
Citation: Nagy, N.; Aljabri, M.;

Shaahid, A.; Ahmed, A.A.; Alnasser,

F.; Almakramy, L.; Alhadab, M.;

Alfaddagh, S. Phishing URLs

Detection Using Sequential and

Parallel ML Techniques:

Comparative Analysis. Sensors 2023,

23, 3467. https://doi.org/10.3390/

s23073467

Academic Editors: Chase Wu,

Celimuge Wu and Kihyeon Kwon

Received: 17 February 2023

Revised: 21 March 2023

Accepted: 24 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Phishing URLs Detection Using Sequential and Parallel ML
Techniques: Comparative Analysis
Naya Nagy 1, Malak Aljabri 2 , Afrah Shaahid 3,* , Amnah Albin Ahmed 3, Fatima Alnasser 3 ,
Linda Almakramy 3, Manar Alhadab 3 and Shahad Alfaddagh 3

1 SAUDI ARAMCO Cybersecurity Chair, Department of Networks and Communication, College of Computer
Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia; nmnagy@iau.edu.sa

2 Department of Computer Science, College of Computers and Information Systems, Umm Al-Qura University,
Makkah 21955, Saudi Arabia; mssjabri@uqu.edu.sa

3 SAUDI ARAMCO Cybersecurity Chair, Department of Computer Science, College of Computer Science
and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia; 2190005622@iau.edu.sa (A.A.A.); 2190003750@iau.edu.sa (F.A.);
2190004561@iau.edu.sa (L.A.); 2190001547@iau.edu.sa (M.A.); 2190002162@iau.edu.sa (S.A.)

* Correspondence: 2190009057@iau.edu.sa

Abstract: In today’s digitalized era, the world wide web services are a vital aspect of each individual’s
daily life and are accessible to the users via uniform resource locators (URLs). Cybercriminals
constantly adapt to new security technologies and use URLs to exploit vulnerabilities for illicit
benefits such as stealing users’ personal and sensitive data, which can lead to financial loss, discredit,
ransomware, or the spread of malicious infections and catastrophic cyber-attacks such as phishing
attacks. Phishing attacks are being recognized as the leading source of data breaches and the
most prevalent deceitful scam of cyber-attacks. Artificial intelligence (AI)-based techniques such as
machine learning (ML) and deep learning (DL) have proven to be infallible in detecting phishing
attacks. Nevertheless, sequential ML can be time intensive and not highly efficient in real-time
detection. It can also be incapable of handling vast amounts of data. However, utilizing parallel
computing techniques in ML can help build precise, robust, and effective models for detecting
phishing attacks with less computation time. Therefore, in this proposed study, we utilized various
multiprocessing and multithreading techniques in Python to train ML and DL models. The dataset
used comprised 54 K records for training and 12 K for testing. Five experiments were carried out,
the first one based on sequential execution followed by the next four based on parallel execution
techniques (threading using Python parallel backend, threading using Python parallel backend and
number of jobs, threading manually, and multiprocessing using Python parallel backend). Four
models, namely, random forest (RF), naïve bayes (NB), convolutional neural network (CNN), and long
short-term memory (LSTM) were deployed to carry out the experiments. Overall, the experiments
yielded excellent results and speedup. Lastly, to consolidate, a comprehensive comparative analysis
was performed.

Keywords: parallel processing; cyber-attacks; phishing attacks; machine learning; deep learning

1. Introduction

Due to rapidly developing technology, the internet has become a crucial part of our
daily lives. In response to the surge in internet applications, several recent attempts have
been made to break into computer systems, networks, and devices. Nevertheless, users
are observing a rise in the diversity of vulnerabilities and cyber-attack risks. Phishing
is one of the possible attacks. Phishing is widely recognized as a leading source of data
breaches and the most prevalent deceitful scam of cyber-attacks performed by cybercrim-
inals [1]. According to reports, 611,877 unique phishing sites were detected worldwide

Sensors 2023, 23, 3467. https://doi.org/10.3390/s23073467 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073467
https://doi.org/10.3390/s23073467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9255-6094
https://orcid.org/0000-0002-2427-6015
https://orcid.org/0009-0001-1571-7050
https://orcid.org/0009-0007-6874-5745
https://doi.org/10.3390/s23073467
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073467?type=check_update&version=1

Sensors 2023, 23, 3467 2 of 17

from the third quarter of 2013 to the first quarter of 2021 [2]. Phishing attacks have be-
come a significant hazard where the attacker impersonates a trusted entity and sends a
fraudulent (spoofed, fake, or otherwise deceptive) message to steal sensitive and valuable
data, cause financial loss, cause reputational damage, install ransomware, or deploy other
malware infections [3,4]. The spam emails and messages used as weapons contain uni-
form resource locator (URL) links, which then host uninvited content that directs users to
fraudulent websites.

Due to the wide range of techniques used by phishers to carry out attacks and go
beyond the current anti-phishing tools, researchers find it very challenging to detect and
combat phishing assaults. To detect and nullify the phishing cyber threat, numerous anti-
phishing solutions and techniques are constantly being explored and applied, including
blacklists, whitelists, pattern-matching filters, visual similarity, and rules. [3].

Moreover, intelligent techniques such as ML and DL are rapidly gaining popularity in
the cybersecurity domain and being extensively applied since the previous decade. These
techniques owe their success to their capability to learn from available data and thereby
extract valuable insights and accurately predict future cases [5–9]. Subsequently, ML can
be used to predict whether the websites are phishing or legitimate, including zero-hour
websites [10]. An attack that exploits a previously unidentified vulnerability in a computer
application that developers have not had the opportunity to address, and patch is known
as a zero-day, zero-hour, or day-zero threat. Features of the existing phishing websites are
learned and then utilized to predict new phishing features. Inspired by the mentioned suc-
cesses of ML algorithms, the overarching research question that we strive to answer is: to
what extent an ML-based model can successfully detect a phishing website? Unfortunately,
ML models require high computational complexity, which usually results in longer compu-
tation time. Traditionally, in single processor environments algorithmic bottlenecks cause
significant delays in model processing, from training to classification to distance and error
calculation and beyond. Additionally, tasks such as cross-validation or parametric search
are time intensive. As well, sequential ML computing is often inadequate for large-scale
problems, which include real-time tasks or complex simulations. This is the point when
parallel computing (PC) offers exceptional opportunities. Lately, parallel and distributed
computing has emerged in the recent advances of many noteworthy research disciplines
including ML and cybersecurity, resulting in numerous groundbreaking discoveries.

In ML models, in terms of parallelizing computations tasks, tasks without dependen-
cies can be easily parallelized. For instance, once the trained model is stored in memory,
several rows can be predicted simultaneously using k-folds cross-validation and hyperpa-
rameter tuning with grid search. Moreover, parallelizing the various tasks can occur within
each algorithm as well. For instance, in RF, its N trees can be trained simultaneously. The
repetitive task of deciding which variable to split on can be parallelized in gradient boosting
(GB). However, parallelizing may not be easy for some algorithms, such as derivative-based
iterative algorithms, stochastic gradient descent (SGD), or optimization. In DL models,
one can think of multiple approaches to parallelize and/or distribute computation across
multiple machines and multiple cores. The two commonly known methods to attain faster
training time include local training and distributed training. In local training, the model
and entire dataset are fitted into the memory of a single machine with several cores. In
distributed training, data parallelism or model parallelism can be implemented. Data
are dispersed across various machines in data parallelism. This can be used to speed up
training or in cases when the amount of data is too enormous to store on a single system.
Model parallelism is applied if the model is too vast to be placed into a single machine; it
can be split across numerous machines. For instance, a single layer can fit in the memory of
a single machine, and serial output connections between machines are included in forward
and backward propagation. Model parallelism is not often utilized to speed up the training
process; rather, it is employed when a model cannot fit on a single machine.

