUs, it is
important to consider the complexity in terms of FLOPs and the number of parameters in
the design of the network. In Section 4.5, we discuss the relationship between resolution
and network complexity in more detail.

4.3. Semantic Segmentation

For benchmarking our results for semantic segmentation we used the ADE20K [41]
dataset, which contains 20K images for training and 2K images for validation from
150 classes. We employed our pre-trained model as the backbone and utilized UPer-
Net [58] in MMSegmentation [59] as the framework of choice. For fair comparison, all
settings were identical to Swin [12].
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The training results after 160K iterations are reported in Table 4 for single- and multi-
scale evaluation. PLG-ViT is able to outperform Swin Transformer [12] counterparts by
1.9, 0.4, and 1.8 mIoU for Tiny, Small, and Base models, respectively. For the Tiny and
Small model sizes, we slightly lag behind competing approaches [9,17,18,20] in terms of
mIoU. However, our Base model is able to outperform most competing methods of the
same complexity by a margin up to 1.8 and 1.0 mIoU for single- and multi-scale testing,
respectively. Only MPViT [20] achieves slightly better results (+0.4 mIoU) for single-scale
testing.

Table 4. Validation results for semantic segmentation with UPerNet [58] on the ADE20K val-set [41].
GFLOPS were calculated using images of size (2048, 512). The last two columns show single- and
multi-scale (ms) evaluations of the mIoU. Our networks are highlighted in gray. All values are taken
from the official publications.

Backbone Params (M) GFLOPs mIoU mIoUms

Swin-T [12] 60 945 44.5 45.8
DAT-T [18] 60 957 45.5 46.4
ConvNeXt-T [9] 60 939 46.1 46.7
Twins-SVT-S [16] 54 896 46.2 47.1
Focal-T [15] 62 998 45.8 47.0
MPViT-S [20] 52 943 48.3 N/A
GC ViT-T [17] 58 947 47.0 N/A
PLG-ViT-T 56 925 46.4 47.2
Swin-S [12] 81 1038 47.6 49.5
DAT-S [18] 81 1079 48.3 49.8
ConvNeXt-S [9] 82 1027 48.6 49.6
Twins-SVT-B [16] 88 1005 47.7 48.9
Focal-S [15] 85 1130 48.0 50.0
GC ViT-S [17] 84 1163 48.3 N/A
PLG-ViT-S 83 1014 48.0 48.6
Swin-B [12] 121 1188 48.1 49.7
DAT-B [18] 121 1212 49.4 50.6
ConvNeXt-B [9] 122 1170 48.7 49.9
Twins-SVT-L [16] 133 1134 48.8 50.2
Focal-B [15] 126 1354 49.0 50.0
MPViT-S [20] 105 1186 50.3 N/A
GC ViT-B [17] 125 1348 49.0 N/A
PLG-ViT-B 125 1147 49.9 50.7

4.4. Ablation Study

In this section, we ablate the most important design elements and modules of the
proposed PLG-ViT. We use ImageNet-1K [21] for image classification and COCO [22]
instance segmentation utilizing Mask RCNN [56] with a 1× scheduler and multi-scale
training. Ablation on the effectiveness of several components is reported in Table 5.

PLG-SA. First, we investigated the network performance without our novel parallel
local-global self-attention, which is described in Section 3.1. A slight decrease in accuracy
on ImageNet (−0.2 Top-1) and COCO (−0.2 APbox and −0.1 APmask) can be seen, with
an increase in computational complexity of about 15%. Due to the use of convolutional
layers within the model, a communication of all pixels can be performed even with static
non-overlapping windows during self-attention.

CCF-FFN. Then, the effect of our novel CCF-FFN (see Section 3.2) was investigated.
We observed that the inductive bias of the convolutional operations that are applied in the
feed-forward network (FFN) is crucial for the performance on ImageNet and COCO. With
the CCF-FFN we gained +0.8 Top-1 accuracy on ImageNet and +2.5 APbox/+1.2 APmask on
the COCO benchmark.
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Convolutional patch-embedding (Conv-PE). We further investigated the impact of
the convolutional and overlapping patch-embedding and downsampling (see Section 3.2).
As reported in Table 5, there is a slight decrease of −0.1 in ImageNet Top-1 accuracy.
However, a −0.5 decrease in APmask and APbox is noticeable. This indicates that convolu-
tional downsampling is important for complex downstream tasks such as detection and
segmentation.

