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Abstract: Physical Unclonable Functions (PUFs) are considered attractive low-cost security anchors
in the key generation scheme. The helper data algorithm is usually used to transform the fuzzy
responses extracted from PUF into a reproducible key. The generated key can be used to encrypt
secret data in traditional security schemes. In contrast, this work shows that the fuzzy responses of
both weak and strong PUFs can be used to secretly store the important data (e.g., the distributed keys)
directly by an error-tolerant algorithm, Fuzzy Vault, without the traditional encryption algorithm and
helper data scheme. The locking and unlocking methods of our proposal are designed to leverage
the feature of weak and strong PUFs relatively. For the strong PUFs, our proposal is a new train
of thought about how to leverage the advantage of strong PUFs (exponential number of challenge–
response pairs) when used in the field. The evaluation was performed on existing weak PUF and
strong PUF designs. The unlocking rate and runtime are tested under different parameters and
environments. The test results demonstrate that our proposal can reach a 100% unlocking rate by
parameter adjustment with less than 1 second of locking time and a few seconds of unlocking time.
Finally, the tradeoff between security, reliability, and overhead of the new proposal is discussed.

Keywords: Physical Unclonable Functions; error-tolerant; fuzzy pattern

1. Introduction

The Internet of Things (IoT) is pervasively distributed in our daily life. Despite the
undeniable benefits, it raises serious security and privacy concerns. The security of IoT has
drawn increasing public attention. In IoT devices, the security of traditional secret systems
relies on the secret key which is permanently stored in Non-Volatile Memory (NVM).
However, storing the secret key safely in NVM is challenging. Firstly, for some resource-
constrained IoT devices, it is not affordable to achieve the desired security level that can
countermeasure the related attacks, e.g., invasive and semi-invasive attacks. Secondly,
the secret keys need to be generated and “burned” into the devices during the production
process, which may lead to the so-called supply chain security issue [1]. Therefore, a secure
key generation solution that is deployable for resource-constrained IoT devices is required.

Physical Unclonable Functions (PUFs) leverage the unique physical feature of the
integrated circuits to do key generation and authentication which can meet the requirements
aforementioned [2]. The unique features of PUF are dependent on the nano-scale variations
of devices introduced during the manufacturing process, which is random and difficult to
be replicated. Based on the number of possible challenges, PUFs can be mainly divided into
two classes: weak PUFs and strong PUFs [3]. Weak PUFs have very few challenges or even
only one challenge in one instance. When used in the field, the challenge and response pairs
(CRPs) or CRP should be kept in secret. Weak PUFs are considered as attractive low-cost
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security anchors to mitigate some potential pitfalls in NVM-based key storage schemes. On
the contrary, strong PUFs usually have an exponential number of CRPs. The exponential
CRPs can be used in the CRPs-based identification and authentication scheme [4].

As a promising cryptographic primitive in key generation, authentication, and identifi-
cation scheme, it is extremely important that the PUFs function correctly during the lifetime
of the devices. However, most PUFs exhibit an unreliability problem due to aging and
inherent sensitivity to environmental changes. As a remedy to the reliability issue, helper
data algorithms [5] are used in practice, which can transform the unique feature of PUFs
into a reproducible high-entropy key. In the helper data algorithm, the helper data are
generated and stored in NVM during the enrollment phase. The generated helper data are
used then to correct the fuzzy response extracted from fuzzy PUFs. The privacy algorithm
(e.g., hash algorithm) is used to maximize the entropy of the key. Ref. [5] mentioned that
most work on helper data algorithms considers the “reproducibility” and “uniformly dis-
tributed” only and ignored the key requirements of “PUFs independency”, “mathematical
restrictions” and “full control”.

In the key generation scheme, the key is extracted from PUFs with the help of a helper
data algorithm. This hardware-based unique key can then be used to encrypt the important
data, e.g., the application key [6,7] by some classical encryption algorithm (e.g., AES and
DES). In this study, we show that fuzzy PUFs can be used to protect the short secret data
(e.g., the secret key) directly without the classical encryption algorithm. Compared with the
key generation scheme based on a helper data algorithm, our scheme can be considered.

Juel and Sudan’s Fuzzy Vault [8] is an error-tolerant cryptographic construction. It
is an effective way for biometric template protection in biometric identification [9]. In
the Fuzzy Vault algorithm, the fuzzy biometric data can be hidden with secret data in
randomly selected chaff points to ensure the biometric template security. Although the
biometric data suffer from the noise effects, the error-tolerant feature of Fuzzy Vault allows
the identification success. A typical application of Fuzzy Vault is the fingerprint-based
Fuzzy Vault [10].

Naturally, the error-tolerant feature of Fuzzy Vault is suitable for fuzzy PUFs. Each
PUF instance has unique security features such as fingerprints. Therefore, contrary to
protecting the fingerprint templates by the secret data, the security PUF template can be
used to protect the secret data in the vault with a higher security level.

This study demonstrates that the short secret data can be locked in a vault leveraging
both the fuzzy weak PUFs and fuzzy strong PUFs. Some preprocessing for PUF responses
is designed to make PUFs more suitable for the fuzzy vault. The secret data can be unlocked
when part of the PUF features remains stable. Our proposal is suitable for the scenario in
that the secret keys are generated or shared inside or outside the devices which need to be
protected in memory. For example, every time a Digital Certificate is issued (e.g., in HTTPS
web site), a private key is generated. The private key needs to be stored in secret or
else the security system will be compromised [11,12]. In the Android system, an APP
can generate or receive several private/public key pairs and store them in the Android
Keystore [13]. The classical methods aforementioned are mainly based on the existing
encryption algorithm to secret the private keys. In our proposal, the private keys can
be encrypted by the fuzzy hardware “fingerprints”. For weak PUFs, each PUF instance
can only be used once to protect one secrete data, because the vault is vulnerable to the
correlation attack [14]. On the contrary, for strong PUFs, the exponential number of CRPs
can help one PUF instance protect the exponential number of secret data in vaults. With
some basic security assumptions, the strong PUFs can avoid the correlation attack and
modeling attack in our proposal.

Part of our submitted paper is the extended work and further research of our previ-
ous conference paper that was published in AsianHOST [15]. Our key contributions are
as follows:
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• We demonstrate that the fuzzy PUFs can be used to secretly store important data
without the error-correction algorithm, which is a new train of thought about how to
use PUFs in an embedded system.

• We implemented the PUF-based Fuzzy Vault in Python. The pre-processing processes
for both weak and strong PUFs are designed to make our design more suitable
for PUFs.

• The runtime and successful rate of the new proposal are evaluated with one existing
weak PUF and one existing strong PUF implementation.

• We discussed the security and possible improvements of the new proposal.