With the right data, knowledge of algorithms execution, and ambition, there is no limit
to what one can attempt with parallel processing in ML and DL. Certainly, as mentioned

Sensors 2023, 23, 3467 3 of 17

above, identifying parallelizable portions of code is the most difficult task. However,
multithreading, multiprocessing, and computing clusters can be effectively utilized to
reduce the execution/processing time of ML and DL frameworks. Therefore, to address the
issues mentioned above, we propose this study which contributes to literature as part of a
defense against phishing attack comportment by investigating the effectiveness of parallel
computing techniques in ML and DL. Four ML and DL models were used throughout the
implementation phase, namely, RF, NB, CNN, and LSTM.

The key contributions of this paper include:

• Enhancing phishing URLs detection by applying parallel processing to ML and DL
models using different multiprocessing and multithreading techniques in Python with
less computation time.

• Achieving maximum speedup without a trade-off in the performance of the imple-
mented models.

• Carrying out a comprehensive comparison of the results obtained from sequential and
parallel ML execution. As per the author’s knowledge, the proposed study is the first
study to do this in the domain of phishing attacks detection.

• Making a significant contribution to AI, cybersecurity, and parallel computing litera-
ture, especially considering the few studies which have applied parallelism in ML in
this respective domain.

This paper is structured as follows: Section 2 discusses the existing studies in the litera-
ture that utilized sequential and parallel ML techniques. Section 3 presents the methodology
followed to carry out the experiments. Section 4 puts forth the experimental setup. Section 5
showcases the results obtained. Section 6 consolidates the paper by providing a conclusion
and future directions.

2. Literature Review

Several studies have been published addressing the use of ML and DL-based tech-
niques for phishing attacks detection. This section presents the existing literature by
summarizing previous studies. The summaries are organized based on the sequential and
parallel implementation.

Most of the studies we reviewed implemented sequential ML algorithms to detect
phishing attacks. Firstly, Mausam et al. [11] examined popular ML algorithms’ ability to
identify phishing URLs. The dataset was obtained from Kaggle, and the authors imple-
mented a Python program to extract the URLs’ most predictive features of phishing. Further,
ten features were extracted from the URLs and fed into three ML algorithms, namely, k-
nearest neighbor (KNN), RF, and extreme gradient boost (XGBoost). After training and
testing, the evaluation showed the best performance by RF with an accuracy of 96.759%.

Simultaneously, Dutta [12] proposed recurrent neural network–long short-term mem-
ory (RNN-LSTM) model to detect legitimate and malicious websites. A dataset of 13,
700 URLs (7900: malicious; 5800: legitimate URLs) was crawled using Alexa and the Phish-
Tank datasets. This framework was developed with the help of Python 3.0 on Windows 10
environment (i7 processor). The suggested method showed the highest accuracy (97.4%)
using the Phishtank dataset in 3.45 s and an F1-score (96.4) in 4.62 s.

Using the same data sources as [12], Khan and Rana [13] presented a framework to
classify legitimate and phishing URLs based on URL heuristics and third-party based
features. The authors utilized a dataset consisting of 3000 websites (2000: phishing; le-
gitimate: 1000) collected from PhishTank and Alexa databases. For training and testing,
a 70:30 split was performed. They proposed a deep neural network (DNN) model that
showed an accuracy of 99.90% by selecting the best ten features. Limitations of this model
includes the inability to accurately classify without the third-party features. In addition,
when embedded objects are used instead of texts, the model is unable to perform the
detection of malicious phishing websites.

Salahdine et al. [14] proposed a phishing attack detection technique. The authors
collected and examined 4000 emails (2000: phishing; 2000: legitimate) targeted at the

Sensors 2023, 23, 3467 4 of 17

University of North Dakota’s email service to train, validate, and test the models. They
created a dataset of 10 relevant features, 8 of which were gathered from the email content
and the remaining from the email header, to model these attacks. Further, the dataset has
been cleaned of duplicate emails. The classifiers considered were support vector machine
(SVM), artificial neural network (ANN), and logistic regression (LR). A parametric exami-
nation was performed on each classifier, and the best findings are reported for evaluation.
According to the research findings, an ANN model can accomplish better detection with
accuracy of 94.5%.

Nonetheless, Kulkarni et al. [15] classified legitimate and phishing websites based on
the URLs. The authors applied ML and DL models such as SVM, ANN, decision tree (DT),
and naive Bayesian to extract nine features from each individual URL. A dataset consisting
of 1353 websites (548: legitimate; 702: phishing; 103: suspicious) was utilized. A 60:40
split was performed for training and testing. The pruned DT outperformed with accuracy
(91.5%), true positive rate (TPR) of 90.97%, and false positive rate (FPR) of 7.81%. The
limitations encountered in this study were the small dataset size and the usage of discrete
features, which reduced the performance of the models.

Hossain et al. [16] study explored the use of ML techniques to discriminate between
phishing and safe websites and evaluated their performance. The authors obtained a public
dataset from an online repository from Mendeley. The dataset contained 10,000 websites
(5000: phishing; 5000: legitimate) websites. Originally, the dataset consisted of 48 features,
then authors applied feature extraction methods including parallel coordinates, Pearson
and Shapiro ranking to analyze and visualize the dataset, and principal component analysis
(PCA) to reduce its dimensionality. Consequently, 27 lexical features were extracted and fed
to five ML models for training and testing, namely, KNN, SVM, DT, LR, and RF. Afterward,
their performance was evaluated using precision, recall, F1-score, and AUC. The best
performance was achieved using RF with an F1-score of 99% which indicates that both FP
and FN rates are at satisfactory levels.

Quite interestingly, Vennam et al. [17] developed an ML-based desktop application to
distinguish phishing URL attacks from real URLs using images. They acquired the dataset
using a dataset upload module. Further, several ML and DL models were used to train and
test the obtained dataset, namely, convolutional neural network-LSTM (CNN-LSTM), CNN-
BI LSTM, LR, and XGBoost. In addition, an accuracy graph module plotted the accuracy of
the techniques mentioned. The highest accuracy (92%) was achieved using XGBoost.

Additionally, Subasi et al. [18] created an intelligent framework to distinguish between
real and phishing websites. A publicly available dataset was employed from UCI ML
repository incorporating 29 URL features. Numerous classification methods were examined
both individually and ensembled in various combinations to find the best performing
detection framework. The AdaBoost with SVM classification model showed the best results
with an accuracy of 97.61%, F1-score (97.6%), and AUC (99.6%). For future work, the
authors are planning on developing some feature selection methods in the presented model
to remove the dependency on the webpage content. Moreover, they are planning on
developing a model capable of detecting phishing attacks on mobile devices.

However, some studies presented intelligent systems to detect phishing attacks as
well; Subasi et al. [19] used different ML tools, such as ANN, KNN, SVM, C4.5 DT, RF,
and rotation forest (RoF), to build an accurate system for phishing website detection using
WEKA. The authors obtained the dataset from UCI ML repository and investigated multiple
data mining algorithms to detect phishing websites and compare their performances
using classification accuracy, the area under the ROC curve (AUROC), and the F1-score.
According to the results, RF outperformed the other classification methods by getting the
highest accuracy of 97.36%. This work can be enhanced by training the classifiers in parallel,
as parallelization techniques can speed up the computational process.