Network Configuration. First, we picked the network parameters following the
example of Swin Transformer [12]. For example, we chose a layer depth of [2,2,6,2] and an
initial channel size of 96 for PLG-ViT Tiny. Through a series of experiments, we adjusted
the layer depth to [3,4,16,4] and the initial channel size to 64m, as described in Section 3.3.
The training results for ImageNet and COCO following the original Swin Transformer
network configuration are listed in Table 5. A slight decrease in Top-1 accuracy of −0.4 and
a broad decrease of −1.6 APbox on COCO are reported.

Table 5. Ablation study on the effectiveness of the components in PLG-ViT on the tasks of classifica-
tion, detection, and instance segmentation. Mask RCNN [56] with a 1× scheduler and ms-training
was used for evaluation on COCO [22]. w/o PLG-SA: only local window self-attention; w/o CCF-
FFN: replace CCF-FFN with linear MLP; w/o Conv-PE: remove overlapping patch-embedding and
convolutional downsampling; Swin Config: use standard config of Swin [12]; w/o rel. pos.: remove
relative position bias term; w/o ch. split: PLG-SA without previous splitting along the channels.

Modules Param (M) GFLOPs ImageNet-1K COCO
Top-1 Top-5 APbox APmask

w/o PLG-SA 28.8 4.9 83.2 96.5 46.0 41.2
w/o CCF-FFN 26.3 4.2 82.6 96.2 43.7 40.1
w/o Conv-PE 25.6 4.2 83.3 96.5 45.7 40.8
Swin Config 30.0 4.7 82.9 96.3 44.6 40.7
w/o rel. pos. 26.5 4.3 83.3 96.4 45.6 40.8
w/o ch. split 35.7 6.7 83.7 96.7 46.3 41.5

PLG-ViT 26.6 4.3 83.4 96.4 46.2 41.3

Relative position bias. Next, we investigated the necessity of the relative position
bias term [36,37] (see Section 3.1) in respect of the training results. This term encodes
the relative position of the tokens among each other. As the training results show, the
relative position bias does not have a large impact on the accuracy of our network. This
is in contrast to Swin Transformer, where the accuracy strongly depends on the position
bias. The consistent performance of our network without this term can be attributed to
the convolutional operations in patch-embedding, which already perform implicit spatial
encoding of the individual feature points. Even though the bias hardly contributes to the
classification accuracy, it has an effect on the mAP of the object detection, which drops by−0.6.

Feature-splitting. We explored the impact of splitting features along channels before
our novel parallel local-global self-attention 3.1. This is done primarily to save weights
and complexity. As can be seen in Table 5, the network has 34% more parameters and 56%
more FLOPs if the full number of channels is used for both local and global self-attention.
This additional offset in terms of network complexity cannot be justified by the achieved
accuracy values.

Global attention window. In Table 6, we present the impacts of the global window
size and the downsampling method during patch sampling for global self-attention. First,
we set the height Hgw and the width Wgw of the global-attention window to (Hgw, Wgw) ∈
M×M with M = {7, 10, 14, 18} and we report the ImageNet-1K Top-1 and Top-5 accuracy.
The results reported in Table 6 show that with increase in the global window size, the
model complexity in terms of FLOPS also increases. Furthermore, we observed a peak in
accuracy when applying a window size of 14. Considering the moderate complexity in
combination with the best Top-1 accuracy of 83.4, 14 was chosen as the general window
size. In addition to evaluating the global window size, we also trained a model without
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global self-attention. Instead, we replaced self-attention with a pyramid-pooling module
along the lines of PSPNet [60] and achieved a slightly lower accuracy (−0.3 Top-1) by using
simple pooling operations.

Table 6. Ablation study of global self-attention on ImageNet-1K [21]. In the first part, the influence
of the global window size was determined. PPM refers to the pyramid-pooling module [60], which
replaced our global self-attention in this case. In the second part, the impact of pooling on patch-
sampling was determined.

Global Window Size Experiments

Win-Size Param (M) GFLOPs Top-1 (%) Top-5 (%)

7 26.6 4.0 82.9 96.3
10 26.6 4.1 83.1 96.3
14 26.6 4.3 83.4 96.4
18 26.7 4.8 83.2 96.4

PPM 26.3 4.1 83.1 96.4

Patch Sampling Experiments

Pooling Params (M) GFLOPs Top-1 (%) Top-5 (%)

Max 26.6 4.3 83.2 96.4
Avg 26.6 4.3 83.1 96.3

Max + Avg 26.6 4.3 83.4 96.4

Patch-sampling. In addition to examining the global window size, we also investi-
gated the use of different pooling operations during patch sampling. For this purpose, we
considered simple max-pooling, average-pooling, and the sum of both. The results are also
listed in Table 6 and show that the combination of both achieves the best ImageNet Top-1
accuracy.

