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Abstract: American football is the sport with the highest rates of concussion injuries. Biomedical en-
gineering applications may support athletes in monitoring their injuries, evaluating the effectiveness
of their equipment, and leading industrial research in this sport. This literature review aims to report
on the applications of biomedical engineering research in American football, highlighting the main
trends and gaps. The review followed the PRISMA guidelines and gathered a total of 1629 records
from PubMed (n = 368), Web of Science (n = 665), and Scopus (n = 596). The records were analyzed,
tabulated, and clustered in topics. In total, 112 studies were selected and divided by topic in the
biomechanics of concussion (n = 55), biomechanics of footwear (n = 6), biomechanics of sport-related
movements (n = 6), the aerodynamics of football and catch (n = 3), injury prediction (n = 8), heat
monitoring of physiological parameters (n = 8), and monitoring of the training load (n = 25). The
safety of players has fueled most of the research that has led to innovations in helmet and footwear
design, as well as improvements in the understanding and prevention of injuries and heat monitoring.
The other important motivator for research is the improvement of performance, which has led to the
monitoring of training loads and catches, and studies on the aerodynamics of football. The main
gaps found in the literature were regarding the monitoring of internal loads and the innovation of
shoulder pads.

Keywords: American football; bioengineering; sport; injuries; wearable sensor; portable sensor

1. Introduction

Biomedical engineering is a wide discipline that aims to use engineering methods to
solve health and fitness issues. In the field of sport application, biomedical engineering
may support the prevention of injuries [1] (e.g., in sports with repetitive actions like
tennis [2,3] and golf [4], or in contact-sports like rugby [5,6])), may improve the safety of
sports equipment (e.g., by evaluating the structure of helmets and protection [7]), and may
improve technology to monitor athletes’ performance (e.g., by designing new algorithms
for the analysis of cardiac signals acquired by wearable sensors) [8,9]).

American football is a sport of wide interest due to the high number of athletes
involved, from youth to professionals. It is the most popular sport in the United States,
with over 70,000 collegiate athletes in the last five years [10]. There is an increasing interest
in American football outside of its country of origin. Indeed, there are examples in Europe,
with 17 teams playing in a professional league (European League of Football) [11], in China,
with 33 teams (China National Football League) [12], and in Japan, with 20 teams playing
between the first and second divisions of American football (X League) [13].

This sport presents high rates of injuries [14], with a study reporting 5.5 injuries per
1000 for practice and 37.2 injuries per game for competition [14,15]. One of the typical
injuries reported in American football is a concussion, with a rate of occurrence of 2.9 and
0.43 injuries per 1000 in games and practice, respectively [15]. A concussion is a form of

Sensors 2023, 23, 3538. https://doi.org/10.3390/s23073538 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073538
https://doi.org/10.3390/s23073538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3983-8268
https://orcid.org/0000-0002-9152-7216
https://orcid.org/0000-0002-8327-8379
https://orcid.org/0000-0001-6852-8483
https://doi.org/10.3390/s23073538
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073538?type=check_update&version=1


Sensors 2023, 23, 3538 2 of 31

mild traumatic brain injury, which is defined as a head trauma that impairs brain functions
for a limited duration and severity [16]. Subjects with mild traumatic brain injury can
experience a wide variety of symptoms, such as headache, dizziness, confusion, loss of
consciousness, and amnesia [17,18]. American football athletes exposed to different brain
traumas during their careers may experience mood and behavioral alterations and small
cognitive impairments [19]. For these reasons, concussions are a controversial topic with
significant research regarding their monitoring and prevention.

Moreover, American football participation seems to have negative consequences on
cardiovascular health due to risk factors [20] or pathological features [21,22]. Despite the
evidence, the reasons for the occurrences of cardiovascular issues in American football
players are not properly understood [23].

Considering the many issues related to American football, biomedical engineering
may be helpful in supporting the monitoring of athletes, evaluating used equipment, and
leading industrial research on sports. Heart rate (HR) monitoring could be a non-invasive
and simple solution to screen the internal loads of players in non-invasive and simple
ways [9], aiming at preventing situations of overtraining, classifying training phases, or
describing the cardiovascular fitness of the athletes [24] or describing the cardiovascular
fitness of the athletes [25]. In recent years, research regarding heart rate monitoring has
made significant advancements, and contactless alternatives have gained attention thanks
to the opportunity to remove cumbersome wearables [26,27]. On the other hand, external
loads are monitored through global positioning systems (GPS) and inertial sensors, which
integrate accelerometers and gyroscopes and aim at preventing injury and enhancing
performance. Recently, new wearable technologies that integrate GPS and heart rate
sensors have been proposed for contact sports to prevent excessive training loads, which
can cause severe fatigue and stress in athletes [28]. Other applications of worn inertial
sensors relating to performance improvement include the classification of sports events
and the evaluation of specific skills through kinematic description [29], such as a tennis
stroke [30], a kick [31], or a tackle [32]. The possibility of instrumenting the entire team
with wearables during practice and games could enable the collection of vital information
for coaches to better analyze the development of a game [33]. Furthermore, biomechanical
evaluations may support the prevention of injuries by monitoring physiological indexes or
concussions [34–37].

Despite many papers addressing issues related to American football, no review has
specifically tackled the field of biomedical engineering in this sport. Thus, the aim of this
scoping review is to report on the applications of biomedical engineering research in the
sport of American football, highlighting the main topics and possible challenges.

2. Materials and Methods
2.1. Information Sources and Literature Search Strategy

A literature review was conducted on three electronic databases, i.e., PubMed, Web of
Science, and Scopus, following the PRISMA guidelines [38] and the extended guidelines
for scoping reviews [39]. Search terms were organized into three concepts; for each of them,
the following keywords with the wildcard term ‘*’ were used:

1. Population: American football, national collegiate athletic association football, college
football, national football league, NCAA football, collegiate football

2. Bioengineering applications: mech*, biomech*, monitor*, screen*, analysis, eval*,
pred*, Global Position System, GPS, sensor*, wearable*, track*

3. Outcomes of interest: fitness, card*, load*, kinetic*, kinematic*, motion*, performance*,
fatigue, recovery, safety, workload, velocit*, acceleration*, speed, movement*, heart
rate, heart rate variability (HRV), sympathetic, parasympathetic, vagal.

Search terms within each concept were combined with the Boolean operator ‘OR’ and
then combined with the Boolean operator ‘AND’. The first concept related to the population
was limited to the title of the papers, whereas the other two concepts were limited to the
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title and abstract for greater inclusion. The English language was used as a limit to filter
the documents. The literature was screened from 1 January 1995 to 20 July 2022.

2.2. Exclusion Criteria and Selection Process

The studies were imported into the Mendeley Reference Manager system for duplicate
removal. Only research papers (review papers and the proceeding were excluded) with
titles, abstracts, and full text were considered. The following exclusion criteria were applied
to screen titles, abstracts, and full text:

• Population, including retired players;
• Population—age lower than 18 years;
• Population, including sports other than American football;
• Content related to sports finance, sports economics, and sports organizations;
• Content related to diet, nutrition, drug usage, anthropometry, emergency, intervention,

prevalence investigation, return to play, serum biomarkers, and cognitive tests.
• Content related to strength training, plyometrics training, and/or track and field exercises.

2.3. Data Collection Process and Synthesis Method

The objectives, study designs, sample sizes, and outcomes were collected for each
paper. Considering the content of the papers, they were divided according to their specific
topics into the following categories and sub-categories:

1. Biomechanics of concussion, which is subdivided into:

(a) Laboratory reconstruction (LAB);
(b) Monitoring with head impact telemetry system (HIT);
(c) Wearable-sensor monitoring (WSM);
(d) Computer modeling (CM);

2. Biomechanics of foot-wearing, which is subdivided into:

(a) Field–footwear interactions (FFI);
(b) Footwear bending stiffness (FBS);

3. Biomechanics of sport-related movements (SM);
4. Aerodynamics of football and catch (AFC);
5. Injury prediction (IP);
6. Heat monitoring of physiological parameters (HM);
7. Monitoring of the training load (TL).

2.4. Study Risk of Bias Assessment

The studies were divided into one of the following categories: sports science [40], case
series [41], case-control [42], case report [43], longitudinal prospective cohort [42], before–
after cohort with no control [44], descriptive laboratory design [45], quasi-experimental [46],
randomized control trials [46], prediction models [47], and simulations [48]. The studies
were appraised with a corresponding adequate quality of appraisal checklist.

3. Results
3.1. Study Selection

Globally, 1629 studies were identified from PubMed (n = 368), Scopus (n = 596), and
Web of Science (n = 665). After duplicate removal, the title screening procedure reduced the
studies to 439; the abstract and full-text screening reduced the studies to 112. The selection
procedure is summarized in Figure 1.
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Figure 1. Flow chart describing the selection process (modified from [38]).