Next, Aliya et al. [20] proposed an intelligent system to detect phishing websites. They
focused on implementing DL methods to improve the performance and other metrics of
the basic systems, using a CNN-LSTM model for detection instead of an RF algorithm,

Sensors 2023, 23, 3467 5 of 17

since CNN-LSTM has a huge capacity and powerful capability to generate optimal feature
representation on its own using the raw URLs as their input. The dataset used contained
4000 URLs and a 70:30 split was used for training and testing. The data are then transferred
to the CNN network to be trained. Then, analysis is conducted using LSTM. This approach
results in a 99.1% accuracy, which shows its effectiveness in practice. Moreover, it can
overcome previously observed problems.

Only a few studies implemented ML and DL models in parallel in the quest for
high performance accuracy with less computation time in the prediction of phishing
attacks. Firstly, Sameen et al. [21] have designed PhishHaven with Python version 3.5.4
on LINUX Ubuntu, which is a collective ML-based detection system that can distinguish
between phishing URLs created by humans and by artificial intelligence (AI). They utilized
a dataset of 100,000 phishing and normal URLs that contained 16 features. Then, they
applied a multi-threading strategy to run ensemble-based ML models in parallel, and the
findings demonstrated that PhishHaven outperforms the current lexical-based human-
crafted phishing URL detection systems, with an accuracy of 98%.

Next, Alzahrani [22] developed a framework to detect phishing and benign websites.
A dataset of 20,000 websites (10,000: legitimate; 10,000: phishing) from the Alexa website
and PhishTank database were stored on Amazon public cloud storage S3. The experiment
was implemented on Amazon EMR using distributed DL models and various machine
cores. Three DL models, namely, CNN, LR, and linear regression, were deployed. The
hardware *m4.4xlrage EMR (8 nodes, 64 cores) showed the least training time of 6 min for
CNN, 4 min for LR, and 2 min for linear regression. LR outperformed with the highest
accuracy (99.97%), recall (98.05%), and precision (99.74%).

In this study, Bountakas and Xenakis [23] proposed HELPED framework to detect
phishing emails using ensemble ML algorithms. A diverse dataset was combined from
multiple sources together with authors’ mailboxes. It consisted of 35,511 emails (32,051:
benign; 3460: phishing). The experiments were carried out in a virtual system using an Intel
Xeon 4114 processor running at 2.20 GHz over four cores and 12 GB of RAM (OS-Ubuntu
20.04 64-bit) located in a VMWare ESXi server. DT and KNN were selected as the best
algorithms as base learners for the ensemble models. To reduce the complexity of the
features and boost performance, the algorithms combined content- and text-based features
in separate but parallel operations. The framework showed the best performance with
soft voting ensemble learning with an accuracy (99.43%), an F1-score (99.42%), and a low
training time of 0.0313 s.

Furthermore, Tajaddodianfar [24] proposed a novel character/word-level DL approach
called Texception. It predicts whether a given URL leads to a phishing website after
receiving an input of the URL. It differs from traditional approaches since it does not
rely on manually created features. The dataset was taken from Microsoft’s anonymized
browsing telemetry. According to the authors’ intuition, more convolutional layers with
varied filter sizes, rather than more sequential layers with constant filter sizes may be
better able to capture text patterns. For this, the model included two parallel paths, one for
extracting information at the character level and the other for information at the word level.
Texception surpasses a traditional text classification method by raising the TPR by 126.7%
while maintaining an extremely low FPR of 0.01% and an accuracy of 99.43%.

Boukhalfa et al. [25] suggested an approach to analyze large network traffic data while
applying ML algorithms in parallel to detect hidden attacks with less time consumption.
The experiment was conducted in stages using a more advanced version of KDD Cup
99, an NSL-KDD dataset that collects network traffic data from a military environment
without redundancy. At each stage, the experiment’s big data cluster’s number of nodes
increased, and the processing time of the ML algorithms decreased as the cluster’s size
increased. The KNN algorithm achieved the highest accuracy value of 99.9%. For future
work, the authors are planning to implement a new intrusion detection system (IDS) using
the presented approach.

Sensors 2023, 23, 3467 6 of 17

Lastly, Rajput et al. [26] proposed a collaborative approach using parallel machines
and cluster computing for fast isolation of spam and ham emails. The cluster approach can
increase computing power by speeding up processing without adding any additional cost.
The authors solely used header-based filtering techniques to maintain the users’ privacy.
The proposed scheme involves the use of natural language processing (NLP) techniques
and ML algorithms to identify the key features of emails and classify them as either spam
or ham. The NLP components will automatically extract features from emails, such as word
frequencies, punctuation, grammar, and syntax. These features will then be used as inputs
for an ML algorithm, such as DNN or DT to classify the emails. The results of the proposed
model showed an accuracy of over 90%.

Table 1 below presents a summary and comparison of the sequential [11–20] and
parallel [21–26] reviewed studies in the existing literature for phishing attacks detection
focusing on various ML and DL techniques, dataset utilized, number and type of samples,
number of threads/processors, best-performing technique, and lastly, the highest result
obtained in terms of accuracy, respectively.

Table 1. Summary of the reviewed findings.

Ref. Dataset No. of
Samples

Type of
Samples

No. of Threads/
Processors

Best-Performing
Technique

Results
(Accuracy)

[11] Kaggle - URL - RF 96.759%

[12] Alexa, PhishTank 13,700 URL - RNN-LSTM 97.4%

[13] Alexa, PhishTank 3000 Website - DNN 99.9%

[14] Salahdine-2021 4000 Email - ANN 94.5%

[15] Kulkarni-2019 1353 Website - DT 91.5%

[16] Mendeley repository 10,000 Website - RF F1-score (99%)

[17] Vennam-2022 10,661 URL images - XGBoost 92%

[18] UCI ML repository - URL - SVM 97.61%

[19] UCI ML repository - URL - RF 97.36%

[20] Aliya-2021 4000 URL - CNN-LSTM 99.1%

[21] Alexa, PhishTank 100,000 URL - PhishHaven 98%

[22] Alexa, PhishTank 20,000 Website - LR 99.97%

[23]

Enron Email Corpus,
SpamAssasin Public

Corpus, Nazario Phishing
Corps, Bountakas-2023

35,511 Email 8 nodes,
64 cores

Soft voting
ensemble

(DT, KNN)
99.43%

[24] Microsoft anonymized
browsing telemetry 21.7M URL - Texception 99.43%

[25] NSL-KDD 125,973 Network
traffic 5 nodes KNN 99.9%

[26] Rajput-2019 9000 Email 4 nodes KNN >90%

From the reviewed literature, many observations were made, as follows: All the
included studies provided high accuracies (above 90%). However, in terms of speed
and efficiency, a common and key limitation for most of the included studies is utilizing
sequential execution of ML and DL algorithms for a large-scale problem such as phishing
attacks detection. ML and DL execution can be time intensive, and for a such complex
and sensitive problem, real-time execution is crucial. Furthermore, most studies, even
the ones that applied parallel execution, have not mentioned their experimental setup,
i.e., did not mention the number of processors, number of threads, number of cores, etc.
This limitation does not allow researchers to sense or measure the speedup and efficiency

Sensors 2023, 23, 3467 7 of 17

provided by the parallelized solutions. Lastly, compared to studies with parallel ML-based
solutions, studies with sequential ML-based solutions utilized a relatively small number
of samples ranging from (1353–13,700) samples. Hence, this indicates that sequential ML-
based solutions are incapable of handling data-intensive problems, such as discriminating
phishing from legitimate URLs, websites, or emails, where thousands or millions of access
requests need to be processed. Based on the literature reviewed, proper implementation
of parallel ML-based execution can overcome the mentioned challenges and outperforms
sequential execution as the Alzahrani [22] study achieved the highest accuracy obtained
of 99.97%, applied parallel execution of the LR algorithm. Moreover, Refs. [12,13] are
sequential studies that used the same dataset as the parallel studies [21,22]. However,
Refs. [21,22] achieved higher accuracies.