The differences between our submitted paper and the conference paper are as follows:

• In the submitted paper, we introduced the motivation and design philosophy of
our protocols.

• Based on the theoretical analysis, we demonstrated two schemes for both the weak PUF
and strong PUF, where the method for weak PUF is the extension of our conference
paper and the method for strong PUF is a new proposal.

• The evaluation was performed on existing weak PUF and strong PUF designs to show
the universality of our design compared with the DRAM-PUF-based evaluation in the
conference paper.

• The runtime and successful rate of our design are further evaluated with both the
weak and strong PUFs. The test results demonstrate that our proposal can reach a
100% reconstruction rate under some specific parameters with less than 1 s of locking
time and a few seconds of unlocking time.

• We rigorously analyze the security of our methods using a more comprehensive lens.

2. Background
2.1. Physical Unclonable Functions

A PUF is a hardware entity that can be challenged with challenges and generate the
corresponding responses [2]. Due to the random manufacturing variations, the challenge–
response behavior varies between PUF instances. This unique feature can be extracted into
digital form and used in a key generation, identification, and authentication scheme. Based
on the number of possible CRPs, PUFs can be mainly divided into two classes: weak PUFs
and strong PUFs [3].

Weak PUF is a kind of PUF that has very few or even only one CRP in one PUF
instance. The most popular weak PUF design is SRAM PUFs [16]. The random power-up
state of SRAM circuits existing in the embedded systems can be extracted and used as
PUFs. The kind of weak PUFs that exist in off-the-shelf devices are also known as intrinsic
PUFs. In addition to SRAM PUFs, a variety of other intrinsic PUFs have been proposed.
DRAM is pervasively used in existing embedded systems. Prior works have shown that
DRAM can be used as an attractive, low-cost intrinsic PUF in commercial off-the-shelf
devices, which do not require any hardware modifications [17]. Three types of DRAM PUFs
have been proposed based on: the decay feature of DRAM cells [17], startup values [18] of
the DRAM cells, and the write latency [19] of the DRAM cells. To the best knowledge of
the authors, in all the PUF implementations, decay-based DRAM PUFs are the only PUF
implementation that is accessible at the runtime of the existing devices. Weak PUFs are
considered as an attractive low-cost security anchor to mitigate some potential pitfalls in
NVM-based key storage scheme. When used in the field, the CRPs should be kept in secret
which is comparable to the security of a key stored in NVM.

In opposition to the weak PUF, the strong PUF can drive a more complex, even
exponentially CRPs space. For the adversary, a full read-out of all CRPs or predicting the
response for the new challenge based on the known CRPs in a limited time are very difficult.
A well-studied example of strong PUF is the Arbiter PUF (APUF) [20]. APUF extracts the
unique CRPs from the randomly distributed manufacturing variations by evaluating the
runtime delays in electrical components. A k stage APUF consists of 2k multiplexers and
one arbiter. Each stage is conditioned by a 1-bit challenge (straight or cross). When used in
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the field, the incoming electrical signal is split into two signals. These two signals are raced
with each other in parallel along the signal transaction path determined by the challenge set
c1, . . . , ck. The final response r (zero or one) is generated by judging which path is arrived
at first by the arbiter. For the k stage APUF, the CRPs space is 2k. In addition to the APUF,
the researchers in recent years have proposed some new strong PUF candidates, e.g., the
Power Grid PUF [21], Clock PUF [22] and Crossbar PUF [23].

A typical application of strong PUFs is the CRPs-based identification and authentica-
tion [4]. The proposal is lightweight and error-tolerant. However, the freely and publicly
accessible CRPs interface of that scheme made the strong PUF vulnerable to machine
learning attacks [24]. Therefore, several variants of APUFs have been proposed to counter-
measure the machine learning attacks. Nevertheless, even these improved architectures are
not secure for some powerful modeling attacks [25]. In this paper, we demonstrate that the
fuzzy exponential number of CRPs in strong PUFs can be used to protect the exponential
number of secret keys in the vault which is not vulnerable to modeling attacks.

2.2. Helper Data Algorithm

To use PUFs as reproducible keys, a helper data algorithm, also known as Fuzzy
Extractor [26], is required. As shown in Figure 1, the helper data algorithm consists of an
enrollment phase and a key generation phase. In the enrollment phase, the helper data are
generated by a fuzzy extractor algorithm, where R is the PUF response and h is the helper
data. Helper data can be stored publicly as it should not leak any information about R. At
the key generation phase, a fresh and fuzzy response of PUF R′ is queried from the target
device. Using the fuzzy extractor algorithm, the original response R can be regenerated
by the error correction process of the helper data algorithm if the Hamming distance of R
and R′ is smaller than the error-correcting capability of the helper data algorithm. Then,
the regenerated response R can be used to generate a reduplicated key.

PUF

Fuzzy Extractor
Helper Data 

stored in NVM

Enrollment phase

R h

Fuzzy Extractor
Fuzzy response R’

Key

Key generation phase

Figure 1. The architecture of the key generation scheme based on the fuzzy extractor algorithm.

There are also some improved helper data algorithms. For example, Ref. [27] proposed
a two-layer helper data algorithm to avoid leakage problems due to the bias of DRAM PUF.
The first layer selects the cells with higher reliability to improve noise resilience. The second
layer uses pointers that identify a similar number of stable fast cells and slow cells to avoid
the bias problem.

2.3. Fuzzy Vault Scheme

Traditional encryption is not suitable for biometric template protection due to intra-
user variations and noise. An error-tolerant encryption scheme is required to encrypt the
fuzzy biometric template. Fuzzy Vault is a cryptographic scheme proposed by Juels and
Sudan [8] which is suitable for applications where biometric authentication and cryptog-
raphy fusion are required [10]. Previous works have shown that it is an effective way for
biometric template protection in biometric identification systems. In the fuzzy vault scheme,
a secret key is used to protect the biometric template. In the locking process, the biometric
template is locked by the secret key in an unordered real point set. The randomly selected
chaff points hide the real point set from the attacker to ensure biometric template security.
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Although the biometric data suffer from the noise effects, the feature of error-tolerant of
Fuzzy Vault allows the identification success even if part of the biometric template remains
stable. The security of the vault in brute-force attacks depends on the difficulty that the
attacker can tell the real points from a large number of chaff points.

One of the most popular Fuzzy Vault applications is the fingerprint-based Fuzzy
Vault [10]. Fuzzy Vault can provide strong security protection by merging the fingerprint
template in a lot of random noise. There are several fingerprint-based fuzzy vault imple-
mentations. Uludag et al. implemented the algorithm in MATLAB and tested the design
with the public fingerprint database [28]. Ref. [29] implemented an alignment-free fuzzy
vault using C++. Ref. [9] is the first fingerprint-based fuzzy vault implementation on
distributed devices with comparable accuracy and efficiency. Our implementation is partly
based on the implementations in paper [9].