4.5. Computation Overhead Analysis

Figure 5 illustrates the growth rate of the overall model complexity (GFLOPs) with
increasing input size for several different models, including PLG-ViT Tiny, PVTv2-b2 [19],
PVT-S [13], MPViT-S [20], Twins-SVT-S [16], ViT-S/16 [14], ResNet50 [1], and Swin-T [12].
The figure shows that as the input size increases, the growth rate of GFLOPs for PLG-ViT
Tiny is much lower compared to PVT, Twins, and ViT, and is similar to that of ResNet50 and
Swin. In particular, the standard self-attention of ViT and PVT shows a quadratic increase
in complexity with respect to the resolution. The overall complexity of our network is
much better compared to the other methods, especially for large image sizes, as shown in
Figure 5. The runtime of our PLG-ViT depends on the network size and the hardware used.
We achieved a maximum throughput of 352/213/160 frames per second for PLG-ViT Tiny,
Small, and Base on a single NVIDIA RTX3060 GPU, respectively. These results suggest that
our PLG-ViT is able to address the high computational overhead problem that arises due to
the quadratic complexity increase of attention layers in “classical” ViT models.
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Figure 5. Complexity evaluation (GFLOPs) under different input sizes. The growth rate of GFLOPs:
ViT-S/16 [14] > PVTv2-b2 [19] > PVT-S [13] > Twins-SVT-S [16] > MPViT-S [20] > Swin-T [12] >
ResNet50 [1] > PLG-ViT-T (ours). All values are based on reproduced results.

4.6. Interpretability

We used GradCAM [61] for the visualization of the final features. It generates
heatmaps of an input image that highlight the regions of the image that are most im-
portant for the prediction. Figure 6 shows ImageNet-1K [21] val images and the final
activation of ResNet50 [1], Swin-T [12], GC ViT-T [17], and our PLG-ViT-T. The GradCAM
maps demonstrate the accurate object localization of our proposed method with the most
intricate details. In particular, if multiple objects of the same class are present in the image,
they are considered equally in the final prediction.

(a) Raw (b) ResNet50 (c) Swin-T (d) GC ViT-T (e) PLG-ViT-T

Figure 6. Visualization of the final activation with Grad-CAM [61]. (a): Input image; (b–d):
SoTA [1,12,17]; (e) our network.

5. Conclusions

In this paper, we presented our Parallel Local-Global Vision Transformer (PLG-ViT) as
a general-purpose backbone for image classification and dense downstream tasks. The core
of our network is the eponymous parallel local-global self-attention, which separately ex-
tracts both local and global features and then fuses them to generate semantic representative
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features. We developed an effective feed-forward network, our CCF-FFN, which can further
increase the effectiveness of our transformer encoder. In addition, due to the splitting of
channels for the parallel local and global multihead self-attention, significant savings can
be made in terms of the number of parameters and model complexity (e.g., FLOPs). Our
Vision Transformer achieves state-of-the-art performance on COCO [22] object detection
and ADE20K [41] semantic segmentation and outperforms most comparable networks.
Furthermore, we also demonstrated the effectiveness of our network for use in diverse
computer vision domains, such as autonomous driving [46], medical technology [45], and
everyday situations [22,41].

Author Contributions: Conceptualization, N.E. and O.W.; methodology, N.E. and O.W.; software,
N.E.; validation, N.E.; formal analysis, N.E.; investigation, N.E.; resources, N.E. and O.W.; data
curation, N.E.; writing—original draft preparation, N.E. and O.W.; writing—review and editing, N.E.,
O.W. and D.S.; visualization, N.E.; supervision, O.W. and D.S.; project administration, N.E. and O.W.;
funding acquisition, N.E. and O.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was partly funded by the Albert and Anneliese Konanz Foundation, the Fed-
eral Ministry of Education, and Research Germany in the project M2Aind-DeepLearning (13FH8I08IA),
and the German Research Foundation under grant INST874/9-1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. ImageNet data
were obtained from [21] and are available at https://www.image-net.org/index.php (accessed on 8
February 2023). COCO data were obtained from [22] and are available at https://cocodataset.org/
(accessed on 8 February 2023). ADE20k data were obtained from [41] and are available at https:
//groups.csail.mit.edu/vision/datasets/ADE20K/ (accessed on 8 February 2023). AGAR data were
obtained from [45] and are available at https://agar.neurosys.com/ (accessed on 8 February 2023).
BDD100k data were obtained from [46] and are available at https://bdd-data.berkeley.edu/ (accessed
on 8 February 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Detailed Architectures