3. Methodology

This study is based on the previous work conducted by Aljabri et al. [27]. They
have employed ML and DL models, namely, RF, NB, LSTM, and CNN, to detect phishing
websites from legitimate using a publicly available dataset, named the Malicious and
Benign Webpages dataset, which was produced by Singh and Kumar [28]. The used dataset
comprised 1.2 M records for training, and 361 K records for testing, with imbalanced
class labels distribution (1.5 M: benign; 35,315: malicious). Therefore, the dataset was
under-sampled to balance the class label distribution. After under-sampling, the dataset
contained 54 K balanced records for training and 12 K for testing. Furthermore, the dataset
contained a set of 11 features of various types, such as content-based, URL lexical-based,
and network-based features. Several feature engineering and extraction experiments and
techniques were applied. Then, features were selected using correlation analysis, analysis
of variance (ANOVA), and chi-square to determine the most discriminative features for
phishing attacks detection. Eventually, 15 features were selected to train and test the
models. Evaluation of the models’ performance included accuracy, precision, recall, and
F1-score metrics.

We followed the same methodology adopted by the authors, we used the same dataset,
and after they applied the same major steps which are preprocessing, classification, and
evaluation. However, in this study, we trained the models in parallel using different multi-
processing and multithreading techniques in Python. Then, we measured the training
time taken in sequential execution and compared it with the execution time in parallel.
Moreover, the models’ performance is re-evaluated after applying the parallel techniques.
Lastly, we provided a comparative analysis of the results attained. Figure 1 illustrates a
summary of the methodological steps adopted originally in [27] that will be discussed in
depth in the following subsections.

3.1. Dataset Description

The dataset used is a public dataset called the Malicious and Benign Webpages
dataset [28], generated by Singh and Kumar in 2020. Using the Mal Crawler tool [29],
they crawled the internet to collect the dataset. Note that the size of the dataset used in this
study is one of the largest in the reviewed literature, being outcompeted by [24]. Further,
the dataset labels were verified as (good or bad) using Google’s safe browsing API. The
dataset includes 11 website features to determine if a web page is malicious or benign,
including URL, IP address, JavaScript code, obfuscated code, geographic location, top-level
domain, and HTTPS. The full description of the dataset features can be found in Table 2.
The dataset was divided into two sets, a training set and a testing set. Table 3 illustrates
a summary of number of records per class label in the dataset. As shown in the table
the dataset’s class label is highly imbalanced (1.5 M: benign; 35,315: malicious) which is
perfectly normal, considering the nature of the problem. From millions of URL accesses,
very few will be malicious.

Sensors 2023, 23, 3467 8 of 17Sensors 2023, 23, x FOR PEER REVIEW 8 of 18

Figure 1. The methodology adopted.

3.1. Dataset Description

The dataset used is a public dataset called the Malicious and Benign Webpages da-

taset [28], generated by Singh and Kumar in 2020. Using the Mal Crawler tool [29], they

crawled the internet to collect the dataset. Note that the size of the dataset used in this

study is one of the largest in the reviewed literature, being outcompeted by [24]. Further,

the dataset labels were verified as (good or bad) using Google’s safe browsing API. The

dataset includes 11 website features to determine if a web page is malicious or benign,

including URL, IP address, JavaScript code, obfuscated code, geographic location, top-

level domain, and HTTPS. The full description of the dataset features can be found in

Table 2. The dataset was divided into two sets, a training set and a testing set. Table 3

illustrates a summary of number of records per class label in the dataset. As shown in the

table the dataset’s class label is highly imbalanced (1.5M: benign; 35,315: malicious) which

is perfectly normal, considering the nature of the problem. From millions of URL accesses,

very few will be malicious.

Table 2. The features found in the dataset.

Feature Description

url Website URL

ip_add Website IP address

geo_loc The geographical location where the website is hosted

url_len Website URL length

js_len JavaScript code length present on the website

js_obf_len The obfuscated JavaScript code length present on the website

Figure 1. The methodology adopted.

Table 2. The features found in the dataset.

Feature Description

url Website URL
ip_add Website IP address
geo_loc The geographical location where the website is hosted
url_len Website URL length
js_len JavaScript code length present on the website
js_obf_len The obfuscated JavaScript code length present on the website
tld Website top-level domain
who_is WHO IS domain information is complete or not
https The website is using HTTPS protocol or not
content Raw web page content with JavaScript code
label Class label (malicious or benign)

Table 3. The distribution of class labels in the dataset.

Training Set Testing Set Total

Benign 1,172,747 353,872 1,526,619

Malicious 27,253 8062 35,315

Total 1.2M 361,934

Sensors 2023, 23, 3467 9 of 17

3.2. Pre-Processing Phase

The dataset was used after making several pre-processing stages by the researchers
in [27].

3.2.1. Under-Sampling

In the pre-processing phase, they used a randomized under-sampling technique that
is typically used to balance the class labels in a given dataset by reducing the number of the
majority class (benign), in our case to be equal to the minority class (malicious) in our case.
The dataset contained 1.2 M records for training: 1.1 M approximately of it was benign, and
only 27,253 were malicious. Therefore, it was under-sampled to be equal for each class label
(27,253: benign; 27,253: malicious) in the training dataset, thereby making the training set
equal to 54,506 records. Moreover, the 361,934 records dedicated for testing were reduced
by choosing 12 K records at random; see Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 18

tld Website top-level domain

who_is WHO IS domain information is complete or not

https The website is using HTTPS protocol or not

content Raw web page content with JavaScript code

label Class label (malicious or benign)

Table 3. The distribution of class labels in the dataset.

 Training Set Testing Set Total

Benign 1,172,747 353,872 1,526,619

Malicious 27,253 8062 35,315

Total 1.2M 361,934

3.2. Pre-Processing Phase

The dataset was used after making several pre-processing stages by the researchers

in [27].

3.2.1. Under-Sampling

In the pre-processing phase, they used a randomized under-sampling technique that

is typically used to balance the class labels in a given dataset by reducing the number of

the majority class (benign), in our case to be equal to the minority class (malicious) in our

case. The dataset contained 1.2M records for training: 1.1M approximately of it was be-

nign, and only 27,253 were malicious. Therefore, it was under-sampled to be equal for

each class label (27,253: benign; 27,253: malicious) in the training dataset, thereby making

the training set equal to 54,506 records. Moreover, the 361,934 records dedicated for test-

ing were reduced by choosing 12K records at random; see Figure 2.

Figure 2. The under-sampling technique for both training and testing sets.

3.2.2. Feature Extraction

We used the dataset with the new extracted features by [27]. They were extracted

from the existing features (lexical and content-based) in the dataset using many Python

and Scikit Learn libraries. The feature extraction process produced 39 new features that

are known to be predictive of phishing attacks. In depth feature extraction experiments

are out of this paper’s scope. Therefore, for more information refer to [27].

3.2.3. Label Encoding for Categorical Data

After extracting useful features, the categorical data in the dataset were encoded us-

ing label encoding, due to the machine’s inability to work well with categorical data, label

Figure 2. The under-sampling technique for both training and testing sets.