3. Proposed Key Storage Method
3.1. Design Philosophy

As shown in Figure 1, the traditional key generation scheme utilizes a fuzzy extractor
algorithm to remove noise (error correction) from the fuzzy responses of PUF and compress
the reduplicated responses into a full entropy key (privacy amplification). The generated
key can then be used to encrypt the secret data. On the contrary, as shown in Figure 2,
in our proposal, the secret key was distributed from key managers or other key generation
primitives. The vault is only responsible for securing the secret key with PUFs. It can be
considered as an error-tolerant encryption scheme that uses PUF to encrypt the secret key.

PUF

Locking 

algorithm

Vault V stored in 

NVM

Locking phase

R

Unlocking 

algorithm

Fuzzy response R’
Key

Unlocking phase

Secret key distributed from key management scheme

Key

Figure 2. The architecture of the proposed key storage scheme.

Our basic idea is motivated by the reliability feature of the fuzzy vault scheme. The
implementation of the fuzzy vault that is used to protect the biological template is based
on the polynomial reconstruction strategy to countermeasure the reliability issue of the
biological information. Similarly, in the locking process of our proposal, firstly, a t degree
polynomial P is constructed by a secret key that needs to be protected. Then, the polynomial
is evaluated by the PUF responses R to generate f ≥ t + 1 real points. By these steps,
the secret key is shared among f points. The PUF responses and the secret key are fused in
this real point set. To secure these points, some chaff points can be added in the vault V
combined with the real points which cannot be separated by the adversary. In the unlocking
phase, the system tries to reconstruct the polynomial P (secret key) based on the freshly
extracted fuzzy responses R′. Due to the noise effects, there would be some differences
between R and R′. Here, we call R′ as the fuzzy responses of PUF. Although noise exists
in R′, the reliable responses in R′ are effective data to find out enough real points from
V. Due to the error-tolerant feature of the polynomial reconstruction process, any t + 1 or
more points in the f real points that were selected by R′ can recover the secret key by the
Lagrange interpolation. Therefore, only part of the responses in R′ are required to remain
stable. This error-tolerant feature is suitable for the fuzzy responses of PUF. In this paper,
we will show how weak and strong PUFs can be used to protect the secret key in the vault.
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It provides a new train of thought about how to protect keys in PUFs-based hardware
security systems.

3.2. Leveraging Weak PUFs

We present our LOCK algorithm in Algorithm 1 and our UNLOCK algorithm in
Algorithm 2.

Computing in GF allows mathematical operations to scramble data easily and ef-
fectively. Previous fingerprint-based Fuzzy Vaults were implemented on 216 [10] or
232 [9]. Many existing weak PUFs are implemented and used in 8-bit or 16-bit data width,
e.g., SRAM PUF [16] and DRAM PUF [27]. Therefore, implementing our design under
integer multiples of 8 or 16 is helpful for computation efficiency. However, one concern
is that some weak PUFs only have hundreds of cells and each cell can generate a 1-bit
binary response only. We use the Galois field GF(216) for constructing the weak PUF-
based vault. GF(216) can offer a relatively sufficient large universe for the vault in security
applications [30].

In the LOCK process, the secrete data M of length k in GF(216) are used to construct a
t degree polynomial P by partitioning it into k÷ 16 16-bit values and considering them as
coefficients of P. The degree of the constructed polynomial t should be large than 12 to offer
sufficient security of the vault [31]. Therefore, if k < 192(16× 12), the secret data should be
extended to length at east 192 by some random number. Furthermore, the data length k
should meet the requirements of integer multiple of 16 to form M′ To check the integrity of
the secret data in the UNLOCK process, Cyclic Redundancy Check (CRC) [32] is chosen
that encodes the extended message M′ in 16-bit codewords. The CRC-16 codewords are
appended to the extended message to obtain a new secret S. Based on the new message S,
a t-th-order polynomial P can be constructed by partitioning S into t + 1 parts S0 · · · St and
considering them as the coefficients of polynomial P(x) = St · xt + St−1 · xt−1 + · · ·+ S0.
The polynomial P contains all the secret messages. It will be protected by the Fuzzy PUF.

The system queries the PUFs response from the target device and obtains a measure-
ment R = PUF(C), where C is the selected challenge. C would be the selected addresses
with higher reliability cells. For example, for SRAM PUFs, in [33], the stable and uncorre-
lated cells in SRAM PUF were selected by the neighbor-influenced cell selection algorithm
under different conditions.

Due to the algorithm operating in the finite field GF(216), the PUF measurement R is
partitioned into f 16-bit elements R1, R2, · · · , R f , where f > t + 1. Treating the elements of
R as x-coordinate values, the polynomial P is evaluated at all the elements of R to obtain
a point set Q = {(Ri, P(Ri))|i = 1, 2, · · · , f }. To reconstruct the polynomial P, only t + 1
elements in R need to be stable. Therefore, our proposal has the so-called error-tolerant
feature, which ensures that the protected message can reproducibly be generated from the
noise PUF response. As the difference between f and t becomes larger, the error-tolerant
feature of our proposal will be improved. In this step, the secret data are merged into the
hardware-based unique fingerprint.

The weak PUF used in our paper is a 16× 16 current comparator-based PUF [34]. In
the idealized case, 16 1-bit PUF cells can generate one element in R. Therefore, f ≤ 16 if the
cells are not reused in R. If the reliability of some PUF cells is relatively low, there may not
be enough reliable elements in R that can be used to protect the secret data. One method
to improve the storage capacity of vaults is to reuse some cells in the points construction
process. We use a simplified method to reuse the cells and test the feasibility of our proposal.
16× 16 PUF cells are numbered from 0 to 255. Group one is formed by cells from 0 to
15. Group two is moved right 1-bit and then generated by cells from 1 to 16. Therefore,
the number of groups is extended from 16 to 256. It should be noted that the security of the
vault is not improved with this method. Once the adversary screens out one point from the
vault, he can then repeat the “1-bit move” method to brute force all the points. For weak
PUFs in megabytes or even gigabytes, the process is not necessary.
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The adversary may have access to the vault. Therefore, set Q needs to be protected
to prevent attackers reconstruct the polynomial. To obscure set Q, some random chaff
points can be added in the vault which cannot be distinguished by the attacker. The chaff
points should be randomly distributed in the vault. Thus, it should be generated by a
random number generator. Prior works have shown that many PUFs can be used as a
true random number generator. Therefore, a natural method to generate chaff points
would be to extract some random data from the intrinsic PUFs. One good choice is the
DRAM PUF-based random number generator [35], which is accessible at the runtime of the
commodity device without any hardware modifications. Furthermore, for the chaff points
set CF = {(aj, bj)|j = 1, 2, · · · , g, g� f }, the number of chaff points g in the vault should
be much larger than the number of points ( f ) in Q.