We explained the configuration of our PLG-ViT in Section 3.3. This chapter only
serves to describe it in more detail with the help of Table A1. Similar to comparable
methods [12,13,33], we consider three network configurations. These three proposed
models are PLG-ViT Tiny, Small, and Base, as shown in Table A1. Furthermore, the Tiny and
Small versions are only 0.25× and 0.5× the size and computational complexity of PLG-ViT
Base. In the table, we list all four transformer stages and the CNN stem as stage 0, at the
beginning. With the CNN stem, we reduced the spatial dimension of the input image by a
stride of s = 4 and increased the channel size to c1 to {64, 96, 128} for Tiny, Small, and Base,
respectively. For stages 1, 2, and 3, we specify in the table the parameters for local-window
(lwsa) and global-window self-attention (gwsa). The first number in each curly bracket
indicates the window size. As can be seen, we set the local and global window sizes to
7 and 14, respectively. A more detailed analysis of the impact of the global window size
can be found in the ablation study (see Section 4.4). The second number in the brackets
refers to the number of heads. We set the dimension d of each head to 32 for Base and Tiny,
and to 24 channels for PLG-ViT Small. The expansion ratio of CCF-FFN was α = 4 for all
experiments. Furthermore, the number of repetitions of each transformer layer can be seen
behind each square bracket. Downsampling takes place after each transformer stage. The
spatial resolution is reduced by 2 and the number of features is increased by 2. The fourth
and final transformer stage is different from the first three. Here, due to the low resolution
of the features, only a local window is generated, which in the case of an input resolution

https://www.image-net.org/index.php
https://cocodataset.org/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://agar.neurosys.com/
https://bdd-data.berkeley.edu/
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of 2242 is equivalent to a global window. The choice of hyperparameters is supported by
the evaluation presented in Section 4.4.

Table A1. Model configurations for our PLG-ViT. There are three configurations introduced: PLG-ViT
Tiny, PLG-ViT Small, and PLG-ViT Base, with different model capacities.

Output
Size Layer Name PLG-ViT Tiny PLG-ViT Small PLG-ViT Base

Stage 0 56× 56 CNN-Stem stride = 4; c1 = 64 stride = 4; c1 = 96 stride = 4; c1 = 128

Stage 1 56× 56 PLG-Block
[ lwsa = {7, 1} ]

×3
[ lwsa = {7, 2} ]

×3
[ lwsa = {7, 2} ]

×3gwsa = {14, 1} gwsa = {14, 2} gwsa = {14, 2}

Stage 2 28× 28
CNN-Down stride = 2; c2 = 128 stride = 2; c2 = 192 stride = 2; c2 = 256

PLG-Block
[ lwsa = {7, 2} ]

×4
[ lwsa = {7, 4} ]

×3
[ lwsa = {7, 4} ]

×3gwsa = {14, 2} gwsa = {14, 4} gwsa = {14, 4}

Stage 3 14× 14
CNN-Down stride = 2; c3 = 256 stride = 2; c3 = 384 stride = 2; c3 = 512

PLG-Block
[ lwsa = {7, 4} ]

×16
[ lwsa = {7, 8} ]

×16
[ lwsa = {7, 8} ]

×16gwsa = {14, 4} gwsa = {14, 8} gwsa = {14, 8}

Stage 4 7× 7 CNN-Down stride = 2; c4 = 512 stride = 2; c4 = 768 stride = 2; c4 = 1024

PLG-Block [ lwsa = {7, 16} ] ×4 [ lwsa = {7, 24} ] ×3 lwsa = {7, 32} ] ×3

Appendix B. Detailed Experimental Settings

We performed comprehensive experiments on the benchmarks ImageNet-1K [21]
for image classification, COCO [22] for object detection and instance segmentation, and
ADE20K [41] for semantic segmentation. Furthermore, we also investigated the effective-
ness of our network in different application domains using the two datasets BDD100k [46]
and AGAR [45]. In the following, we explain the different training strategies in more detail.

Appendix B.1. Image Classification on ImageNet-1K

For the task of image classification (see Section 4.1) we used ImageNet-1K [21], which
consists of 1.28M images for training and 50K images for validation from 1000 classes.
The classification task is solved by a combination of global average pooling of the output
features of the last transformer stage and a subsequent linear classifier. For evaluation of
the Top-1 accuracy, we report the results for a single crop.