3.2.2. Feature Extraction

We used the dataset with the new extracted features by [27]. They were extracted
from the existing features (lexical and content-based) in the dataset using many Python
and Scikit Learn libraries. The feature extraction process produced 39 new features that are
known to be predictive of phishing attacks. In depth feature extraction experiments are out
of this paper’s scope. Therefore, for more information refer to [27].

3.2.3. Label Encoding for Categorical Data

After extracting useful features, the categorical data in the dataset were encoded
using label encoding, due to the machine’s inability to work well with categorical data,
label encoding converts categorical data into numerical form that is understandable to the
machine. Label encoding was applied into the class label (0-good, 1-bad), and similarly to
HTTPs and who_is features.

3.2.4. Feature Selection

The technique of selecting a subset of the most relevant features in the dataset to the
problem is called feature selection. Features selection helps ML and DL algorithms to learn
more efficiently and effectively since it uses less memory and reduces time complexity,
which is one of the main aims of this study. Feature selection was performed using
correlation analysis, ANOVA, and chi-square techniques. For more details, refer to [27].
The feature selection resulted in a final set of 15 feature in the dataset, as listed in Table 4.

Sensors 2023, 23, 3467 10 of 17

Table 4. Final set of features selected.

No. Features Description

1 presence_obfuscated_code Check the presence of obfuscated JavaScript code
2 js_len Length of JavaScript code present on the website
3 js_obf_len Length of the obfuscated JavaScript code present on the website
4 count_All_Functions Count of all the above 7 suspicious functions in content
5 count_find Count appearance of JavaScript find () function in content
6 count_unescape Count appearance of JavaScript unescape() function in content
7 count_escape Count appearance of JavaScript escape () function in content
8 who_is Who is domain information is complete or no
9 https Website is using HTTPS protocol
10 count_eval Count appearance of JavaScript eval () function in content
11 presence_iFrame the presence of the iFrame tag is checked in content
12 count_search Count appearance of JavaScript search () function in content
13 presence_Window.open() the presence of Window.open() function is checked in content
14 host_length Length of the hostname in URL
15 Count_- Count “-” symbols in URL

3.3. Classification Phase

We assessed four ML and DL models, including RF, NB, CNN, and LSTM, in order
to train and test the dataset for malicious URL classification. All the models were trained
both sequentially and parallelly. In sequential training, the models were trained using only
a single thread of execution whereas in parallel training, the models were trained using
multiple threads of execution. In this section, we shall further elaborate on the three primary
components of our study: sequential training, parallel training, and the evaluation phase.

3.3.1. Sequential Training

The four models—RF, NB, CNN, and LSTM—are trained sequentially in order to
obtain the performance metrics and record the execution time. The following sub-sections
briefly discuss the four models implemented.

Random Forest

RF is an ensemble approach that is mainly used for classification. It advances the
common decision tree technique by merging a bigger number of decision trees. RF pro-
vides a production based on the most voted class by all trees., i.e., each tree provides a
classification or a “vote” then the RF algorithm selects the classification with the majority of
votes amongst all trees in the forest. It is known to handle both classification and regression
problems [30].

Naïve Bayes

NB is a probabilistic model that resembles linear models and is based on the Bayesian
theorem. The impact of a feature on a class is presumed to be independent of the values of
other features by NB classifiers. The technique is made more efficient while maintaining
accuracy due to conditional independence. The model is resilient to parameter changes,
performs well on high-dimensional sparse data, and can be used as a baseline [30].

Convolutional Neural Network

CNN is a type of DL approach that interchanges weights by leveraging the local
connections between surrounding values in both image and sequence data. Convolutional
layers in 2D or 3D are widely applied to images. To work with text, however, a 1D
convolutional layer was utilized and has been shown to be quite successful, especially
when working with time-series or sequence data [31,32]. Because CNN quickly picks up
new features, there is less need for manual feature extraction. It is also possible to retrain
CNN to carry out new tasks for which it was previously trained [33].

Sensors 2023, 23, 3467 11 of 17

Long Short-Term Memory

Long-term dependencies can be learned via LSTMs, a subset of RNNs. Avoiding the
issue of long-term dependency is the main focus of the algorithm’s design. LSTMs are
structured like chains; however, the repeating module is structured differently [34].

3.3.2. Parallel Training

In the following subsections, the techniques adopted to convert the sequential ML
models, namely, RF, NB, CNN, and LSTM, to be trained in parallel are described. The main
purpose of this section is to examine, analyze, and explore the possible parallel processing
techniques in training ML models.

Threading Using Python Parallel Backend

In this technique, the library sklearn joblib must be imported to the working envi-
ronment to exploit the default parallel backend threading benefits in Python. Using the
commands import joblib and from joblib import Parallel, parallel_backend, the ML models
in the environment can be trained in parallel, which allows them to take full advantage of
the cores available in the machine, and thus speed up the training process. The models can
be trained in parallel using the line of code “with parallel_backend(‘threading’):” before
fitting the model. Keyword threading is a single-host technique that utilizes the threads to
parallelize the execution in the machine.

Threading Using Python Parallel Backend and Number of Jobs

This technique uses the same libraries and code that was mentioned above; however,
in this technique we add another argument called n_jobs, that allows having more control
over the number of working threads. For instance, n_jobs = −1 directs the machine to
utilize all the available threads, whereas n_jobs = 1 executes the program in a single thread
and so on. It can be used by typing this line “with parallel_backend(‘threading’, n_jobs=#):”
before fitting the model.

Threading Manually

In this technique, we write our own code to create multiple threads using the threading
library to fit the model simultaneously. Nevertheless, this technique is risky as it produces
race conditions over the data, especially when training with huge amounts of data.

Multi-Processing Using Python Parallel Backend

Similarly, this approach relies on Python’s parallel backend libraries and codes. How-
ever, it utilizes processes instead of threads. Mainly, there are two ways to apply this
technique, either using “multiprocessing” or “loky” keywords. Both are single-host process-
based, but multi-processing is considered as a legacy method. Therefore, loky is preferable.

3.3.3. Evaluation Phase

ML and DL classifiers can be compared in terms of various performance metrics.
Accuracy, precision, recall, and F1-score were used in this study to assess and compare the
performance of the deployed models. A four-way table with the model’s predicted and
actual classifications makes up the confusion matrix, which is used to assess the classifier’s
accuracy. Additionally, the sequential and parallel execution time was recorded in seconds
and the speedup was calculated.

(i) True positive (TP): correctly predicting benign URLs as benign.
(ii) False positive (FP): incorrectly predicting benign URLs as malicious.
(iii) True negative (TN): correctly predicting malicious URLs as malicious.
(iv) False negative (FN): incorrectly predicting malicious URLs as benign.