Then, the resulting vault V = {Q ∪ CF|, g � t} is generated, where Q is the points
with secret data that are locked by PUF and CF is the set of chaff points generated by
the PUF-based random number generator. An adversary maybe has access to V as it is
stored publicly on the device. The security of the vault V depends on the difficulty that
the attacker can tell the real points Q from a large number of chaff points without any
information of PUF on the device.

In the UNLOCK procedure, the device attempts to release the secret data M from
the vault V by the fuzzy responses extracted from the PUF. The device queries the PUF
response from the target device and obtains a fresh measurement R′ = PUF(C), where
C is the same challenge with the LOCK phase. Due to the noise effects, R′ and R may
not be equal. Like the LOCK phase, the new PUF measurement R′ is partitioned into f
16-bit elements R′1, R′2, · · · , R′f . Based on the fuzzy PUF template R′, a fuzzy set Q′ =
{(R′i, V[R′i])|i = 1, · · · , l} can be selected out from vault V by matching R′1, R′2, · · · , R′f
with those of the candidate real points. The noise effects may result in the mismatching of
some points. Therefore, l 6= f .

Although the PUF template suffers from noise effects, the feature of error-tolerant of
polynomial reconstruction allows the UNLOCK process to recover the secret data.

In order to extract the secret data, subsets of t + 1 real points need to be found from the
candidate set Q′. As there are l candidate points in Q′, the number of possible combination
is Ct+1

l In each iteration, the system selects one subset (t + 1 elements) from the candidate
set Q′. As shown in paper [9], the random selection method is relatively faster than iterative
selection and random generation. The number of iterations can be set to be the total number
of possible combinations Ct+1

l . The polynomial P′ that satisfied the CRC-16 checking is the
right polynomial. The coefficients of polynomial P′ are the secret data M′ that the device
stored in the LOCK process. The other method that can replace the CRC-16 checking is the
hash algorithm. In the LOCK process, hash(M′) can be stored in the NVM, and the hash
value then can be used to check the right polynomial.

Algorithm 1 LOCK process
Require: M: k-bit message to be stored by the device; S: n-bit codewords encoded by M; P: t-th-order

polynomial; C, R: challenge and response of PUF; Q: points set with f points; CF: points set with
g points;

1: function LOCK(Input: M)
2: Extend the secret message M to M′

3: Encode message M′ by an error detecting code(CRC-16): S = {M′, ENC(M)};
4: S = {S0, · · · , St};
5: Construct P(X): P(x) = St · xt + St−1 · xt−1 + · · ·+ S0;
6: Query PUF: R = PUF(C);
7: R = R1, R2, · · · , R f ;
8: Evaluate the points set Q = {(Ri, P(Ri))|i = 1, 2, · · · , f };
9: Generate the chaff points set CF = {(aj, bj)|j = 1, 2, · · · , g, g� f };

10: Output V = {Q ∪ CF|g� f };
11: end function



Sensors 2023, 23, 3476 8 of 21

Algorithm 2 UNLOCK process
Require: m: the maximum number of reconstruction processes; V: points set with f + g points; M:

k-bit message to be stored by the device; P′: t-th-order polynomial; C, R′: challenge and fuzzy
response of PUF; Q′: points set with l points; CHECK: checking process of the error detection
code;

1: function UNLOCK(Input: Vailt V)
2: for j = 1 to j = m− 1 do
3: Input Vault V;
4: Query PUF: R′ = PUF(C);
5: R′ = {R′1, R′2, · · · , R′f };
6: Matching all the elements of R′ in V: Q′ = {(R′i , V[R′i ])|i = 1, · · · , l};
7: Polynomial reconstruction:
8: for i = 0; i < ( l

t+1); i = i + 1 do
9: Randomly select t + 1 points from Q′;

10: P′(x) = S′t · xt + S′t−1 · xt−1 + · · ·+ S′0;
11: if CHECK({S′t, · · · , S′0}) = 0 then
12: Accept the polynomial;
13: M = DEC({S′t, · · · , S′0});
14: Break the f or loop;
15: else
16: Continue the f or loop;
17: end if
18: end for
19: if any polynomial is accepted then
20: Break the f or loop;
21: else
22: Continue the f or loop;
23: end if
24: end for
25: Output M or UNLOCK failed;
26: end function

3.3. Leveraging Strong PUFs

For weak PUFs, one PUF template just can be used in one vault to protect one secret
data. Otherwise, the attacker can conduct some powerful correlation attacks (see Section 4.2)
to break the security vault. Therefore, there is a linear relationship between PUF size and
the number of secret data that can be protected in the weak-PUF-based vault. However,
for some scenario, e.g., the HTTPS internet communication based on TLS, the client needs
to store at least one secret key for each web site [11,12]. Therefore, hundreds or even
thousands of keys need to be protected in the client computer. A strong PUF is more
suitable for this scenario.

One strong PUF can generate an exponential number of CRPs. Therefore, the selected
CRPs can be used to protect an exponential number of secret data M1, M2, · · · , Mm in
different vaults V1, V2, · · · , Vm. Like the weak PUF aforementioned, the strong PUF-based
storage scheme includes two main phases: the LOCK and UNLOCK process. Concerned
that the strong PUF has a large number of CRPs, we extend our implementations in
GF(232) to further improve the security of vault which has been prevented in previous
works [9,10,28].

As shown in Figure 3, in the LOCK process, a t-th-order polynomial P(x) is constructed
by encoding the secret message Mi like the method shown in Section 3.2. The difference
is that the coefficient of the polynomial is in the form of 32-bit, and the CRC-32 is used to
encode the message. The polynomial Pi contains all the secret messages. It will be protected
by the fuzzy strong PUF.
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Strong PUF
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Lock Algorithm
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Secret data is protected in the 
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Von Neumann Algorithm

0, 0 no
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1, 0 0

1, 1 no

… … …

Figure 3. The LOCK process of strong PUF-based vault.