The bar chart of the study design analysis is reported in Figure 2. The tree chart of
the distribution of the studies into categories and sub-categories is reported in Figure 3.
Given the great amount of analyzed literature, the topics can be clustered into two macro-
categories to facilitate the reading in Figure 4. The first one is the monitoring of biome-
chanical events; it contains the biomechanics of concussions and footwear, monitoring
of sports motions, the aerodynamics of football, and the injury prediction model. The
typical parameters analyzed in this category are related to the kinematics and kinetics
of the motion (e.g., peak linear and rotational acceleration, force-time curves, torques,
angles, and velocity). The second macro-category involves the monitoring of physiological
parameters; it includes monitoring of the training load and monitoring in the heat. The
training load can be divided into internal load monitoring, which focuses on parameters
describing the internal state of stress (e.g., HR, HRV, and the session rating of the perceived
exertion) and the external load, which are parameters connected to the external stress (e.g.,
velocity/acceleration of running and player load). Monitoring in the heat instead focuses
on monitoring the core temperature of the players and the time needed to reach exhaustion
depending on the HR and %VO2. In Figure 5, we can observe how these two categories of
studies developed throughout the years with increasing trends in the last five representing
a general increase of interest in these topics.
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Figure 2. Bar chart of the study design analysis.

Figure 3. Tree chart of the distribution of studies into categories and sub-categories.
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Figure 4. Summary of the topics and the typical parameters used for each topic.

Figure 5. Development of the topics through the years.

3.2. Biomechanics of Concussion

A concussion is a severe injury with long-term outcomes, and the analysis of the biome-
chanics of concussions aims to limit, prevent, and understand the biomechanical causes
behind their occurrence. With the objective of studying the biomechanics of concussions,
the main research sub-categories include laboratory reconstruction (LAB) [49–64], moni-
toring with the head impact telemetry system (HIT) [65–82], wearable-sensor monitoring
(WSM) [83–91], and computer modeling (CM) [92–103].

3.2.1. Laboratory Reconstruction

Studies on LAB aimed to compute the severity of concussive and sub-concussive
head impacts [49,60–62], evaluate the performances, or develop new helmet technolo-
gies [50–53,56,57,61,63], to develop new procedures, tools, and metrics for better simula-
tions and reconstructions [54,55,58,59]. In Table 1, data regarding studies related to LAB
are summarized.

The first experimental procedure on the biomechanics of concussion in professional
American football athletes were based on video recordings of concussive or non-concussive
impacts. These scenarios were then recreated in a laboratory using Hybrid III anthropo-
morphic test devices. The typical laboratory configuration was based on video analysis,
which aimed to retrieve the initial kinematic description, including the impact location and
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velocity. The impact was then reconstructed using anthropomorphic test devices, which
were instrumented with 9 accelerometers in a 3-2-2-2 configuration, capable of acquiring
both linear and rotational accelerations.

Generally, the estimated errors ranged between 7% and 16% for linear acceleration
and between 4% and 25% for rotational acceleration [49]. For this reason, Bailey et al. [55]
proposed an optimized video analysis technique called videogrammetry, considering
cameras with high frame rates. Videogrammetry was later employed in the reconstruction
of helmet-to-helmet concussions [60] and helmet-to-ground concussions [61].

Table 1. Studies regarding the biomechanics of concussions studied by LAB.

Study Design Sample Aim Outcomes QoA *

[49] Case-control 31 Limitations and errors of LAB magnitude: peak linear and rotational acceleration; impact
location; impact kinematics 0.62

[50] Simulation 120 Testing performance of a helmet
subcomponent measure of performance of a shock absorber 0.85

ine
[51] Simulation 195 Comparison of performance

between helmets
magnitude: peak linear and rotational acceleration; angular

velocity; injury metrics: the Gadd severity index 0.83

ine
[52] Simulation 1600 Evaluation of helmet performance linear acceleration response curves 0.77

[53] Simulation 120 Testing performance of a helmet
subcomponent

peak force, time to peak force, peak temperature, step
change temperatures, tensile modulus, yield stress,

ultimate tensile stress
0.75

[54] Simulation 24 Development of a test protocol for
helmet performance

magnitude: peak linear acceleration; injury metrics: the
Gadd severity index, head injury criterion 0.71

[55] Simulation 10 Evaluation of the
videogrammetry technique pre- and post-impact kinematics 0.83

[56] Simulation 96 Evaluation of performance of a
new tech

magnitude: peak linear and rotation acceleration; injury
metrics: the Gadd severity index, head injury criterion 0.81

[57] Simulation 1116 Evaluation of helmet performance
injury metrics: head acceleration response metric, diffuse
axonal multi-axis general evaluation, head injury criterion,

helmet performance score
0.79

[58] Simulation 1512 Development of a metric for
helmet performance same as [57] 0.89

[59] Case series 57 Videogrammetry
impact location; changes in velocities, impact velocity,

change in rotational velocity vector component, closing
velocities

0.78

[60] Case-control 100 Videogrammetry

magnitude: peak linear and rotational acceleration; impact
location; closing velocity; composite input and output

kinematics error score; injury metrics: head injury criterion,
diffuse axonal multi-axis general evaluation

0.88

[61] Case-control 16 Videogrammetry

initial kinematics, linear velocity changes, angular velocity
changes, the ratio between linear velocity change and
horizontal linear velocity, the ratio between angular

velocity change and initial angular velocity

0.75

[62] Simulation 56 Evaluation of the shell products
for linemen performance metrics: same as [57] 0.85

[63] Simulation 27 Evaluation of folding patterns
geometries for new helmet design

magnitude: peak linear acceleration; a performance score
computed as a weighted average of peak linear

acceleration values for three tested velocities
0.79

[64] Simulation 1104 Estimation of strain measures
through neural network

deformation: peak maximal principal strain and peak
cumulative damage strain measure 0.81

* QoA stands for the quality of appraisal.

The study of helmet performance has been conducted at both the component
level [50,53,63] and considering the helmet as a whole unit [52,56]. Specifically, researchers
have analyzed the response curve of materials under stress at the component level [50,53]
or the ability of new geometric designs of the helmet shell to minimize the measured peak
linear acceleration [63].
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Other papers analyzed current test protocols [71] or proposed new test
procedures [54] and metrics [57,58,62] to evaluate helmet performance.

3.2.2. Monitoring with Head Impact Telemetry System

In order to reduce the main issues related to LAB (such as time-consumption and a
limited number of trials), wearable sensors were exploited (to collect large amounts of data
in vivo during training and games). HIT is the most commonly used technology that is fit
inside helmets; it is composed of spring-mounted accelerometers and telemetry hardware.

Studies on HIT collected data about the magnitude [65–71,73–79,81,87],
frequency [72,73,75,79–82,84] and impact locations [67,76,78,81] of head impacts. In Table 2,
data regarding studies related to HIT are summarized.

The magnitude of most experienced head impacts by players was skewed toward low
severities, with a median peak linear acceleration of 20.5 g and a median peak rotational
acceleration of 1400 rad/s2 [73].

For mild traumatic brain injury cases, the largest cohort using HIT with 51 cases re-
ported a median peak linear acceleration of 66.7 g and a median peak rotational acceleration
of 2963 rad/s2, whereas the largest cohort of LAB reported a mean peak linear acceleration
of 72.2 g for concussions with loss of consciousness and 46.8 g for concussions without
loss of consciousness. Moreover, the median peak rotational accelerations are 5247 rad/s2

concussions with loss of consciousness and 3457 rad/s2 for concussions without loss of con-
sciousness. Concerning the frequency of impacts, in the cohort studied by Crisco et al. [72],
the median number of seasons of head impacts experienced by a single player ranged from
257 to 438, and the maximum number of seasons of impacts ranged from 1022 to 1444
across 3 enrolled teams. The median impacts per game varied from 12.1 to 16.3, and the
median impacts per practice varied from 4.8 to 6.6. In the largest reported cohort recently
studied by Mccrea et al. [82], the median number of head impacts experienced by a player
in a given season was 415 (interquartile range of 190–727), with the majority occurring
during practices instead of games.

Table 2. Studies regarding the biomechanics of concussions studied by HIT.