Accuracy is defined as the ratio of correctly predicted classes to the total number of
instances and is calculated using Equation (1) below:

Sensors 2023, 23, 3467 12 of 17

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision measures the proportion of predicted positive classes that are actually posi-
tive and is calculated using Equation (2) below:

Precision =
TP

TP + FP
(2)

Recall is the proportion of correctly predicted classes to all positive classes and is
calculated using Equation (3) below:

Recall =
TP

TP + FN
(3)

F1-score aids in simultaneously measuring recall and precision and is calculated by
Equation (4) below:

F1-score =
2 × Precision × Recall

Precision + Recall
or

TP
TP + 1/2(FP + FN)

(4)

Speedup is the ratio of sequential execution time to parallel execution time and is
calculated by Equation (5) below:

Speedup =
Sequential Execution Time

Parallel Execution Time
(5)

4. Results and Discussion
Experimental Setup

To perform the mentioned experiments, we used Python version 3.8.10 on Google
Colab notebook platform. The device used has Windows 11 Home operating system.
Moreover, the device has core i7 of the eighth generation, which means it works with four
cores and eight logical processors. The Malicious and Benign Webpages dataset was used
after under-sampling the data, which allowed us to work with 54 K balanced training
data, and 12 K testing data. Furthermore, after applying several feature engineering and
extraction techniques as discussed in [27], 15 features were selected to train and test the
models as shown in Table 4. The detailed parameters’ settings applied for all the models
used are shown in Table 5. Five experiments were conducted in total using RF, NB, CNN,
and LSTM. The first experiment was based on sequential computing already performed
by [27]. The sequential part was reimplemented to be a reference for the given hardware
and record the execution time. Followed by the next four experiments based on parallel
computing techniques which were elaborately explained in Section 3, namely, threading
using Python parallel backend, threading using Python parallel backend and number of
jobs with n_jobs = 2, threading manually with two threads, and multi-processing. The
results for each model are discussed below in Section 5.

Table 5. The parameters’ settings applied for all the classifiers.

Model Parameter Value

RF Number of trees 100

CNN

Activation function in hidden layers ReLU
Number of neurons in output layer 1
Activation function in output layer Sigmoid
Dropout 0.2, 0.5
Batch size 32
Number of layers 4
Number of neurons in hidden layers 32, 64, 64

Sensors 2023, 23, 3467 13 of 17

Table 5. Cont.

Model Parameter Value

LSTM

Activation function in hidden layers Tanh
Number of neurons in output layer 1
Activation function in output layer Sigmoid
Dropout 0.1
Batch size 32
Number of layers 3
Number of neurons in hidden layers 8, 8

5. Results

After applying the parallel techniques mentioned in the methodology section, the
accuracy, precision, recall, F1-score, execution time, and speedup were measured for each
parallel technique and sequentially. The results for the evaluation metrics were stable
and no changes were observed while performing our experiments, which shows that our
experiments did not suffer any trade-off between speed and performance. Table 6 below
illustrates a summary of the evaluation metrics results obtained for each classifier. All the
models provided satisfactory performance. However, NB was the best performing model
with an accuracy of 96.01%. Followed by RF and LSTM, and lastly, CNN. For this particular
problem, the score of the recall measure is highly significant as well. The recall score shows
us how much the model is sensitive to the negative class. In other words, how the model is
sensitive to the phishing URLs. One can argue that when an URL is classified as phishing
while it is actually legitimate is better than the model classifying the phishing URLs as
legitimate. This is exactly the type of information that recall provide us and luckily for the
models examined, namely, RF, CNN, and LSTM the recall is 100% which means although
their accuracy might not be the highest. However, the sensitivity of the model to phishing
URLs is remarkable.

Table 6. Evaluation results obtained.

RF NB CNN LSTM

Accuracy 95.14% 96.01% 95.13% 95.14%
Precision 87.28% 95.65% 87.24% 87.28%
Recall 100% 92.25% 100% 100%
F1-score 93.21% 93.92% 93.19% 93.21%

On the other hand, the execution time and speedup varied measurably between each
technique and classifier as shown in Table 7. The execution time for ML models sequentially
was reasonable as it took NB split-seconds to finish training, which is understandable given
that NB is one of the simplest ML algorithms. It works on calculating the probability of
each class only, making it one of the fastest ML learners out there. While RF took less than
2 s to finish training. However, the training time for DL models was much longer. It took
CNN around 2 min to finish training, whereas LSTM took 6 min of training approximately.
In our case, the training time is long but moderate comparatively. Training time can be
computationally consuming for the device’s CPU resources, especially in larger datasets,
more complex problems, or when using different optimization settings, such as k-fold
cross-validation and grid search. Training can take hours to days of processing and power
consumption, which is an absurd amount of time, contributing to the issue of overheating.
After applying the parallel techniques and measuring the execution time and speedup.
Many observations were noted. Interestingly, each classier responded to each technique
differently. For instance, RF achieved the best speedup using the backend threading
technique with 1.2389× (19.29%) faster training. CNN showed a similar behavior, with
2.9354× (65.93%) speedup using the same technique. Furthermore, LSTM responded very
well to the backend threading technique with number of jobs (threads) equal to 2, with a

Sensors 2023, 23, 3467 14 of 17

speedup of 3.5134× (71.54%). Lastly, multi-processing resulted in 3.222× (68.96%) speedup
for NB classifier. These results indicate that there is no general rule or technique that can
be applied to all the classifiers and guarantee the best results possible. The respond of
each classifier to each technique varies depending on the nature of those classifiers and
the technique itself. However, considering the overall performance of each technique, the
backend threading function provided by Python library gave the best results consistently.
Followed by backend threading with specifying number of jobs to equal 2, then the multi-
processing technique using “loky” keyword, and lastly the least overall speedup was
achieved by threading manually. Figure 3 demonstrates these results clearly. Actually,
the results attained are sensible. The backend threading performance is better when not
specifying the number of jobs or worker threads, because it takes the best advantage of
the threads available in the system with no restrictions to a certain number, whereas both
threading techniques are superior to the multi-processing technique due to the nature of
a process and a thread. A thread is a lightweight process, and therefore, considerably
faster. Arguably, when working with threads manually, it produced the least overall results
although it is thread-based. In this case, our code produced a race condition between
the two threads. Hence, the time taken for communication and synchronization between
threads to resolve this condition may have slowed the execution, but it still managed to
provide excellent speedup to the sequential execution.

Table 7. The experiments results summary.

Classifier

Experiments

Sequential Backend Threading Backend Threading
(n_jobs = 2) Multiprocessing Threading Manually

(2 Threads)

Execution
Time in (s)

Execution
Time in (s) Speedup Execution

Time in (s) Speedup Execution
Time in (s) Speedup Execution

Time in (s) Speedup

RF 1.8246 1.4727 1.2389 1.4848 1.2288 1.6625 1.0975 3.6941 0.4939
NB 0.0899 0.0328 2.7408 0.0357 2.5182 0.0279 3.2222 0.07198 1.2503

CNN 143.7115 48.9572 2.9354 57.4927 2.4996 82.2356 1.7475 125.6283 1.1439
LSTM 364.2227 104.2447 3.4939 103.6654 3.5134 127.1653 2.8641 142.9371 2.5481

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18

Table 7. The experiments results summary.

Classifier

Experiments

Sequential Backend Threading
Backend Threading

(n_jobs = 2)
Multiprocessing

Threading Manually

(2 Threads)

Execution

Time in (s)

Execution

Time in (s)
Speedup

Execution

Time in (s)
Speedup

Execution

Time in (s)
Speedup

Execution

Time in (s)
Speedup

RF 1.8246 1.4727 1.2389 1.4848 1.2288 1.6625 1.0975 3.6941 0.4939

NB 0.0899 0.0328 2.7408 0.0357 2.5182 0.0279 3.2222 0.07198 1.2503

CNN 143.7115 48.9572 2.9354 57.4927 2.4996 82.2356 1.7475 125.6283 1.1439

LSTM 364.2227 104.2447 3.4939 103.6654 3.5134 127.1653 2.8641 142.9371 2.5481

Figure 3. Execution time in sequential comparatively to parallel.

Nevertheless, a possible limitation for this study is that the simulation setup is solid.