The system queries the strong PUF by a challenge cij and obtain a measurement
rij = PUF(cij). For some strong PUFs (i.e., APUF), rij is a 1-bit response. However, the raw
responses cannot be used to construct the points directly. Most of the Arbiter PUFs and
the variants have a clear bias between the responses of two challenges which differ at
one or more positions [36]. The bad Strict Avalanche Criterion (SAC) property would
cause statistical weakness of PUFs used in our design [37]. The biased responses may
cause the points degression or coincidence, which may reduce the security of the vault.
Therefore, some preprocessing processes are necessary to mitigate the security issue. In
TRNG design, random extractors such as XOR post-processing, parity-based von Neumann
entropy extractors, LFSR-based hashing, or keyed message digest are typically required to
post-process the raw response bits to obtain an unbiased random data [38–41]. As shown
in Figure 3, the Von Neumann algorithm is applied to the PUF responses to produce a
balanced distribution of ones and zeros. The response bit pair [0, 1] is converted to an
output bit 1 and the pair [1, 0] is converted to 0. The response pairs [1, 1] and [0, 0] are
discarded. Therefore, the bit rate of rv is halved or worse compared with the raw responses
r. The new generated balanced bit stream rv is used to form the 32-bit x-coordinate value
of points Ri = rvi1, . . . , rvi16. The challenges that contributed to the points construction are
stored as helper data (64 challenges for each point).

The polynomial Pi is evaluated at all the elements of R = R1, R2, . . . , R f to obtain a
real points set Qi = (Ri, P(Ri))|i = 1, 2, . . . , f , f >= t + 1. To reconstruct the polynomial
Pi, at least t + 1 elements in R need to remain stable. Therefore, our proposal has the
so-called error-tolerant feature when f > t + 1, which ensures that the protected message
can reproducibly be generated from the noisy strong PUF responses. In this step, the secret
data are merged and protected in the hardware-based unique fingerprint. Set Qi needs to be
protected. Some random chaff points CFi = {(aj, bj)|j = 1, 2, · · · , g, g� f } can be added
in the vault to improve the difficulty of brute-force polynomial reconstruction. The chaff
points should be randomly distributed in the vault. One natural method to generate chaff
points would be to extract some random data from a strong PUF-based random number
generator [42].

Then, the resulting vault Vi = {Qi ∪ CFi|, g� t} is generated, where Qi is the points
with secret data locked by strong PUF and CFi is the set of chaff points generated by the
PUF-based random number generator. As shown in Figure 3, the vault Vi can be stored in
memory with the challenge set ci1, ci2, · · · , cik as the helper data, where k = 64× f . Then,
the system repeats the above process for each of the secret messages M1, M2, · · · , Mm.

An adversary may have access to V1, V2, · · · , Vm and helper data as it is stored publicly
on the device. The security of the vault depends on the difficulty that the attacker can tell
the real points Q1, Q2, · · · , Qm from a large number of chaff points without any information
of PUF on the device.

To improve the security of the proposal, each of the CRPs extracted from one strong
PUF can only be applied once. When the secret data protected by vault Vn are expired
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or promised, the system can delete the vault Vn and all the corresponding challenges
cn1, cn2, · · · , cnk in helper data. The challenges in Vn will not be used for the remaining
lifetime of the device. The uniqueness of the CRPs in each vault enables that the vault has
the feature of cancellation and resisting for the correlation attacks [14].

In the UNLOCK procedure, the device attempts to release the secret data (Mi for
example) from the vault Vi by the fuzzy strong PUF. The strong PUF needs to be measured
by the corresponding challenges ci1, ci2, · · · , cik that are stored as helper data to generate
candidates subsets. As aforementioned, to reconstruct one point (32-bit x-coordinate value)
requires 64 corresponding challenges in helper data. Due to the reliability issue of PUFs,
the number of reconstructed bits may be less than 32. For example, in the LOCK process,
the raw responses of strong PUF are 0, 1 with challenges c2, c3. By the Von Neumann
algorithm, the output is 1. In the UNLOCK field, due to the noise, raw responses may be
changed from [0, 1] to [1, 0], [0, 0] or [1, 1]. If [0, 1] → [1, 1] or [0, 1] → [0, 0] occurs, for the
Von Neumann algorithm, the bit pairs 0, 0 and 1, 1 will be discarded and there will be no
output data. Then, the length of the candidate x-coordinate value will be less than 32. The
error can be detected by the system and some compensation methods can be used. One
simplified method is to consider 0, 0 as 0 and 1, 1 as 1. In this way, the error can be corrected
in 50%. The other useful method is to re-query the strong PUF by c2, c3. In our design,
the majority voting method is used to regenerate rv with higher reliability when the Von
Neumann algorithm detects any errors. The process can be seen as a kind of error detection
for strong PUFs, which may be useful for other authentication scenarios. The secret data
then can be regenerated when at least t + 1 out of f points remain stable by the method
used for weak PUF.

4. Security Analysis

In our proposal, the adversary has access to the vault and helper data as it is stored
publicly on the device. As a secret data storage scheme, the CRPs interface of both weak
and strong PUFs in our proposal needs to be access-restricted, even if the adversaries have
PUF-carrying devices. For weak PUFs, access restriction is a basic security requirement
in nearly all the application scenarios [3]. On the contrary, for strong PUFs, most of the
application scenarios assumed that the device has an unprotected CRPs interface. In our
proposal, the strong PUF can be considered as a hardware entity that has an exponential
number of “weak PUFs”. Each “weak PUF” with few and fixed challenges is used to
protect one secret datum in one vault. The vault will be compromised if the adversaries
can challenge the “weak PUF” with the challenges in the helper data which is stored
publicly. For some strong PUF instances, the collected CRPS by the physical access can
be used to model the strong PUF behavior which can then be used to predict the new
responses for the known challenges. Therefore, both the existing vaults and the vaults
that will be generated in the future can be compromised. To countermeasure this issue,
the erasable PUF technique can be used to block the physical access of strong PUFs on the
hardware level, which is a generic method for any given silicon strong PUF with a digital
CRP-interface [43].

4.1. Brute Force Attack

The security of the vault relies mainly on the number of chaff points and real points.
It can be evaluated using Equation (1), where f is the number of real points formed in
the LOCK phase, t is the degree of the polynomial, and g is the number of chaff points.
H∞ roughly corresponds to the same level of difficulty in brute-force attacking a full-
entropy password.

H∞ = (Q|V) = −log(
Ct+1

f

Ct+1
g+ f

) (1)

For a message M, the security of the vault can be improved by constructing a polyno-
mial with a higher degree t in the LOCK process. The method is to append more random
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bits on M. However, higher t means more runtime both in the LOCK and UNOCK process
and a lower unlock successful rate (shown in Section 6.2). Formula (1) also shows that
the entropy of the vault improves as the number of chaff points g increases because the
adversary must guess more times in the brute-force attack (g ↑→ H∞ ↑). However, more
chaff points mean that the system needs more time for chaff point generation (shown in
Section 6.2) and more memory resources for vault storage. Furthermore, although the
increasing real points can improve the UNLOCK successful rate, the security of the vault
decreased because the adversary has higher possibilities to select enough real points from
the vault ( f ↑→ H∞ ↓). More real points require more memory space to store the vault
and helper data. Therefore, the vault is a tradeoff between security, reliability, runtime,
and resource consumption.