Study Design Sample Aim Outcomes QoA *

[65] Sports science 38 Monitoring head impacts magnitude: peak linear and rotational acceleration; injury
metrics: the Gadd severity index, head injury criterion 0.71

[66] Sports science 38 Monitoring head impacts magnitude: peak linear and rotational acceleration 0.67

[67]
pre-post

observational
no control

88 How severity affects the outcome
of concussion

magnitude: peak linear and rotational acceleration; impact
location; scores for symptoms, balance, memory;

concussion history
0.7

[68]
Prospective
longitudinal

cohort
43 How severity affects the brain

functions
magnitude: peak linear acceleration; scores for symptoms,

balance, and memory 0.73

[69] Sports science 72 Monitoring of head impacts magnitude: peak linear acceleration; injury metrics: the
Gadd severity index, head injury criterion 0.76

[70] Sports science 10 Monitoring head impacts magnitude: peak linear acceleration; injury metrics: the
Gadd severity index 0.67

[71] Sports science 40 Evaluation of a test protocol magnitude: peak linear and rotational acceleration; injury
metrics: the Gadd severity index, head injury criterion 0.71

[72] Sports science 188 Monitoring head impacts frequency: total impacts in season, practice, game and
impacts per practice, game 0.67

[73] Sports science 314 Monitoring head impacts magnitude: peak linear and rotational acceleration, head
impact severity; frequency: same as [72] 0.67

[74] Sports science 98 Development of concussion risk
curve

magnitude: peak linear acceleration; concussion risk curve;
injury metric: head injury criterion

High
Bias
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Table 2. Cont.

Study Design Sample Aim Outcomes QoA *

[75]
Before–after

study with no
control

46 How severity affects brain
impairment

magnitude: total cumulative magnitude of impacts;
frequency: total number of impacts, total number of

impacts greater than 90 g, total impacts to the top of the
helmet; concussion history, years in college football,

sensory organization test, graded symptoms checklist

0.7

[76] Sports science 254 Monitoring head impacts magnitude: peak linear and rotational acceleration, head
impact severity; impact location 0.67

[77]
Before–after

study with no
control

38 Relationship between visual or
sensory performance and severity

magnitude: peak linear and rotational acceleration, head
impact severity 0.64

[78] Sports science 33 Monitoring of head impact
location

magnitude: peak linear and rotational acceleration; impact
location; injury metrics: the Gadd severity index, head

injury criterion
0.89

[79] Sports science 340 Monitoring of head impacts
magnitude: peak linear and rotational acceleration;

frequency: total number of head impacts during practice,
the number of head impacts per practice

0.76

[80] Sports science 342 Monitoring of head impacts after
elimination of 2-a-day practices

frequency: head impacts per week and per day, total
number of head impacts, contact intensity defined as the

number of head impacts per day; number of contact
practice days, number of contact practice sessions, duration
of contact practice sessions, number of two-a-day practice

sessions

0.76

[81]
Before–after

study with no
control

45

Relationship between concussion
biomechanics and symptoms,

clinical recovery, and
return-to-play

magnitude: peak linear and rotational acceleration;
frequency: season and injury day repetitive head impact

exposure, computed as the number of impacts sustained by
the players in the considered period; impact location;

symptom severity score, error score from balance error
scoring system, score from standardized assessment of

concussion; complete symptom resolution time,
return-to-play time

0.8

[82] Sports science 658 Investigation of head impact
exposure during one season

frequency: head impact exposure as the number of impacts
in games and practices 0.81

* QoA stands for the quality of appraisal.

Regarding impact location, front impacts seem to be the most frequent [71,72] and
are related to the highest peak rotational acceleration [76] and the lowest Gadd severity
index [71]. Impacts to the top of the head are occurring at lower percentages and are
related to higher peak linear acceleration [69,73,76] and the Gadd severity index [71].
Furthermore, the biomechanics of concussive and sub-concussive events is not associated
with the clinical outcomes of concussions [67,68,75] or the trajectory of clinical recovery
in terms of symptom resolution time and return-to-play time [81]. Sensory organization
tests, automated neurophysiological assessments, and graded symptom checklists do not
appear to be valid methods to discriminate between concussive and sub-concussive head
impacts. Moreover, Harpham et al. [77] investigated the effect of visual performance
on head impact severity and demonstrated how high performers in visual tests are less
likely to be subjected to high-severity impacts, likely due to the higher level of awareness
on the field.

3.2.3. Wearable-Sensor Monitoring

Alternative wearable sensors are instrumented mouthguard sensors [83,85–88,90,91]
and skin path sensors [89]. Regarding instrumented mouthguards, four papers dealt
with the validation and development of instrumented mouthguard sensors [83,88,90,91],
whereas the remaining papers from 2017 to 2019 [85–87] used mouthguard sensors to
study and understand the relationship between the biomechanics of sub-concussive head
impacts and variations in blood biomarkers. Two blood biomarkers, s100-beta [85] and
neurofilament ligaments [87], were found to be related to head impact severity. A skin
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patch sensor was used in vivo to collect the biomechanical data about head impacts and to
characterize different events, such as blocking, being blocked, tackling, being tackled, and
ground contact [89]. In Table 3, data regarding studies related to HIT are summarized.

Table 3. Studies regarding the biomechanics of concussions studied by WSM.

Study Design Sample Aim Outcomes QoA *

[83] Simulation 5 Evaluation of a
novel-instrumented mouthguard

magnitude: peak linear and rotational acceleration; impact
location; angular velocity 0.83

[84] Sports science 16 Monitoring head impacts

magnitude: cumulative impact load per event and season,
peak linear and rotational acceleration; frequency: number

of hits per practice type, number of impacts over a
threshold of peak linear and rotational acceleration

0.81

[85]
Before–after

study with no
control

22 Plasma S100-beta as a biomarker
of subconcussive hits

magnitude: peak linear and rotational acceleration;
frequency: number of hits; s100-beta concentration,

symptoms score
0.73

[86]
Before–after

study with no
control

23 Plasma Tau as a biomarker of
subconcussive hits

magnitude: peak linear and rotational acceleration;
frequency: number of hits; s100-beta concentration; Tau

concentration; symptom score; near point of convergence
0.8

[87]
Before–after

study with no
control

18 Plasma neurofilament light chain
as a biomarker of concussive hits

magnitude: peak linear and rotational acceleration;
frequency: number of hits; s100-beta concentration; Tau
concentration; neurofilament light chain concentration;

symptom score; near point of convergence

0.8

[88] Sports science 21

Development, evaluation of
mouthguard with integrated

machine learning for head
impacts detection

magnitude: peak linear and rotational acceleration; angular
velocity; features of pulse size, power spectral density

measures and kinematic-based measures; injury metrics:
head injury criterion, diffuse axonal multi-axis general

evaluation

0.76

[89] Sports science 7
Comparison between head

kinematics of different contact
events

magnitude: peak linear and rotational acceleration, peak
angular velocity 0.52

[90] Simulation 60
Comparison between head

kinematics of different contact
events

magnitude: peak linear and rotational acceleration, peak
angular velocity 0.77

[91] Sports science 18 Development of a mouthguard
sensor

peaks of head kinematics, peak occurrence times;
deformation: 95% maximal principal strain, 95% maximal

principal strain rate; relative error in each truncated
kinematic case

0.57

* QoA stands for the quality of appraisal.

3.2.4. Computer Modeling

LAB, HIT, and WSM are useful for providing descriptions of the kinematics of head
impacts, but they cannot be used to extract measures of the consequences of impacts on the
brain. Therefore, the consequences of concussion are usually evaluated by CM.

Studies on CM aimed to create new test protocols and metrics to screen the safety of
equipment [92,93,97,102], develop and validate new tools and technologies [91,96,98,99],
study the interaction between neck muscle activation and head impacts [95,100], and study
the strain on the brain during practices and games [103] In Table 4, data regarding studies
related to CM are summarized.

From 2013 to 2018, three articles [92,93,97] developed and validated a testing protocol
involving a set of centric and non-centric impact locations justified by the different effects
of the test configurations on the brain deformation metrics extracted by finite element
modeling of the human brain. Finite element modeling applied to the brain was the most
diffused modeling technique and it was also employed to compare concussive events with
different clinical outcomes (loss of consciousness against non-loss of consciousness) [101].
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Table 4. Studies regarding the biomechanics of concussion studied by CM.