However, in practical the performance might slightly vary depending on several factors

related to the hardware level of the device and processes (tasks) running on the system,

such as the load on the machine, number of cores, number of logical processors, memory

size, etc. For instance, a machine with heavy load might provide less speedup compared

to a machine with light processes running on it. Therefore, the speedup results can be

unpredictable which is a common issue in parallel processing, not only in this case. Con-

sequently, the reliability of the results cannot be ensured. However, a speedup is guaran-

teed even though it might not be significant.

6. Conclusions and Future Work

In conclusion, phishing is a deceptive cyber-attack carried out by scammers and

hackers to obtain confidential data by impersonating legitimate website. There is a dire

need and quest to combat these attacks with high performance and less computation time.

In this study, we worked on enhancing sequential phishing URLs detection and classifi-

cation by applying parallel processing to speed up the training time taken by ML and DL

models. For this purpose, we applied multiple experiments in sequential and parallel us-

ing multi-processing and multi-threading libraries in Python, firstly by training ML and

DL models sequentially, namely, RF, NB, CNN, and LSTM. Then, we evaluated the per-

formance and measured the exaction time for each model. Afterward, parallel experi-

ments using the following techniques, threading using Python parallel backend, thread-

ing using Python parallel backend and number of jobs, threading manually, and multi-

processing using Python parallel backend. The performance was evaluated again, and the

execution time and speedup were measured for each model. Furthermore, the obtained

Figure 3. Execution time in sequential comparatively to parallel.

Nevertheless, a possible limitation for this study is that the simulation setup is solid.
However, in practical the performance might slightly vary depending on several factors
related to the hardware level of the device and processes (tasks) running on the system, such
as the load on the machine, number of cores, number of logical processors, memory size, etc.
For instance, a machine with heavy load might provide less speedup compared to a machine
with light processes running on it. Therefore, the speedup results can be unpredictable

Sensors 2023, 23, 3467 15 of 17

which is a common issue in parallel processing, not only in this case. Consequently, the
reliability of the results cannot be ensured. However, a speedup is guaranteed even though
it might not be significant.

6. Conclusions and Future Work

In conclusion, phishing is a deceptive cyber-attack carried out by scammers and
hackers to obtain confidential data by impersonating legitimate website. There is a dire
need and quest to combat these attacks with high performance and less computation
time. In this study, we worked on enhancing sequential phishing URLs detection and
classification by applying parallel processing to speed up the training time taken by ML
and DL models. For this purpose, we applied multiple experiments in sequential and
parallel using multi-processing and multi-threading libraries in Python, firstly by training
ML and DL models sequentially, namely, RF, NB, CNN, and LSTM. Then, we evaluated
the performance and measured the exaction time for each model. Afterward, parallel
experiments using the following techniques, threading using Python parallel backend,
threading using Python parallel backend and number of jobs, threading manually, and
multi-processing using Python parallel backend. The performance was evaluated again,
and the execution time and speedup were measured for each model. Furthermore, the
obtained results using sequential and parallel execution were analyzed and discussed in
depth. Generally, the sequential execution time of the models was reduced significantly
using all the parallel processing techniques with a maximum speedup of 3.5134× (71.54%)
achieved for the LSTM model using Python backend threading and the number of jobs
set to 2. It is important to note that each classifier responded to each technique differently,
which is an indication that there is no such technique that can be applied to all classifiers
and guarantee the best speedup possible. However, considering the overall performance,
threading using Python parallel backend provided the best results consistently. Remarkably,
the speedup of the training time did not affect the evaluation results adversely. Hence, there
was no trade-off between performance and speed of execution. The NB model achieved the
highest accuracy of 96.01%. However, RF, CNN, and LSTM achieved a recall of 100%. This
work results contribute to both the fields of cybersecurity and parallel processing, giving
the dearth of research conducted in applying parallel processing to ML solutions. For future
work, more research can be conducted to investigate the impact of parallel processing on
larger datasets and the usage of graphical processing units (GPUs) on other ML and DL
algorithms to speed training time.

Author Contributions: Conceptualization, N.N., M.A. (Malak Aljabri), A.S., A.A.A., F.A., L.A., M.A.
(Manar Alhadab) and S.A.; methodology, N.N., M.A. (Malak Aljabri), A.S., A.A.A., F.A., L.A., M.A.
(Manar Alhadab) and S.A.; formal analysis, A.S., A.A.A., F.A., L.A., M.A. (Manar Alhadab) and
S.A.; resources, N.N., M.A. (Malak Aljabri), A.S., A.A.A., F.A., L.A., M.A. (Manar Alhadab) and
S.A.; data curation, N.N., M.A. (Malak Aljabri), A.S., A.A.A., F.A., L.A., M.A. (Manar Alhadab) and
S.A.; writing—original draft preparation, A.S., A.A.A., F.A., L.A., M.A. (Manar Alhadab) and S.A.;
visualization, N.N., M.A. (Malak Aljabri), A.S., A.A.A., F.A., L.A., M.A. (Manar Alhadab) and S.A.;
supervision, N.N. and M.A. (Malak Aljabri); project administration N.N. and M.A. (Malak Aljabri).
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by SAUDI ARAMCO Cybersecurity Chair at Imam Abdulrahman
Bin Faisal University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is available on request from the authors.

Conflicts of Interest: The authors declare there is no conflict of interest.

Sensors 2023, 23, 3467 16 of 17

References
1. Aljofey, A.; Jiang, Q.; Rasool, A.; Chen, H.; Liu, W.; Qu, Q.; Wang, Y. An effective detection approach for phishing websites using

URL and HTML features. Sci. Rep. 2022, 12, 8842. [CrossRef] [PubMed]
2. Number of Global Phishing Sites 2021|Statista. Available online: https://www.statista.com/statistics/266155/number-of-

phishing-domain-names-worldwide/ (accessed on 19 December 2022).
3. Aljabri, M.; Mirza, S. Phishing Attacks Detection using Machine Learning and Deep Learning Models. In Proceedings of the

2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 1–3
March 2022. [CrossRef]

4. Aljabri, M.; Altamimi, H.S.; Albelali, S.A.; Al-Harbi, M.; Alhuraib, H.T.; Alotaibi, N.K.; Alahmadi, A.A.; Alhaidari, F.; Mohammad,
R.M.A.; Salah, K. Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access
2022, 10, 121395–121417. [CrossRef]

5. Aljabri, M.; Zagrouba, R.; Shaahid, A.; Alnasser, F.; Saleh, A.; Alomari, D.M. Machine learning-based social media bot detection:
A comprehensive literature review. Soc. Netw. Anal. Min. 2023, 13, 20. [CrossRef]

6. Alzahrani, R.A.; Aljabri, M. AI-Based Techniques for Ad Click Fraud Detection and Prevention: Review and Research Directions.
J. Sens. Actuator Networks 2022, 12, 4. [CrossRef]

7. Aljabri, M.; Aldossary, M.; Al-Homeed, N.; Alhetelah, B.; Althubiany, M.; Alotaibi, O.; Alsaqer, S. Testing and Exploiting Tools
to Improve OWASP Top Ten Security Vulnerabilities Detection. In Proceedings of the 2022 14th International Conference on
Computational Intelligence and Communication Networks (CICN), Al-Khobar, Saudi Arabia, 4–6 December 2022. [CrossRef]

8. Aljabri, M.; Aljameel, S.S.; Mohammad, R.M.A.; Almotiri, S.H.; Mirza, S.; Anis, F.M.; Aboulnour, M.; Alomari, D.M.; Alhamed,
D.H.; Altamimi, H.S. Intelligent Techniques for Detecting Network Attacks: Review and Research Directions. Sensors 2021,
21, 7070. [CrossRef]

9. Aljabri, M.; Alahmadi, A.A.; Mohammad, R.M.A.; Aboulnour, M.; Alomari, D.M.; Almotiri, S.H. Classification of Firewall Log
Data Using Multiclass Machine Learning Models. Electronics 2022, 11, 1851. [CrossRef]

10. Mahajan, R.; Siddavatam, I. Phishing Website Detection using Machine Learning Algorithms. Int. J. Comput. Appl. 2018, 181,
45–47. [CrossRef]

11. Mausam, G.; Siddhant, K.; Soham, S.; Naveen, V. Detection of Phishing Websites Using Machine Learning Algorithms. Int. J. Sci.
Res. Eng. Dev. 2022, 5, 548–553.