Additionally, the points in the vault should be randomly distributed. The aggregately
distributed points will reduce the security of the vault. The probability of successfully
unlocking the secret data will increase when the adversary randomly brute forces some
specific area of the vault. Here, we show an extreme case: The vault is divided into n parts.
Each part has f+g

n points. We assume that all the real points are distributed in one of the
n parts. The number of combinations of brute-force attack becomes n× Ct+1

g+ f
n

from Ct+1
g+ f .

Compared with Equation (2), the security of the vault should drop to:

H′∞ = (Q|V) = −log(
Ct+1

f

n× Ct+1
g+ f

n

) (2)

If g + f = 100, t + 1 = 7, f = 10, and n = 2, the security of the vault decreases from
H∞ = 27 to H′∞ = 20. Therefore, the real points should be distributed randomly in the
vault to maintain the security value in theory. For a weak-PUF-based vault, the randomness
feature of weak PUF is required to mitigate the possible bias, which is comparable to the
PUF-based key generation scheme. For strong PUFs, the systematic bias of different delay
stages needs to be concerned, which is common for the raw response bits generated by
most delay-based PUFs. The Von Neumann algorithm used in our proposal (as shown in
Section 3.3) can reduce the points aggregation or overlap introduced by PUFs bias.

Furthermore, besides the PUF bias, an unsuitable challenge generation method may
further introduce the points aggregation or even coinciding. For example, point po1 is
extracted by n challenges C11, C12, · · · , C1n and point po2 is generated by the challenge
set C21, C22, · · · , C2n. Each challenge cij is a 64-bit set cij = {cij[0], cij[1], · · · , cij[63]}. The
strong PUF has a systematic bias of different delay stages (e.g., bad SAC property), which
is common for the raw response bits generated by most delay-based PUFs. The stage
that is closer to the arbiter, e.g., cij[63] has a relatively stronger influence on the PUF’s
output. Some bit flips on the stages that are far from the arbiter may have very little or
even no influence on the PUF’s output. For po1 and po2, one extreme case is that the
differences between C11, C12, · · · , C1n and C21, C22, · · · , C2n all come from the stages that
are very far from the arbiter, e.g., c[0] and c[1]. For example, the challenges are generated
by accumulation algorithms. The points constructed by these responses would degrade or
even coincide with a certain degree of probability. Some preprocessing or detection module
is necessary for that strong PUF to deal with the problem. In our proposal, we leverage
a random number generator to generate randomly distributed challenges to mitigate the
problem to some extent.

4.2. Correlation Attack

A Correlation Attack [44] is an attack in which the adversary can obtain at least two
vaults that belong to the same PUF template. Although these vaults are created by different
secret data and different chaff points, the X-ray values of the real points should highly
overlap since they are generated by the same PUF responses [14]. Therefore, some chaff
points will be filtered out and the attacker could obtain the real points easier.
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Therefore, one weak PUF instance only can be used to protect a few or even only one
secret datum because each weak PUF has very few or even only one CRP. For the new data
that need to be protected, the system needs to find or implement more weak PUF instances.
Paper [10] demonstrates an unlinkable Fuzzy Vault for multiple fingerprints, providing
an acceptable security level against offline attacks. This method is also suitable for our
proposal. There are several components in one embedded system that can be used as weak
PUF to protect the secret data, e.g., SRAM PUF, DRAM PUF, and Nandflash PUF. Ref. [45]
also proposed that embedding some fake polynomials in the vault can increase the security
of secret polynomials further. In addition, some improved Fuzzy Vault scheme [46,47] can
be used to validate the scheme.

For a strong PUF instance, one CRP can be used to protect secret data only once. The
exponential number of CRPs can help one strong PUF to protect an exponential number
of secret data. For a 64-bit strong PUF used in our paper, there are 264 CRPs that can be
used in theory. For example, 64× f CRPs (considering the Von Neumann algorithm) are
required to form f real points in one vault. 264

64· f vaults can be generated to protect 264

64· f
secret data. Therefore, strong-PUF-based vaults are not vulnerable to correlation attacks.

4.3. Modeling Attack for Strong PUFs

For some strong PUF instances, the collected CRPs can be used to model the strong PUF
behavior which can then be used to predict the new responses for the known challenges.
Therefore, if the strong PUF is modeled, both the existing vaults and the vaults that will be
generated in the future can be compromised.

The basic premise of a modeling attack is that an adversary can collect a large number
of CRPs of a given strong PUF. However, the application scenario of our proposal is similar
to the weak PUF-based key generation scheme. The modeling attacks on strong PUFs are
not applicable to the strong PUFs in our proposal. At first, in our scheme, the application
of strong PUF is to derive CRPs inside the hardware system. The CRPs are not exposed
to the unsecured channel between devices and servers. The adversary cannot capture
the CRPs outside the system such as the CRPs-based authentication scheme [2]. Second,
inside the system, in addition to the security channel, the response interface of strong PUF
can be access-restricted both for the hardware and software. The LOCK and UNLOCK
processes should be conducted in the security hardware or software boundary, e.g., the
Trusted Platform Module (TPM) or Secure Enclave Processor, to prevent possible attacks
from malicious code. Furthermore, invasive attacks should be prohibited. Although the
responses exist in the system only for a short time, if the responses are read out by some
invasive attacks, the security scheme will be compromised. Therefore, the strong PUF used
in our scheme is not vulnerable to the modeling attack if the system can provide some basic
security requirements which are in principle comparable to the security of the existing
security systems.

5. Experimental Setup

Our proposal is not designed for any specific PUFs. There is a tradeoff between
reliability, security, and runtime in our design. For example, the error-tolerant feature
of our proposal can compensate for the reliability issue of PUFs to some extent. As the
difference between the number of real points ( f ) and polynomial degree (t) becomes larger,
the error-tolerant feature of our proposal will be improved. However, more real points
need more resources and runtime and can reduce the security of the vault to some extent.
Therefore, discussions about these features based on some PUF examples are necessary.
This section shows some basic features of our proposal evaluated on two existing PUF
designs: current-comparator-based weak PUF [34] and current-starved-inverter-based
strong PUF [48] implementations.

The weak PUF used in our paper is a 16× 16 current comparator-based PUF [34].
The manufacturing variations of one customized current comparator are extracted to
generate a 1-bit response. In the PUF design, the reliability is improved by introducing
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the proportional to absolute temperature (PTAT) characteristic together with the positive
feedback mechanisms. Furthermore, the design has relatively better energy efficiency
compared with some existing related works. Our design is validated by the prototype chips
fabricated in a standard 65 nm CMOS process in different environments. Paper [34] has
shown that the average reliability of the current comparator PUF is 99.05% and the 256-bit
response can pass the NIST randomness tests. Here, we will study the feasibility of the
PUF design used in our proposal.