Study Design Sample Aim Outcomes QoA *

[92] Simulation 27 Development of a new test
protocol

magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: maximal principal strain,

von Mises stress
0.85

[93] Simulation 81 Proposal of an impact protocol
magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: maximal principal strain,

von Mises stress
0.85

[94] Case series 2 Estimation of the Brain Injury

magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: strain, strain rate, von Mises
stress; injury metrics: the Gadd severity index, head injury

criterion, rotational injury criterion, generalized
acceleration model for brain injury threshold, brain injury

criterion

0.56

[95] Simulation 4 Relationship between neck
muscles and concussion risk

magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: maximal principal strain,

maximum shear strain, cumulative strain damage measure;
injury metrics: head injury criterion, brain injury criterion,

peak intracranial pressure

0.83

[96] Simulation 42
Development and validation of
finite element models of Hybrid

III head/neck and impactor

rating metrics to compute similarity; acceleration-time
curves 0.79

[97] Simulation 32
Evaluation of impact site and
impact type on the concussion

risk

magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: maximal principal strain,

von Mises stress
0.77

[98] Simulation 35 Bottom-up approach for a finite
element football helmet finite element model 0.83

[99] Simulation 97
Development and evaluation of a

finite element model of a new
helmet

measures of similarity: correlational analysis and
composite correlation analysis 0.83

[100] Simulation 2880 Relationship between neck
muscles and concussion risk

skull kinematics; injury metrics: head impact criterion,
brain injury criterion, head impact power 0.83

[101] Case-control -
Comparison between concussions

with and without loss of
consciousness

magnitude: peak linear and rotational acceleration, peak
angular velocity; deformation: maximal principal strain,

above cumulative strain damage measure 10%, strain rate;
pre-impact kinematics: velocity at which the impact

occurred, impact location;

0.78

[102] Simulation 8
Comparison between intracranial
pressure and head injury criterion

during linear impact tests
injury metrics: intracranial pressure, head injury criterion 0.83

[103] Prevalence
study 168 Evaluation of brain deformations

for different roles

deformation: strain rate, maximal principal strain; impact
location, impact velocity, event type, linear and rotational

velocity/acceleration;
0.75

* QoA stands for the quality of appraisal.

Nevertheless, in recent years, finite element modeling research has expanded to equip-
ment [98,99] and anthropomorphic devices [96], with good averages of similarities between
the models, real-life helmets, and anthropomorphic devices. Additionally, computer mod-
eling has been applied to models of neck muscle fibers and the skull during severe head
impacts to understand the effect of muscle activation latency, muscle strength, and posture
of the head-on injury metrics. Neck muscle strength does not seem to significantly affect
head injury metrics [95,100], whereas early activation of neck muscles, representing an
awareness of the impact [95], and a proper head posture [100], significantly decrease the
injury metrics.

Finally, a recent paper [64] demonstrated how the same outcomes of brain deforma-
tions obtained with complex modeling of the brain can be achieved by convolutional neural
networks, which take a map of the head kinematics as input.
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3.3. Biomechanics of Foot-Wearing

Research on the footwear worn by American football players focuses on improving the
design of both the shoe and the football field in order to reduce injury rates. Metatarsopha-
langeal joint sprain, also known as turf toe, is an injury mainly caused by hyperextension
of the joint [104]. Therefore, footwear plays an important role in limiting the torque forces
applied to this joint. Consequently, a line of research focuses on the quantification of
forefoot bending stiffness (FBS) with the aim of understanding if the footwear is protec-
tive against metatarsophalangeal injuries [105–107]. On the other hand, a second line of
research regards field–footwear interactions (FFI), taking into consideration the evidence of
increased lower extremity injuries in artificial grass when compared to natural turf [108].

3.3.1. Field–Footwear Interactions

The typical mechanism employed to simulate FFI is the Biocore Elite Athlete Shoe
Turf [109–111], which is a machine that simulates a cleat moving on the turf. In 2015,
a study by Kent et al. [109] quantified the differences in the mechanical interactions
between artificial and natural surfaces using a cleated shoe used in both fields. The same
methodological procedure was applied by Kent et al. [110], who employed 19 different
kinds of cleated shoes on artificial and natural grass. In 2021, a study by Kent et al. [111]
focused on the description of the mechanical response of the natural grass to the interaction
with the cleated shoe. Only natural grass surfaces have inherent force-limiting qualities,
which could explain the lower rates of injuries in these turf types [108]. On the contrary, on
artificial turf, the footwear choice seems to be the most relevant characteristic to limit the
occurrence of injuries. In Table 5, data regarding studies related to FFI are summarized.

Table 5. Studies regarding the biomechanics of FFI.

Study Design Sample Aim Outcomes QoA *

[109] Simulation 24
Quantification of the mechanical

interaction between American football
cleats and surfaces

peaks of forces and torques;
displacement-time curves,

rotation-time curves
0.79

[110] Simulation 57
Quantification of the mechanical

interaction between different cleats and
surfaces in conditions similar to play

linear regression analysis to find
relationships between horizontal

forces during the translation tests and
the torques

0.79

[111] Simulation 15
Quantification of peak load in natural

grass and define the load–displacement
response

force-time curves; load–displacement
corridors 0.83

* QoA stands for the quality of appraisal.

3.3.2. Footwear Bending Stiffness

Crandall et al. [105] and Lessley et al. [106] conducted dynamic testing to measure
the torque and stiffness of various cleats, reporting range values of peak torques and peak
stiffness relative to the flexion angle. Moreover, Crandall et al. [105] reported a high
linear correlation (0.91) between shoe stiffness and peak torque. In a more recent study by
Wannop et al. [107], ten American football players were enrolled to investigate the effect of
three types of footwear with increasing bending stiffness while performing sport-specific
movements. The forefoot bending stiffness of American football shoes does not produce
enough torque to counteract the torques experienced by professional athletes [112] and,
thus, the footwear is not protective against metatarsophalangeal hyperextension.

In Table 6, data regarding studies related to FBS are summarized.
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Table 6. Studies regarding the biomechanics of FBS.

Study Design Sample Aim Outcomes QoA *

[105] Simulation 21 Quantification of the forefoot bending
stiffness in American football footwear torque and stiffness 0.83

[106] Simulation 30 Quantification of the forefoot bending
stiffness of American football shoes torque and stiffness; flexion scores 0.81

[107] Quasi-
experimental 10

Effect of forefoot stiffness on the
metatarsophalangeal joint extension and

athletic performance

maximal metatarsophalangeal
extension 0.78

* QoA stands for the quality of appraisal.

3.4. Biomechanics of Sport-Related Movements

The biomechanics of sports-related movement (SM) employs a motion capture system
comprising motion cameras and retroreflective markers to describe the kinematics and
kinetics of the anatomical segments involved in specific sports actions. The common objec-
tive of these studies is to aid in the rehabilitation of athletes by providing medical staff with
expected kinematics and kinetics in healthy individuals or to understand the mechanisms
behind injuries. In Table 7, data regarding studies related to SM are summarized.

Rash and Shapiro [113] studied the biomechanics of throwing in twelve quarterbacks
in their senior year of college. The throwing motion was analyzed using motion cameras
and manual digitization of the frames. Riley et al. [114] published a motion analysis of the
foot kinematics of nine American football players while they were performing three typical
combined drills. The researchers used eight reflective markers on each foot and employed
force plates to complete the description of the ground reaction forces. Deneweth et al. [115]
reported position-specific hip and knee kinematics for forty NCAA athletes performing 45◦

cuts and side steps.
Among all player roles, linemen are at high risk of articular cartilage injuries [116,117],

which motivates research on typical linemen drills. Lambach et al. [118] reported knee joint
loading for fifteen linemen performing blocking drills and did not report any significant
difference in knee compressive forces and moments between unloaded blocking drills and
jogging or walking. They concluded that the blocking motion itself is not responsible for
the elevated cartilage injury risk encountered in linemen. Future research should evaluate
these movements in loaded conditions replicating game-like or practice-like conditions.
Linemen also have the highest reported number of front-head impacts [72,73,79] compared
to other roles. For this reason, Bonnechere et al. [119] analyzed the safest sprint starting
position to reduce the occurrence and frequency of head impacts. Twelve American
football players performed three sprints for three starting stances: 2-points (the two legs),
3-points (two legs and one arm), and 4-points (two legs, two arms) stances while wearing
retroreflective markers.
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Table 7. Studies regarding the biomechanics of SM.

Study Design Sample Aim Outcomes QoA *

[113]
Prevalence
descriptive

study
12 Motion analysis of the football

throw

average angular displacement in foot contact, maximum
external rotation, release, angular velocities, forces, and

torques
0.75

[114]
Prevalence
descriptive

stud
9

Describe ankle kinematics and the
ground reaction forces in

professional football players

patterns in the ground reaction forces, angular
displacement curves, angular velocities curves 0.75

[115]
Prevalence
descriptive

study
40 analysis of hip and knee motion

during game-like movements hip and knee kinematics 0.75

[119] Quasi-
experimental 12 Understanding the safest stance

position to prevent head impacts

trunk inclination, head inclination, verticality = (180-trunk
inclination) + (180-trunk head); field of view = % height of

head/verticality; redress time; head acceleration
and velocity

0.89

[118]
Prevalence
descriptive

study
15 Motion analysis of the knee joint

during linemen specific tasks
three-dimensional knee angles, joint reaction forces,

external joint moments 0.75

[120] Quasi-
experimental 12

examination of the influence of
high and low-cut footwear on the

motion of athletes

tibial accelerations and three-dimensional kinematics of the
lower body 0.78

* QoA stands for the quality of appraisal.