Our training mostly follows DeIT [14] and Swin Transformer [12]. For all models, the
input resolution of 2242 is used. During the training, we use the AdamW optimizer [62] with
a momentum of 0.9 and a total batch-size of 1024 with a basic learning rate of 1× 10−3.
For a fair comparison with most competing methods [12,14–18,52], we also train for only
300 epochs. Gradient clipping with a max norm of 1 and a weight decay of 0.05 are
used. Furthermore, we employ a cosine decay learning rate scheduler with 20 epochs of
linear warm-up to decrease the learning rate to 1× 10−7 during the 300 epochs of training.
To avoid overfitting, we mostly follow DeIT’s [14] augmentation strategy. This includes
RandAugment [63], Cutmix [64], Mixup [65], random erasing [66], and stochastic depth [67].
The degree of stochastic depth augmentation is increased for larger models, i.e., 0.2, 0.3, 0.5
for Tiny, Small, and Base, respectively. Due to the fact that the ineffectiveness has already
been demonstrated in other work [12], we omit repeated augmentation [68] and exponential
moving average (EMA) [69]. All training was performed on eight NVIDIA A100 GPUs and
required between 38 and 72 h, depending on the network size (similar to Swin Transformer).
The results can be found in Table 1.

Appendix B.2. Object Detection and Instance Segmentation

For training and evaluation of object detection and instance segmentation as described
in Section 4.2, we employ mainly the COCO [22] dataset, which contains 118K training and
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5K validation images of everyday objects from 80 classes. Our pre-trained models are used
as the backbone for the typical frameworks of Faster RCNN [55] and RetinaNet [33] for
pure object detection, and Mask RCNN [56] for instance segmentation.

Like most competing methods [12,16,17,33], we also follow the two standard schedules,
a 1× schedule with 12 and a 3× schedule with 36 training epochs. For the 1× schedule we
resize the shorter side of the image to 800 and keep the longer side to a maximum of 1333.
For the 3× schedule we perform multi-scale training and vary the shorter side between 480
and 800, and keep the longer side almost to 1333. We use AdamW [23] as the optimizer
with a total batch size of 16 and an initial learning rate of 1× 10−4 with a weight decay of
0.05. The implementation of all methods is based on the MMDetection Framework [57]. All
training was performed on four NVIDIA A100 GPUs. The results can be found in Table 2.

To investigate the network performance for object detection in different domains with
different characteristics (see Section 4.2), we trained our PLG-ViT-T as the backbone of
RetinaNet and Faster RCNN on the three dataset COCO, BDD100K [46], and AGAR [45].
The BDD100K dataset shows multiple scenarios from autonomous driving and contains
70K images for training and 10K images for validation from 10 classes. Furthermore, the
AGAR dataset from the field of medical technology was used for additional evaluation.
This dataset contains high-resolution images of five different kinds of bacteria that were
grown on a culture medium of agar plates. AGAR contains approximately 5K training and
2K validation images. In the context of this experiment, we performed single-scale training
of 12 epochs with the described settings of the 1× scheduler. Only the resolution of the
images differed. For BDD10K, we set the size of the images between 1280 and 720 and
for AGAR we limited the longest side to 1536 pixels. All training was performed on two
NVIDIA A100 GPUs. The results can be found in Table 3.

Appendix B.3. Semantic Segmentation on ADE20K

For benchmarking our results of semantic segmentation (see Section 4.3), we used
the ADE20K [41] dataset, which contains 20K images for training and 2K images for
validation from 150 classes. We employed our pre-trained model as the backbone and
utilized UPerNet [58] in MMSegmentation [59] as our framework. We trained the networks
for 160K iterations with an input size of 512× 512 and a total batch size of 16. The AdamW
optimizer was used with an initial learning rate of 6× 10−5, a weight decay of 0.01, and a
polynomial decay scheduler with a linear warmup of 1500 iterations. Further, the default
settings of MMSegmentation were used for augmentation. These are random horizontal
flipping, random rescaling within ratio range [0.5, 2.0], and random photometric distortion.
In addition, we used stochastic depth with a ratio of 0.2 for all our models. All training was
performed on two NVIDIA A100 GPUs. The results can be found in Table 4.

Appendix C. Visual Examples

In Figures A1, A3 and A4, we show some qualitative results of our PLG-ViT as the
backbone for object detection (COCO [22], BDD100K [46], and AGAR [45]) and instance
segmentation (COCO). Furthermore, we present some qualitative results (see Figure A2) of
semantic segmentation (ADE20K [41]). These results demonstrate our network’s ability to
extract powerful features for different downstream vision tasks.
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Figure A1. Examples of our PLG-ViT with Mask RCNN [56] on COCO [22].

Figure A2. Examples of our PLG-ViT with UPerNet [58] on ADE20K [41].
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Figure A3. Examples of our PLG-ViT with Faster RCNN [55] on AGAR [45].

Figure A4. Examples of our PLG-ViT with Faster RCNN [55] on BDD100K [46].
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