The strong PUF design that we used is a 64-bit energy-efficient implementation of
APUF with enhanced temperature stability by inserting current-starved inverters and using
a symmetric RS-latches-based arbiter [48]. Our test is conducted based on the responses
measured from the prototype chips fabricated in a standard 65 nm CMOS process.

Figure 4 presents a schematic of the experimental setup used to test the reliability of our
proposal. The setup includes the following equipment: a thermal chamber (EspecSU262)
which can provide stable and controllable temperature from 40 to 150 ◦C; a DC power
supply (KeysightE3631A) that is used to provide stable power for the PUF chips; and an
Altera DE2 FPGA board that communicates with the PUF chip to provide challenges and
capture the responses. Inside the thermal chamber, ten weak PUF chips and ten strong PUF
chips are placed for experiments under controlled temperature and voltage. The FPGA
boards can communicate with the workstation via serial ports. The workstation further
runs Python scripts for LOCK and UNLOCK processes.

1

Thermal Chamber

FPGA

Workstation

PCB board

PUF Chips
Fuzzy 

Vault 

algorithm

Storage module

Vault V…

Fuzzy responses of 

PUF

Key

Figure 4. Experimental Setup.

In the python scripts, the “sympy Galoistools” is included in our implementations for
polynomial evaluation and we operate the Lagrange interpolation in the Galois field. In the
LOCK process, the secret data and chaff points are all randomly generated by the python
scripts. The generated vault is stored in a .txt file. In the UNLOCK process, the vault is
read out from a .txt file and unlocked by the new PUF query. The following parameters
in our implementations can be configured to achieve different security and error-tolerant
feature: polynomial degree t, the number of real points f , and the number of chaff point g.

6. Experimental Results and Discussion

The reliability of our proposal depends on the robustness of the PUF template and
the error-tolerant feature of the vault. Under a certain PUF template’s reliability, the error-
tolerant parameters can be selected to meet the reliability requirements of the vault. To
understand the reliability of our proposal, we evaluated the selected weak and strong PUFs’
reliability using the thermal chamber.

6.1. The Test Results for Our Proposal Based on Weak PUF

The weak PUF used in our paper is a 16 × 16 current-comparator-based PUF. As
aforementioned in Section 3.2, 16 PUF cells can generate one point. Even if one cell in the
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points is unreliable, the points will be seen as unstable points. In our tests, the reliability
tests are in the form of a cells group. Each group has 16 cells, which represent one point.

For a weak PUF with 16× 16 cells, it can generate 16 groups naturally, and the groups
are numbered from 1 to 16. As demonstrated in Figure 5, the reliability for each group is
calculated from more than 4000 tests with the operating temperature in room temperature,
temperature ranging from 40 to 150 ◦C and the supply voltage ranging from 1.0 V to
1.4 V. Here we choose the response at 1.2 V, 27 ◦C as the reference. Each bar in the figure
represents the number of groups under a certain reliability.
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Figure 5. The reliability of weak PUFs in 16-bit groups.

This feature ensures that the security of the vaults can be evaluated by Formula (1).
Therefore, the parameters of the vaults can be set according to the working environment.
For the system operating under room temperature, we have 12 points with 100% reliability.
These points can be selected as the real points to protect the secret data. The other points
also can be used as real points. However, we need to make sure that there are enough real
points that remain stable in one UNLOCK process. If the system operated under extreme
temperature conditions which vary from −40 ◦C to 150 ◦C, only seven points remain stable
in all the tests. If the polynomial degree in the vault is larger than 7, e.g., the secret data
are divided into 14 parts and generate a 13-stage polynomial, the proposal would be not
useful due to insufficient reliable points. Similarly, in voltage unstable conditions, only four
points remain stable. Furthermore, the Hamming distance between all the points extracted
from 10 chips is tested. There are no overlapping points (no equal points).

Actually, as shown in paper [34], most of the cells remain stable even in some extreme
test conditions. The small number of unreliable cells caused most of the real points to be
unstable. One natural method to improve the system’s reliability is to filter out unreliable
cells and use the reliable cells to construct real points. Figure 6 shows the reliability of
256 groups under different test conditions when the cells can be reused. Even under the
worst case (voltage changes from 1.0 to 1.4 V), the system still has 50 reliable groups.
Furthermore, the Hamming distance between all the points extracted from 10 chips is
tested. Although the cells are reused in some points, there are no overlapping points, which
benefits from the randomness of weak PUF used in our paper. Therefore, more secret data
can be protected in one vault.

Table 1 indicates that the UNLOCK successful rate varies significantly for different
parameters. In the LOCK process, we set the polynomial degree t = 12. In the table,
the unlock successful rate with 15 and 20 real points is tested by randomly selecting 15 and
20 16-bit cell groups from the 256 groups aforementioned. For the column with 20 selected
real points, 20 16-bit cell groups are selected from the groups with 100% reliability in
Figure 6. To further improve the UNLOCK successful rate, the majority voting method is
used with different query times. The impact of each parameter combination is analyzed by
operating 1000 UNLOCK processes each. The test results indicate that a higher number of
real points and a higher number of majority voting times can help to improve the success
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rate. The cells with higher reliability that filtered out in the LOCK process also increase the
vault reliability.
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Figure 6. The reliability of weak PUFs in 16-bit groups with reused cells.

Table 1. Unlocking rate of weak PUFs under different parameters.

Majority Vote
Number of Real Points

15 20 20 with Selected Cells

1 32.69% 76.68% 97.98%
4 50.70% 88.34% 97.09%
8 58.88% 93.31% 100%

16 64.65% 94.88% 100%
32 65.68% 95.56% 100%
64 77.77% 98.38% 100%

128 0.85553% 98.75% 100%

6.2. The Test Results for Our Proposal Based on Strong PUF

The strong PUF used in our paper is a 64-bit current current-starved-inverter-based
APUF. As aforementioned in Section 3.3, 64 1-bit PUF responses can be used to generate one
point. Even if one response in the points is unreliable, the points will be seen as unstable
points. In our tests, the reliability tests are in the form of a CRPs group. Each group has
64 randomly selected CRPs which represent one point.