The authors computed trunk inclination, head inclination, and the field of view as a
combination of the previous measures, head velocity, and acceleration along the vertical
direction. From a motion analysis of the stance starts, subjects starting a sprint with a
four-point stance and three-point stance are at a higher risk of head impacts due to the
reduced field of view and increased vertical velocity of the head. These findings would
explain why defensive linemen, usually starting with three points or four points, and
offensive linemen, usually starting with three points, are subjected to a higher number of
head impacts. They are just less aware of the head impact due to the limited field of view.
In 2017, Sinclair et al. [120] evaluated the three-dimensional motion of the tibia in twelve
players while they were running, changing direction, or jumping, and the authors studied
the relationship of kinematic parameters to low-cut cleats and high-cut cleats. A proper
choice of footwear influences the occurrence of injuries not only due to the interaction with
the playing surface as stated beforehand but also due to its influence on tibia kinematics,
with high-cut cleats providing greater medial support and limiting tibial acceleration, peak
ankle joint eversion, and tibial internal rotations [120].

3.5. Aerodynamics of the Football and Catch

The aerodynamics of football and catch (AFC) aims at improving the performance of
players by understanding what are the variables that can have an important effect of the
trajectory of the football. The possible implications to performance improvement drives
the interest of sports engineers; many studies have described the dynamics of rotating balls
to better comprehend how the rotation of the ball can be modeled [121]. In Table 8, data
regarding studies related to AFC are summarized.

Two papers that were selected studied the aerodynamics of the football during a kick.
In 2016, Guzman, Brownell, and Kommer [122] studied and quantified the drag and lift
coefficient of the football while rotating around its short axis in a wind channel. In 2018,
Pfeifer et al. [123] simulated a kick with a machine to understand the optimal impact point
and impact angle to maximize the distance. The researchers found that kicking the ball
at 5.5 cm from the ground would yield the maximum distance with small insignificant
variations, depending on the impact angle. Striking the ball at lower heights would instead
produce higher launch angles and decrease the range.

Regarding the improvement of the catch, the authors of [124] proposed a prototype
sensor to discriminate between catches and dropped balls.



Sensors 2023, 23, 3538 15 of 31

Table 8. Studies regarding AFC.

Study Design Sample Aim Outcomes QoA *

[122] Simulation - Evaluation of the aerodynamics of the
football using a wind chamber drag and lift forces and coefficients 0.62

[123] Simulation - Evaluation of the best location to kick the
football for the distance and height trajectory, total distance 0.69

[124] Sports science 8 Monitoring the catch rate with a
convolutional neural network

magnetometer, audio, and pressure
signals were used as input to classify

catch and non-catch events
0.76

* QoA stands for the quality of appraisal.

3.6. Injury Prediction

The majority of the injuries experienced by football players are a consequence of the
collisions occurring due to tackles and blocks, accounting for half of the total injuries in
recent epidemiological investigations [15]. However, the occurrence of injuries without
contact with other players represents the second most common mechanism [15] and the
one that could be limited or avoided with prevention actions. Knees, shoulders, and ankles
are the joints where athletes most often experience injuries, and this is why most of the
research about injury prevention focuses on lower extremity injuries or shoulder injuries.
Injury prediction (IP), which consists of creating mathematical models to recognize subjects
at an elevated risk of injury and to identify possible predictors of future injuries during the
season, is essential for injury prevention. In Table 9, data regarding studies related to IP
are summarized.

Laudner [125] measured the level of shoulder instability in a cohort of 45 NCAA Amer-
ican football athletes compared to a control of 70 age-matched active people employing a
force place to compute the radial area deviation of the center of pressure of an arm during
a one-arm plank exercise. The authors showed a decreased sensorimotor control of the
shoulder for the football cohort probably due to repetitive stress on the shoulder joint
experienced by players due to tackling. A model for the prediction of shoulder injuries was
proposed by Pontillo et al. [126]; it was fitted with the preseason data from 26 players. The
preseason testing procedures were composed of questionnaire scores for upper extremity
functions, range of motion screening, and the testing of shoulder fatigue.

Table 9. Studies regarding IP.

Study Design Sample Aim Outcomes QoA *

[125] Quasi-
experimental 59

Analysis of the upper extremity
sensorimotor control in American

football players

radial area deviation; receiver operating characteristic
analysis 0.78

[126]

Prediction
model,

Longitudinal
cohort

26 Prediction of shoulder injury from
preseason variables

closed kinetic chain upper extremity stability test: start in a
plank position, bring one hand over the other and then
come back to the original position and repeat with the

opposite hand. Goal = the highest number of touches in
15 s; sensitivity and specificity

High
Bias

[127]

Prediction
model,

Longitudinal
cohort

83
Prediction of core and lower

extremity injuries from preseason
test variables

model features; questionnaires: Oswestry disability index,
international knee documentation committee, sports

component of the foot and ankle ability measure; core
endurance tests: horizontal back-extension hold, sitting 60°

trunk flexion holds, side-bridge holds, bilateral wall-sit
holds. Aerobic capacity test: 3-min step test. physiological

index: HR with polar telemetry to assess recovery;
multiple linear regression analysis and receiver operating

characteristic analysis

High
Bias
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Table 9. Cont.

Study Design Sample Aim Outcomes QoA *

[128]

Prediction
model,

Longitudinal
cohort

59
Prediction of lower extremities

injuries with a functional balance
test at preseason

Lower Quarter Y-Balance Test test score High
Bias

[129]

Prediction
model,

Longitudinal
cohort

40
Evaluation of the gaze

stabilization asymmetry score as a
screening tool for concussion

stability evaluation test, gaze stabilization test, dizziness
handicap inventory score; receiver operating characteristic

analysis, sensitivity and specificity

High
Bias

[130]

Prediction
model,

Longitudinal
cohort

152
Refined prediction of core and
lower extremity injuries from

preseason test variables

model features: questionnaires: Oswestry disability index,
international knee documentation committee, sports

component of the foot and ankle ability measure; core
endurance tests: horizontal back-extension hold, sitting 60°

trunk flexion holds, side-bridge holds, bilateral wall-sit
holds. Aerobic capacity test: 3-min step test. Physiological

index: HR with polar telemetry to assess recovery;
multiple linear regression analysis and receiver operating

characteristic analysis

High
Bias

[131]

Prediction
model,

longitudinal
cohort

39

Measure of change in stiffness in
the lower extremities from pre to

post season as an indicator of
concussion

force, kinematics, moments, peak flexion angle, peak
external flexion moments. Joint stiffness

High
Bias

[132]

Prediction
model,

Longitudinal
cohort

59
Prediction of lower extremities

injuries with a functional balance
test at preseason

Lower Quarter Y-Balance Test test score High
Bias

* QoA stands for the quality of appraisal.

A threshold of 21 touches in the closed-chain upper extremity stability test during
the preseason achieved a sensitivity of 0.79 (95% confidence interval: 0.57–0.91) and a
specificity of 0.83 (95% confidence interval: 0.44–0.97) in predicting shoulder injuries
during the season [126].

Concerning core–lower extremities injuries, which represent the highest percentage of
injuries occurring in American football [14,15], Wilkerson et al. [127] proposed a logistic
regression 4-factor model fitted on data from 84 players in 2012, then refined it to a 3-
factor model in 2015 [130] due to the greater number of players involved (n = 145 over
3 seasons). The subjects completed questionnaires during the preseason, including the
Oswestry Disability Index, International Knee Documentation Committee, and components
of the Foot and Ankle Ability Measure. Moreover, the authors administered tests to assess
core endurance and aerobic capacity, monitoring recovery with the help of a HR sensor.
Three factors were found to be the most discriminant for high injury risk established in
preseason: the number of starting games higher than one, an Oswestry Disability Index
score higher than four, and a wall-sit hold for less than 88 s. The presence of at least two
of these three factors during the preseason corresponded to a sensitivity of 56% and a
specificity of 80% [130]. The prediction of lower extremity injuries was also tackled with
the lower quarter Y-balance test [128,132], consisting of the player standing on one leg
and reaching (with the contralateral leg) the anterior and posterior directions, forming a Y
shape. The results obtained by the authors when exploiting the lower quarter Y-balance
test were positive for Butler et al. [128], showing 100% sensitivity and 71.7% specificity
with a cut-off of 89.6% in the test for the prediction of in-season non-contact injury in the
lower extremities. On the contrary, Luedke et al. [132] reported no significant differences in
the scores between the uninjured and injured groups of players with a cohort composed of
the same number of players, fifty-nine.