12. Dutta, A.K. Detecting phishing websites using machine learning technique. PLoS ONE 2021, 16, e0258361. [CrossRef]
13. Salahdine, F.; El Mrabet, Z.; Kaabouch, N. Phishing Attacks Detection A Machine Learning-Based Approach. In Proceedings of

the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York,
NY, USA, 1–4 December 2021. [CrossRef]

14. Khana, M.F.; Rana, B.L. Detection of Phishing Websites Using Deep Learning Techniques. 2021, 12, 3880–3892. Turk. J. Comput.
Math. Educ. 2021, 12, 3880–3892. [CrossRef]

15. Kulkarni, A.; Brown, L.L., III. Phishing Websites Detection using Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2019,
10, 0100702. [CrossRef]

16. Hossain, S.; Sarma, D.; Joyti, R. Machine Learning-Based Phishing Attack Detection. Int. J. Adv. Comput. Sci. Appl. 2020,
11, 0110945. [CrossRef]

17. Vennam, V.; Hafeez, R.I.A.; Sami, P. Using Machine Learning to Find Phishing Websites. J. Algebraic Stat. 2022, 13, 2373–2378.
18. Subasi, A.; Kremic, E. Comparison of Adaboost with MultiBoosting for Phishing Website Detection. Procedia Comput. Sci. 2020,

168, 272–278. [CrossRef]
19. Subasi, A.; Molah, E.; Almkallawi, F.; Chaudhery, T.J. Intelligent phishing website detection using random forest classifier. In

Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al
Khaimah, United Arab Emirates, 21–23 November 2017.

20. CH, A.; Loganathan, D. Deep Learning Approach for Phishing Attacks. Int. Res. J. Eng. Technol. (IRJET) 2021, 8, 1462–1465.
21. Sameen, M.; Han, K.; Hwang, S.O. PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System. IEEE Access 2020, 8,

83425–83443. [CrossRef]
22. Alzahrani, S.M. Phishing Attack Detection Using Deep Learning. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 213–218.
23. Bountakas, P.; Xenakis, C. HELPHED: Hybrid Ensemble Learning PHishing Email Detection. J. Netw. Comput. Appl. 2023,

210, 103545. [CrossRef]
24. Tajaddodianfar, F.; Stokes, J.W.; Gururajan, A. Texception: A Character/Word-Level Deep Learning Model for Phishing URL

Detection. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2857–2861.

25. Boukhalfa, A.; Hmina, N.; Chaoni, H. Parallel processing using big data and machine learning techniques for intrusion detection.
IAES Int. J. Artif. Intell. (IJ-AI) 2020, 9, 553–560. [CrossRef]

26. Rajput, A.S.; Athavale, V.; Mittal, S. Intelligent Model for Classification of SPAM and HAM. Int. J. Innov. Technol. Explor. Eng.
(IJITEE) 2019, 8, 773–777.

27. Aljabri, M.; Alhaidari, F.; Mohammad, R.M.A.; Mirza, U.S.; Alhamed, D.H.; Altamimi, H.S.; Chrouf, S.M.B. An Assessment
of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning
Models. Comput. Intell. Neurosci. 2022, 2022, 14. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-022-10841-5
http://www.ncbi.nlm.nih.gov/pubmed/35614133
https://www.statista.com/statistics/266155/number-of-phishing-domain-names-worldwide/
https://www.statista.com/statistics/266155/number-of-phishing-domain-names-worldwide/
http://doi.org/10.1109/cdma54072.2022.00034
http://doi.org/10.1109/ACCESS.2022.3222307
http://doi.org/10.1007/s13278-022-01020-5
http://doi.org/10.3390/jsan12010004
http://doi.org/10.1109/cicn56167.2022.10008360
http://doi.org/10.3390/s21217070
http://doi.org/10.3390/electronics11121851
http://doi.org/10.5120/ijca2018918026
http://doi.org/10.1371/journal.pone.0258361
http://doi.org/10.1109/uemcon53757.2021.9666627
http://doi.org/10.17762/turcomat.v12i10.5094
http://doi.org/10.14569/IJACSA.2019.0100702
http://doi.org/10.14569/IJACSA.2020.0110945
http://doi.org/10.1016/j.procs.2020.02.251
http://doi.org/10.1109/ACCESS.2020.2991403
http://doi.org/10.1016/j.jnca.2022.103545
http://doi.org/10.11591/ijai.v9.i3.pp553-560
http://doi.org/10.1155/2022/3241216
http://www.ncbi.nlm.nih.gov/pubmed/36059391

Sensors 2023, 23, 3467 17 of 17

28. Singh, A. Malicious and Benign Webpages Dataset. Data Brief 2020, 32, 106304. [CrossRef] [PubMed]
29. Singh, A.K.; Goyal, N. MalCrawler: A Crawler for Seeking and Crawling Malicious Websites. In Distributed Computing and

Internet Technology; Springer: Cham, Switzerland, 2016; pp. 210–223. [CrossRef]
30. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam, The

Netherlands, 2017. [CrossRef]
31. Lemons, K. A Comparison Between Naïve Bayes and Random Forest to Predict Breast Cancer. Int. J. Undergrad. Res. Creative Act.

2020, 12, 0287. [CrossRef]
32. Khan, F.; Ahamed, J.; Kadry, S.; Ramasamy, L.K. Detecting malicious URLs using binary classification through adaboost algorithm.

Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 997–1005. [CrossRef]
33. Sahu, S.; Kumar, R.; Pathan, M.S.; Shafi, J.; Kumar, Y.; Ijaz, M.F. Movie Popularity and Target Audience Prediction Using the

Content-Based Recommender System. IEEE Access 2022, 10, 42044–42060. [CrossRef]
34. Ranjithkumar, S.; Pandian, S.C. Automatic License Plate Recognition System for Vehicles Using a CNN. Comput. Mater. Contin.

2022, 71, 35–50. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.dib.2020.106304
http://www.ncbi.nlm.nih.gov/pubmed/33204771
http://doi.org/10.1007/978-3-319-50472-8_17
http://doi.org/10.1016/c2015-0-02071-8
http://doi.org/10.7710/2168-0620.0287
http://doi.org/10.11591/ijece.v10i1.pp997-1005
http://doi.org/10.1109/ACCESS.2022.3168161
http://doi.org/10.32604/cmc.2022.017681

	Introduction
	Literature Review
	Methodology
	Dataset Description
	Pre-Processing Phase
	Under-Sampling
	Feature Extraction
	Label Encoding for Categorical Data
	Feature Selection

	Classification Phase
	Sequential Training
	Parallel Training
	Evaluation Phase

	Results and Discussion
	Results
	Conclusions and Future Work
	References