In the experimental setup, we query the strong PUF under different temperatures:
−40 ◦C, −10 ◦C, 27 ◦C, 70 ◦C, 150 ◦C for 10 chips. For each test condition, we do
100 times PUFs query for 106 random challenges. The corresponding responses can gen-
erate 62,500 CRPs groups. Figure 7 shows the reliability under different test conditions
referred to as the tests under 27 ◦C. The horizontal axis in the figure represents the number
of unstable CRPs in one group, and the vertical axis represents the number of groups. The
worst case is the tests under 150 ◦C. About 17,500 in 62,500 groups remain stable. When
used in the field, to protect the secret data in a t-stage polynomial in a vault with f real
points, at least t + 1 points should be selected from the 17,500 reliable groups. The rest of
the f − t− 1 real points can be selected from the other groups. The secret data can then
be unlocked when at least t + 1 points in f remain stable. Furthermore, the Hamming dis-
tances between all the points extracted from 10 chips are tested. There are no overlapping
points, which benefits from the randomness of the strong PUFs used in our paper.

It should be noted that although some points can be pre-selected by extreme tests,
the system cannot make sure that the so-called reliable points remain stable for the whole
lifetime of the device. Some factors, e.g., aging, may affect the reliability of some points from
reliable to unreliable or from unreliable to reliable. Furthermore, in our tests, some so-called
unreliable points only have very few or even one unreliable response in 100 tests under
some extreme conditions. These points also can remain stable with very high probabilities.
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Therefore, the parameter f and the method to generate real points should be adjusted based
on the PUFs feature and the working conditions. In our design, a majority voting technique
was used to further improve the reliability of the vault.
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Figure 7. The reliability of APUFs in 32-bit response groups.

To evaluate the UNLOCK successful rate and runtime performance of our design, we
operate the whole LOCK and UNLOCK process based on the CRPs queried from strong
PUF on a PC instance with Intel i7-6700HQ CPU at 2.6 GHZ. Python3 is used to compile our
Python scripts. As shown in Figures 8–10, the polynomial degree, number of real points,
and number of chaff points are included as control variables, respectively, in each figure. We
conducted 100 times LOCK and UNLOCK processes under each parameter combination,
which is shown by the abscissa in each sub-figure. The bar indicates the runtime of LOCK
and UNLOCK processes in red and blue, respectively. The figures show that the UNLOCK
successful rate and runtime vary for different configurations. The test results demonstrate
that our proposal can reach a 100% unlocking rate by parameter adjustment with less than
1 s of locking time and a few seconds of unlocking time.

20 40 60 80 100

0

5

10

15

20

25

30

35

40

45

50

T
im

e
(s

)

Test number

Unlock time

Lock time

0.5938s on average(Lock time)

(a)

20 40 60 80 100

0

5

10

15

20

25

30

35

40

45

50

T
im

e
(s

)

Test number

Unlock Time

Lock time

Unlock failed

0.8298s on average(Lock time)

(b)

Figure 8. Impact of polynomial degree on unlocking rate and runtime (in seconds). (a) Unlocking
rate and runtime test under t = 12, f = 40, g = 300; (b) Unlocking rate and runtime test under
t = 30, f = 40, g = 300.
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Figure 9. Impact of real points on unlocking rate and runtime (in seconds). (a) Unlocking rate
and runtime test under t = 20, f = 25, g = 300; (b) Unlocking rate and runtime test under
t = 20, f = 45, g = 300.
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Figure 10. Impact of chaff points on unlocking rate and runtime (in seconds). (a) Unlocking
rate and runtime test under t = 20, f = 40, g = 100; (b) Unlocking rate and runtime test under
t = 20, f = 40, g = 500.

6.3. Discussion and Comparisons

Table 2 compares our methods against several related PUF-based key generation
and storage schemes. The key generator methods proposed in [49–51] are all constructed
by the error correction feature of the fuzzy extractor algorithm. Some other error cor-
rection methods have also been used to address the reliability issue of the fuzzy PUF
response [52–55]. Most of the existing works are focused on the key generation scenario
which is different from our design. Only paper [56] and our work tried to protect the key
through the fuzzy PUF response. Ref. [56] uses the fuzzy extractor algorithm to generate a
key. Then, the generated key is used to encrypt the received key that needs to be protected.
Compared with the key generation scheme that is based on a fuzzy extractor, our proposal
needs more time to unlock the key. One reason is that our proposal needs many more
rounds to select enough real points based on the fuzzy responses of PUF. From the security
analysis and experimental results, we can see that there is a tradeoff between security,
unlocking time, and reliability. The parameters can be selected in different application
scenarios. Furthermore, the efficiency of our methods can be further improved by the
hardware accelerator.
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Table 2. Comparison of PUF-based key generation and storage schemes.

Works Error Correction Applications PUF Types Time

PUFKY [49] fuzzy extractor Key generation weak PUF 5.62 ms on FPGA
key generator [50] reverse fuzzy extractor key generation weak PUF ∼38.5 ms on software
key generator [52] pattern matching key generation strong PUF -
key generator [51] soft-decision fuzzy extractor key generator weak PUF -
key generator [53] built-in self-test key generator strong PUF 1.15 us on ASIC
key generator [54] per-device configuration key generator weak PUF -
key generator [55] polar codes key generator weak PUF ∼

key storage [56] fuzzy extractor key storage weak PUF ∼4 s on software
our work fuzzy vault key storage weak and strong PUF ∼1 s on software

The higher polynomial degree t requires more runtime to evaluate each real point in
both the LOCK and UNLOCK process, although the security can be improved (as shown
in Section 4). In each UNLOCK iteration, t + 1 real point candidates are randomly selected
from the vault to unlock the secret data until the unlocked secret data meet the CRC-16
checking. A higher t indicates that more reliable real points need to be selected in each
iteration. Therefore, the iteration is more likely to fail the CRC-16 checking because of the
strong PUF noise. More iterations led to more prominent changes from Figures 8–10 or
even failed the UNLOCK process.The higher number of real points f indicates that the
system needs more time for more polynomial evaluation both in the LOCK and UNLOCK
processes. In the UNLOCK process, the reliability requirements for PUFs is at least t + 1
points; the real points candidates remain stable. For a certain t + 1, more real points candi-
dates reduce the requirements for PUF’s reliability ( f ↑→ t+1

f ↓). Therefore, the successful
rate increases from Figures 8–10. For the chaff points, it is more about the security issue as
talked about in Section 4. The runtime of the LOCK process increased due to the increasing
chaff points. In the UNLOCK process, more chaff points mean a higher probability that
more chaff points can be selected as real points candidates unexpectedly due to the noise of
PUF responses.

7. Conclusions

In this work, we presented that the short secret data can be protected by the fuzzy
PUF template with an error-tolerant encryption algorithm. We implemented our proposal
in Pythons and evaluated the runtime and unlock successful rate based on existing weak
and strong PUF designs. The evaluation of our proposal showed its feasibility. We further
presented the security threats of our proposal as well as the possible solutions based on
the feature of PUFs. This paper gives a new train of thought about PUFs-based data
protection schemes.
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