Honaker et al. [129] proposed a preseason test to discriminate between athletes
with and without a history of concussion. Forty athletes, fifteen of whom had a history of
concussion, participated in the study. The researchers used the gaze stabilization test, which
assesses the vestibulo-ocular reflex’s ability to stabilize the gaze. The test measures the
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maximum head velocity in the yaw plane that a subject can perform while maintaining good
vision. From this test, it is possible to measure the asymmetry score between right and left
head rotations. A gaze stabilization asymmetry score higher than 13% achieved a sensitivity
of 47% and a specificity of 96% [129], meaning that this test could be a valuable tool.
However, due to the high number of false negatives, it should be used in combination with
other tests to achieve better results. Another study on possible predictors of concussions
with changes in variables measured before and after the season was proposed by Dubose
et al. [131]. The authors analyzed a cohort of 39 players, 13 of whom experienced head
trauma during the season. A motion capture system and a force plate were employed to
record the kinematics and kinetics of the lower joints during a single stance stability test
and jump test. The researchers noticed a statistically significant change in the stiffness of
the lower extremities between baseline and post-season measurements for the concussed
group, which could be interpreted as evidence of neuromuscular function changes.

3.7. Heat Monitoring of Physiological Parameters

Exertional heat illness can occur with various symptoms and severities, and it is
possible to distinguish [133] between heat syncope (which happens to unfit or unacclima-
tized people in hot environments when standing for long periods of time or when rapidly
changing posture), heat exhaustion (which represents an early cessation of exercise in hot
environments due to multiple factors including cardiovascular strain, low blood pressure,
and fatigue), exertional heat injury, and exertional heat stroke. Exertional heat illness is
common in American football, with an average incidence rate of 1.31 per 1000 athlete
exposures, ranging from 0.06 to 4.19 per 1000 athlete exposures across 7 studies analyzed
in a recent systematic review [134]. Moreover, the same review reported American football
as the field sport with the highest exertional heat illness incidence among other similar
team sports. Heat monitoring (HM) aims to understand the contribution of the American
football uniform to the exertional heat illness problem. In Table 10, data regarding studies
related to HM are summarized.

Typical physiological parameters collected from subjects were the core temperature, mea-
sured from ingestible pills or a rectal thermistor [135–142], HR [135–137,139–141], skin temper-
ature [137,138,140,142,143], and also measures of subjective perception taken from question-
naires, such as thirst scores, thermal sensation scores [135,137,138], and ratings of perceived
exertion [135–138]. In Table 10, data regarding studies related to HM are summarized.

Table 10. Studies regarding HM.

Study Design Sample Aim Outcomes QoA *

[135] Sports science 15 Evaluation of the NCAA rule for
the acclimatization of players

subjective perception: environmental subjective
questionnaire, thirst and thermal sensations; physiological
parameters: HR, temperature of the gastrointestinal tract

0.71

[136] Randomized
control trial 5

Evaluation of thermoregulatory,
metabolic and cardiovascular

responses

physiological parameters: HR, blood lactate, blood glucose,
oxygen uptake, ratings of perceived exertion, core

temperature
0.85

[137] Randomized
control trial 10

Evaluation of the effect of an
American football uniform on the

thermal response

subjective perception: Four scales of subjective perception
were employed, i.e., a scale for thirst, a scale for thermal
sensations, a rating of perceived exertion, and a scale for

pain. Physiological parameters: rectal temperature with a
rectal thermistor, forearm, and posterior neck skin

temperatures, relative humidity under the jersey and
T-shirt, HR, urine, and blood samples

0.85

[138] Randomized
control trial 10 Evaluation of the perceptual

responses in the heat

subjective perception: environmental subjective
questionnaire, ratings of perceived exertion, questionnaire

for the thirst sensation, for muscle pain, for thermal
sensation; physiological parameters: rectal temperature,

temperature of the neck and forearm, time to reach 40 °C,
internal uniform humidity

0.85
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Table 10. Cont.

Study Design Sample Aim Outcomes QoA *

[143] Sports science 14 heat loss estimation of linemen
and non-linemen

physiological parameters: mean skin temperature as a
weighted average of the chest, shoulder, quadriceps and
calf; GPS-based measures of speed; measures of ambient

conditions; indirect estimations of convective heat transfer
coefficient, linear radiative heat transfer coefficient,

combined heat transfer coefficient, sensible heat loss,
evaporative heat transfer coefficient, maximum

evaporative capacity, and maximum heat loss potential.

0.73

[139] Sports science 13 Estimation of core temperature
from wearable

physiological parameters: HR, core temperature;
performance metrics: Lin’s concordance correlation

coefficient, estimation bias
0.71

[142] Sports science 15
Validity of body temperature sites

for the evaluation of core
temperature

physiological parameters: HR, temperatures measured at
the center of the forehead, under the left armpit, under the

tongue, and rectal temperature as ground truth
0.86

[141] Randomized
control trial 10 Using a heat tolerance test on

athletes wearing pads and helmet

rectal temperature, HR, maximum oxygen uptake, and
ratings of perceived exertion were taken during a maximal

effort treadmill test at baseline
0.77

[140] Quasi-
experimental 5 Monitoring physiological index

on different playing surfaces

physiological parameters: HR, breathing rate, energy
expenditure, accelerometry score, sweat rate, core

temperature, skin temperature on the neck, right shoulder,
left hand, right shin, ratings of perceived exertion, local

environmental conditions

0.78

* QoA stands for the quality of appraisal.

The research regarding heat monitoring started in 2006 [135] with the first studies on
the heat response of athletes during preseason practices in the heat. From 2007 to 2010, three
papers [136–138] simulated practice conditions and monitored the temperature of players
with higher BMIs (linemen) because they were found to experience higher increments of
temperature [135]. Moreover, linemen usually train at lower speeds than the other positions
and experience lower levels of self-generated airspeed. As a consequence, it was concluded
that linemen are at a higher risk of exertional heat illness due to their lower heat loss
potential with convection and evaporation, which depend on the lower self-generated
airspeed [143].

A recurring theme in papers on heat monitoring is how changes in worn equipment
(e.g., wearing shoulder pads and helmets versus only wearing shorts) affect the temperature
and perceived exertion of players. The American football uniform reduces heat dissipation,
impairs thermoregulation [141], and consequently increases skin temperature and reduces
the time to reach 40 ◦C [137,138]. For this reason, the NCAA acclimatization rule delaying
the use of shoulder pads for the first few days of the preseason in the heat is supported by
the higher rate of perceived exertion [136–138] reported by players, the higher energy cost
expenditure measured by %VO2max [136] and the elevated core temperature [135] reported
for the first few days of the preseason. Another aspect to consider in the acclimatization
of the athletes is the playing surface. Artificial turfs have the lowest solar albedo and the
highest temperature when compared to natural grass alternatives, leading to the greatest
perceived heat for the athletes and the highest peak and average skin temperatures [140].

Finally, two recent papers [139,142] focused on monitoring the temperature and other
physiological parameters of athletes in the heat. Common sites used to measure the
temperature with skin patch sensors tend to underestimate the true core temperature
recorded with rectal thermistors in players wearing American football uniforms [142].
As an alternative, an indirect estimation algorithm that takes heart rate as input was
proposed [139].

3.8. Monitoring of the Training Load

Monitoring training loads (TLs) aims to improve athlete performance and reduce
the risk of injuries. The use of wearable sensors provides a simple and effective way to
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track the workload experienced by athletes. Coaches can exploit the data extracted from
wearables to tailor strength and conditioning programs to meet the specific needs of each
player. Additionally, coaches can analyze the recorded data from practice and games
to group athletes with similar needs. In Table 11, data regarding studies related to TLs
are summarized.

Most of the papers [144–168] dealt with the topic of training loads in American football
athletes and all of them measured external loads. Eight papers [147,153,154,159,164–166,168]
measured internal load. Investigations of physical demands during practices were reported
by five papers [144,151,157,163,167], whereas another five papers focused on game de-
mands [145,148,150,158]. Furthermore, data extracted from accelerometers were used to
assess the injury risks [146,155,161,162]. The common measure used in these types of
studies is the acute-to-chronic ratio of player load, which is usually computed as the ratio
between the player load in the week of the injury, labeled as acute workload, and the
player load in the month of the injury (labeled as chronic workload). The monitoring
of workload can assist coaches in the periodization of workload during the season or
even during a single week [167]. The first week of the preseason appears to be the week
with the highest workload compared to any other week of the season, including most of
the game workload [151]. Wearables can be used to monitor the workload weekly and
limit the occurrence of sudden increases in player load, which are associated with injury
risk [127,155,161,162]. Another branch of research concerns the association between mea-
sures of external loads and measures of internal loads or subjective wellness. Wellness
status is typically assessed through questionnaires that use a 0–5 scoring system for fatigue
or energy, sleep quality, and muscle soreness [147,160], and in some cases, questionnaires
may include sleep hours, mood, and stress levels [149,151]. Murray et al. [160] introduced
the coefficient of multiple determination on the vertical direction of the accelerometer signal
to determine the variability of the steps. Variability in the stride pattern, monitored through
analysis of the vertical acceleration signal, can provide insights into how the player feels as
it is associated with scores of subjective wellness [160].

Table 11. Studies regarding TL.

Study Design Sample Aim Outcomes QoA *

[144] Sports science 49 Evaluation of physical demands

external load: practice time, distance covered, maximal HR,
average HR, percentage of covered distance and time in

specific velocity zones; velocity categorized in zone 1
(standing: 0–1.0 km/h), zone 2 (walking: 1.1–6.0 km/h),

zone 3 (jogging: 6.1–12.0 km/h), zone 4 (running:
12.1–16.0 km/h), and zone 5 (sprinting: more than

16.0 km/h)

0.82

[145] Sports science 33 Evaluation of physical demands

external load: movements classified into low-intensity
movements (0–10 km/h); moderate-intensity movements

(10.1–16.0 km/h); high-intensity movements
(16.1–23.0 km/h); and sprinting or maximal effort

movements (exceeding 23.0 km/h). Movements classified
by acceleration zones in moderate (1.5–2.5 m/s2), high

(2.6–3.5 m/s2), and maximal (3.5 m/s2)

0.77

[146] Sports science 45 Relationship between load and
injury risk

external load: number of plays, average inertial load.
Standard deviation of inertial load, coefficient of variation

of inertial load
0.77

[147] Sports science 58
Relationship between subjective

wellness, player load and
perceived exertion

internal load: session ratings of perceived exertion, a scale
from 0 to 10, multiplied by the time of the training session;

external load: player load; subjective wellness: ratings
from 1 to 5 for three questionnaire items being muscle

soreness, sleep and energy

0.68

[148] Sports science 40
Quantification of average and

maximum distances traveled in
games

external load:total distance, low (0 to 12.9 km/h), moderate
(12.9 to 22.5 km/h), moderate-high (>19.3 km/h), high

(>22.5 km/h) intensity distance; max range = computed as
the range from the mean distance +1SD to max distance

0.82
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Table 11. Cont.

Study Design Sample Aim Outcomes QoA *

[150] Sports science 33 Examination of positional impact
profile

external load: accelerometer data divided into an impact
classification system of 6 zones: 5 to 6 m/s2 (very light), 6.1
to 6.5 m/s2 (light to moderate), 6.6 to 7.0 m/s2 (moderate
to heavy), 7.1 to 8.0 m/s2 (heavy impact), 8.1 to 10.0 m/s2

(very heavy impact), higher than 10 m/s2 (Severe impact)

0.91

[151] Sports science 31 Evaluation of physical demands external load: player load, peak player load, average
player load, cumulative player load 0.96

[149] Sports science 32 Evaluation of physical demands

external load: player load, total, low intensity, medium
intensity, high intensity, sprint running distances (m),

acceleration distance, and deceleration distance.
Movements classified into low- (0 to 12.9 km/h), medium-
(13 to 19.3 km/h), high- (19.4 to 25.8 km/h), and maximal-

(≥25.9 km/h) intensity efforts. Classification of
acceleration and deceleration motions in low (0 to 1 m/s2),

medium (1.1 to 2.0 m/s2), high (2.1 to 3.0 m/s2), and
maximal (higher than 3 m/s2); subjective wellness:

questionnaire scale of 1 to 5 for fatigue, sleep quality,
soreness, stress, mood, and hours of sleep

0.82

[152] Sports science 30 Relationship between perceived
wellness and load same as [149] 0.86

[159] Sports science 29 Monitoring cardiac autonomic
activity

internal load: natural logarithm root mean square of
successive differences; resting heart rate; external load:

player load
0.81

[153] Sports science - Monitoring cardiac autonomic
activity

internal load: natural logarithm root mean square of
successive differences; resting heart rate; external load:

player load
0.81

[155] Sports science 52 Relationship between load and
injury risk

external load: player load; acute workload for each week of
the season. Acute-to-chronic ratios were computed relative
to injuries within 3-day or 7-day lag periods and computed

as the ratio between 7/14, 7/21, and 7/28 using an
exponentially weighted moving average

0.86

[156] Sports science 40 Quantification of workloads

external load: player load; low- (1.5–2.5 m/s), moderate-
(2.5–3.5 m/s), and high-intensity (>3.5 m/s) accelerations,
decelerations, and left or right change of direction. Total

movement workload

0.73

[157] Sports science 63 Quantification of workloads
between different positions

external load: total distance, high-speed running distance
equal to distance with speed above 70% threshold of max
speed computed from the previous year’s observations.

Player load, player load per min, inertial movement
analysis

0.86

[158] Sports science 43 Monitoring physical demands
external load: Distance traveled, maximum velocity, total
inertial movement analysis, acceleration/deceleration data

clustered in category
0.68

[154] Case report 1 Case report of HRV-monitoring
for a concussive case

internal load: natural logarithm root mean square of
successive differences; resting heart rate external load:

player load
0.86

[160] Sports science 63
Relationships between load,

wellness, soreness, and stride
variability

external load: player load, acute-to-chronic ratio,
coefficient of multiple determination evaluated on the step

waveforms extracted from the vertical direction of the
accelerometer signals; subjective wellness: questionnaire

for fatigue, sleep quality, and muscle soreness.

0.82

[161] Sports science 42
Relationship between wellness

score, acute-to-chronic ratio, and
injury risk

external load: acute-to-chronic ratio; subjective wellness:
wellness questionnaire for soreness, energy, and sleep

quality
0.82

[162] Sports science 232 Relationship between player
workload and soft tissue injuries

external load: acute-to-chronic ratio; subjective wellness:
wellness questionnaire for soreness, energy, and sleep

quality
0.77

[163] Sports science 66 Clustering workload

external load: max velocity, inertial movement analysis,
player load, distance ran at 5 to 8 mph, distance ran at 8 to
12 mph, distance ran at 12 to 16 mph, and distance ran at

16 to 25 mph; number of snaps

0.77
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Table 11. Cont.

Study Design Sample Aim Outcomes QoA *

[168] Sports science 30 Relationships between internal
and external load

internal load: session ratings of perceived exertion, HR
zones in 0–60% and 60–70% and 70–80% and 80–90% and
90–95%, total HR exertion, training impulse, maximum HR,

average HR, HR load, energy expenditure, recovery;
external load: distances covered in speed zones-standing
and walking (0 to 6 km/h), jogging (6–12 km/h), cruising

(12–14 km/h), striding (14–18 km/h), high-intensity
running (18–20 km/h), and sprinting (>20 km/h); data

were divided also in low-intensity distance (0–14 km/h)
and high-intensity distance(>14 km/h); max speed,

number of sprints (>20 km/h) and total distance.
Acceleration classified into four categories: 0.5 to 0.99, 1 to

1.99, 2 to 2.99 and >3

0.82

[164] Sports science 23 Evaluation of physical demands internal load: average HR, max HR, time to peak HR;
external load: mean activity, integrated activity 0.91

[165] Sports science - Monitoring HRV throughout a
season

internal load: natural logarithm root mean square of
successive differences; resting heart rate; external load:

player load
0.95

[166] Sports science 17 Relationship between training
load and next-day recovery

internal load: physiological load is a heart rate-based
metrics from 0 to 10 where 0 corresponds to 50% of

age-predicted heart rate and 10 to 100% of max
age-predicted HR; s-RPE x time practice; external load:

mechanical load given by the peak acceleration along any
direction scaled from 0 (0.5 g) to 10 (>6 g); recovery status:
reactive strength index test, perceived restorativeness scale

questionnaire

0.82

[167] Sports science 72 Evaluation of physical demands
external load: high-speed running per min, sprint distance
per min (distances covered above the 12 mph and 15 mph),

player load, inertial movement analysis
0.68

* QoA stands for the quality of appraisal.

In four of the analyzed papers [144,164,166,168], the internal load measures were
extracted from wearable sensors. Another four papers published by Flatt et al., from 2018
to 2021 [153,154,159,165], opened up a new research line regarding the monitoring of HRV
and cardiovascular recovery between training days in American football athletes. The HRV
was sampled thanks to mobile devices and finger sensors just before each training session;
the subjects wore GPS sensors to collect player load data. The metric used to understand
the effect of the autonomic nervous system on cardiovascular function was a time-domain
index of vagal tone. The researchers documented the behavior of HRV during spring
camp [153], in-season practices [159], and across the entire season from preseason to post-
season [165], stratifying the results by player position. Flatt et al. [154] reported on the daily
fluctuations of HRV experienced by a concussed player. Monitoring internal load is crucial
to understand whether players have the appropriate recovery time. It has been shown
that linemen experience a decrease in vagal tone throughout the season [153,154,165], and
they do not fully recover baseline vagal activity on consecutive training days [159]. This
parasympathetic impairment observed in linemen is due to multiple contributing factors,
such as a progressive increase in physiological stress as the season progresses, a high
frequency of soft tissue traumas, and a high frequency of sub-concussive impacts [165].
Monitoring HRV could provide coaches with the necessary information to better plan
practices throughout the week, ensuring adequate recovery time between them.

4. Discussion

American football is a sport that attracts different branches of the biomedical engi-
neering field. Due to this increasing interest, the aim of the present scoping review was to
report the applications of biomedical engineering research in the sport of American football,
highlighting the main topics and possible challenges. The literature search was conducted
systematically, following the PRISMA guidelines [38] and the extended guidelines for
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scoping reviews [39]. Given the choice of keywords in the literature search and the exclu-
sion criteria, we could have removed some important papers or topics. The two biggest
removed clusters regarded studies on young populations (individuals under 18 years of
age) and studies that focused on screening procedures, as well as those that investigated
strength training, plyometrics training, and combined drills.

Given its high injury rates, the biomechanical analysis of athletes is a primary area
of research aimed at evaluating musculoskeletal injuries and concussions. This research
also includes an interest in the design of helmets and shoulder pads as preventative tools.
Advances in wearable and portable sensors have enabled researchers to perform tests and
acquire data directly in the field, providing information on biomechanical events, external
workload, and internal workload. These practices allow for monitoring of both the health
status of players and their performance during training sessions and competitions.

It was found that the most important branches of research on the studied topic were
biomechanical studies regarding injuries encompassing concussions [49–103],
footwear [105–107,109–111], and sports-specific motion [113–115,118–120]. The most re-
searched line is related to the biomechanics of concussions. The reasons for this are likely
related to the connection between concussion and the dangerous consequences associated
with cases of mild head traumatic injury in the long term [19]. An issue that emerges from
the literature is the fact that concussion was shown to be a complex multidimensional
event that does not depend solely on severity but also on impact location, frequency of
impacts, posture of the head, neck muscle activation patterns [95,100], and visual perfor-
mance of the athletes [77]. Considering the contribution of many different factors, a player
could experience a mild traumatic brain injury of varying severity, and different players
could have differing clinical recovery patterns [67,68,75,81]. Thus, a universal concussion
threshold based solely on measures of severity is difficult to define. Despite that, the recent
technology of wearable and portable sensors allows the collection of large databases, which
can be used to create optimized risk curves, which is reliable for population screening [74].

Head telemetry systems and mouthguard sensors should be the focus of future
research, considering their ability to record large datasets and the drawbacks of time-
consuming and error-prone laboratory reconstructions [49]. Data-driven models, such
as neural network architectures, could provide new objective and automatic methods to
discriminate between concussive and sub-concussive events. The issue related to the iden-
tification of sub-concussive events remains an open problem in the literature. Additionally,
the description of concussion occurrence by only linear acceleration is limited [51,71,102].
The single use of metrics (such as the Gadd severity index or head injury criterion) is not
adequate because they are only associated with linear acceleration, whereas rotational
acceleration seems to play an essential role in the identification of concussions [93,97].
Measurements of brain deformation, such as maximal principal strain and von Mises stress,
have been shown to characterize the performance of helmets [92] and should be added to
the protocols of performance evaluation.

One recent proposed test protocol [57,58,62] seems promising because it includes
a new metric, i.e., a head acceleration response metric based on a linear combination
of both linear (e.g., head injury criterion) and rotational (e.g., diffuse axonal multi-axis
general evaluation) acceleration metrics. To complete the characterization of a concussion
event, metrics should include measures of brain strain and deformations that could be
indirectly computed from the kinematics [64]. Regarding the prevention and limitation
of concussions, a great percentage of concussions and overall exposure to head impacts
occur during practices instead of competitions. To reduce this trend, a new regulation was
applied in the NCAA in 2019, eliminating two-a-day practices, but it was unsuccessful [80].
The easiest way to tackle the problem of concussion is to act directly in practice by reducing
the amount of contact and overall head impact exposure. In this scenario, coaches and
institutions have a pivotal role in promoting changes and the use of wearable sensors to
continuously monitor athletes.
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Collecting information through wearable sensors, which is already widespread in
concussion monitoring, is lacking in the field of footwear applications and the biome-
chanics of sports motion. One possible drawback of the analyzed literature is that all the
results regarding the mechanical interactions between the footwear and playing field were
reported in simulated environments with a machine replicating the force and weight of
an athlete. Wearables could solve this issue, and foot-mounted or shoe-mounted wear-
able devices are already available to provide valuable information regarding running gait
mechanics [169,170]. Therefore, these sensors could also be used for sprinting, changing
directions, blocking actions, and other sport-specific motion analyses. Moreover, the use of
retroreflective markers in conjunction with motion cameras has been the major technique
used to evaluate the biomechanics of sport-specific movements. Thus, contactless methods
based on video analysis or radar analysis could be promising to extract important infor-
mation without the need for wearing sensors. Future industrial research in the field of
footwear should focus on improving the innovation of artificial turf design, with the aim of
reproducing the mechanical qualities of natural grass [111], and the design of shoes, with
the aim of finding a trade-off between performance, comfort, and prevention [105–107].
Despite many studies evaluating the design of helmets, no studies dealt with the evaluation
of new designs of shoulder pads; only one study proposed an integrated solution of helmet
and shoulder pads [56]. Shoulder pads protect against shoulder, neck, and chest injuries;
therefore, it could be interesting to expand research to the biomechanics of other equipment.

The second largest branch of research connected with American football involves
the monitoring of physiological parameters, workloads, and performances. The main
applications are the monitoring of external and internal loads [144–168], monitoring of
temperature [135–143] and catch rates [124]. Heat monitoring was performed in most of
the analyses using invasive methods. However, the literature shows that the inaccuracy
of skin patch sensors is a major problem [142]. Thus, future research should focus on
investigating new non-invasive ways to extract temperature data from athletes during
practice and competition, given the fatal outcome of exertional heat illness. Regarding load
monitoring, all of the evaluated literature dealt with external workloads, but eight of the
analyzed papers [147,153,154,159,164–166,168] collected data on internal loads and used
wearables to extract heart rate series [164,166,168], four of which used portable sensors
to monitor heart rate variability [153,154,159,165], and one considered a perceived exer-
tion questionnaire [147]. Future research should focus on expanding the use of wearable
sensors to monitor heart rate and heart rate variability. Moreover, given the novel technol-
ogy based on portable devices, the application of portable sensors for electrocardiogram
recordings [171,172] and electromyogram recordings [173,174] should be investigated. An-
other issue found in the analyzed literature was the lack of investigation into respiration
rates in real scenarios. However, given the importance of this vital sign [175] in the con-
text of load, fatigue, and stress monitoring, future research could focus on investigating
respiration monitoring through wearable sensors during training sessions and games.

Regarding performance monitoring, an innovative approach [124] was to evaluate
the catch rate of players during training sessions using a prototype of wearable sensors
worn on the palms of players’ hands. The study of football kicks [122,123] focused on
the aerodynamics of the football and optimizing the impact location and angle of the
kick. In this context, future research could involve the use of motion cameras, depth
cameras, or wearable sensors to study movements or improve the technical capability of the
player kicking the ball. Alternatively, other contactless methods could include using micro-
Doppler signatures from radar sensors to distinguish between different sport functional
movements [176] or using it as a screening tool for injury prevention to recognize possible
abnormalities in simple walking mechanisms [177,178].

Finally, studies related to the prediction of injuries [125–132] looked at the best predic-
tors of in-season injuries between multiple tests at baseline during preseasons. The results
for different kinds of injuries (from lower body and core injuries to shoulder injuries and
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concussions) were promising, despite being tested on small sample sizes without internal
validation, which led to contradictory results [128,132].

5. Conclusions

In conclusion, this scoping review evaluated the trends in the biomedical engineering
of American football, highlighting the fields with the most research and the fields lacking
research lines. In this sport, the prevalence of injuries and the consequences of these
injuries are the main topics of research, including the biomechanics of concussions, heat
monitoring, and injury prevention. Player safety is surely the most common objective that
is leading to innovation in helmet and footwear design or research into the mechanisms
of injury occurrence. However, no studies were found that dealt with the development,
validation, and innovation of shoulder pads, which are the main sources of protection
against shoulder and neck injuries. Additionally, coaches and players are interested in
improving performances on the field, which has motivated all of the studies regarding
workload monitoring. However, internal load monitoring is limited. A large gap in the
literature on American football involves the monitoring of the vital signs of athletes. A
complete description of the internal load statuses of athletes via heart rate and respiration
rate during practice and competition should be further investigated.
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