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Abstract: Transportation mode recognition is of great importance in analyzing people’s travel patterns
and planning urban roads. To make more accurate judgments on the transportation mode of the
user, we propose a deep learning fusion model based on multi-head attentional temporal convolution
(TCMH). First, the time-domain features of a more extensive range of sensor data are mined through
a temporal convolutional network. Second, multi-head attention mechanisms are introduced to learn
the significance of different features and timesteps, which can improve the identification accuracy.
Finally, the deep-learned features are fed into a fully connected layer to output the classification
results of the transportation mode. The experimental results demonstrate that the TCMH model
achieves an accuracy of 90.25% and 89.55% on the SHL and HTC datasets, respectively, which is
4.45% and 4.70% higher than the optimal value in the baseline algorithm. The model has a better
recognition effect on transportation modes.

Keywords: transportation mode recognition; deep learning; temporal convolutional network; multi-
head attention mechanism

1. Introduction

With the rapid development of mobile internet technology and the advancement
of technology, smartphones are becoming increasingly indispensable in people’s daily
lives. Many sensors equipped on smartphones are mainly used to process and record
information. This data information can be used to effectively monitor people’s daily
behavior and identify people’s transportation modes [1–4].

Transportation mode recognition is a judgment of the current transportation mode
of the user, which is a considerable branch of people’s activity recognition. Daily trans-
portation modes include: stationary, walking, running, bicycle, bus, car, train and subway.
Users often use different means of transportation during travel and have different travel
needs. These requirements require intelligent mobile terminals to determine in advance
the transportation modes within the user’s location. Transportation mode recognition is a
fundamental problem that plays a crucial role in several fields. Transportation mode detec-
tion can help individuals avoid congested routes and have a comfortable transportation
experience. It is also beneficial for transportation planning and management departments
to carry out urban road planning and vehicle scheduling and solve the problem of trans-
portation congestion. Furthermore, it can also quickly arrange the most suitable driving
plan for ambulances.

To date, researchers have proposed machine learning algorithms to solve transporta-
tion mode recognition problems, such as decision tree (DT) [5], random forest (RF) [6–8],
support vector machine (SVM) [9], etc. Nick et al. [10] used a plain Bayesian classifier and
a support vector machine to preprocess the sensor data and extract features manually for
transportation mode recognition. Hemminki et al. [11] preprocessed the collected dataset
and gravity estimation, manually performed feature extraction and finally placed the ex-
tracted features in a classifier to identify the transportation mode. Ashqar et al. [6] use
a two-layer framework that employs machine learning techniques, including a k-nearest
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neighbor, classification and regression tree, support vector machine and random forest. The
framework combines the newly extracted features with traditional time-domain features to
form a feature pool, improving classification accuracy. These traditional machine learning
algorithms have certain drawbacks, i.e., they require specialized domain knowledge to
extract features manually, which can affect the accuracy of classification on the one hand,
and on the other hand, they can cause a large workload due to the difficult feature design.

Deep learning algorithms can effectively solve the above problems, i.e., they can
autonomously learn the intrinsic laws and potential features of data, improve efficiency
and enhance recognition accuracy. As a result, researchers started to shift from traditional
machine learning algorithms to deep learning algorithms [12–14], such as convolutional
neural network (CNN) [15–17], recurrent neural network (RNN) [18,19], long short-term
memory network (LSTM) [20,21], etc. Liu et al. [22] proposed an end-to-end bi-directional
LSTM-based classification framework to classify users’ trajectories into different modes of
transportation. Qin et al. [23] first used convolutional neural networks to learn features
and then used LSTM to further extract features from the CNN output. Features are further
extracted using LSTM, which ultimately leads to an improved accuracy of transportation
mode recognition. Sharma et al. [24] used deep learning networks, recurrent neural net-
works and convolutional neural networks to learn time-related mode information, which
performed well on the validation dataset. Gong et al. [25] proposed a convolutional neural
network-based approach to identify subways, trains and buses with high accuracy and
showed good robustness.

However, these deep learning algorithms still have some shortcomings: recurrent
neural network computation does not support parallelism and has high training overhead.
The convolutional neural network can only extract short-time local features due to percep-
tual wilderness. In addition, the existing methods do not assign reasonable weights to the
extracted potential features, and the algorithms only show good recognition effects on a
single small-scale dataset with insufficient generalization ability.

This paper proposes a novel transportation mode recognition algorithm consisting
a multi-head attention (MHA) mechanism, temporal convolutional network (TCN) and
convolutional neural network (CNN), with the following main contributions:

• We leverage the temporal convolutional networks to the transportation feature learn-
ing on individual sensor data. The temporal convolutional network uses inflated
convolution to increase the perceptual field of view and learn the long-time dependent
features of the sensor data. Simultaneously, it is trained with parallel computation and
short-time overhead.

• We adopt the multi-headed attention mechanisms to extract multiple spatial features.
Compared with single-headed attention, the multi-headed attention model assigns
more moderate weights to the features and highlights the vital feature information.
It has high identification accuracy for similar modes of transportation, such as trains
and subways.

• Our proposed algorithm was validated on SHL [26] and HTC [27] datasets and com-
pared with machine learning algorithms (DT, RF, SVM) and deep learning algorithms
(LSTM, CNN, CNN + LSTM, MSRLSTM). The experimental results show that the
TCMH model significantly improves the accuracy, precision, recall and F1-score classi-
fication metrics compared with the above algorithms.

The rest of this paper is organized as follows: Section 2 introduces the overall archi-
tecture of the TCMH model and explains the basic principle of the algorithm. Section 3
describes two datasets and evaluation metrics and shows the experimental results of the
TCMH model. Finally, Section 4 summarizes the work of this paper.

2. Algorithm

This paper proposes a TCMH model for transportation mode recognition. The model
mainly consists an input layer, a temporal convolutional network layer, a multi-headed
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attention layer, a convolutional neural network layer and an output layer, and the overall
architecture is shown in Figure 1 as follows:

1. Input layer: Multiple sensor data are input to the input layer after normalization and
its output is used as the input of the temporal convolutional neural network.

2. Temporal convolutional layer (TCN): A network structure is superior to recurrent
neural networks and convolutional neural networks, consisting causal convolution,
expansion convolution and residual connectivity.

3. Multi-head attention layer (MHA): The output of the TCN is used as the input of this
module. The features acquired by each head are fused so that the final developed
features can represent global dependencies.

4. Convolutional layer (CNN): this network consists a convolutional layer with a convo-
lutional kernel size of 64, a maximum pooling layer and a global average
pooling layer.

5. Output layer: it consists a fully connected layer with neurons of eight and a Softmax
activation function. The maximum subscript of neurons is used as the final output of
transportation mode classification, i.e., eight transportation mode classification results.
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Figure 1. Schematic diagram of the TCMH model framework.

2.1. Input Layer

The sensor data collected by smartphones changes with time and is a typical time
series data. Ten sets of data, linear acceleration sensors X, Y and Z axes, gyroscope sensors
X, Y and Z axes, geomagnetic sensors X, Y and Z axes and barometric sensors are selected
and processed through the input layer to obtain 10 tensors of (B, 500, 1) size. Where B is
the number of samples selected for each training, which is set to 32. 500, and is generated
using a non-overlapping sliding window segment with a sampling frequency of 100 Hz at
5 s. One refers to the specific features used for transportation mode recognition, such as
linear acceleration X-axis data features.

2.2. Temporal Convolutional Layer

A recurrent neural network (RNN) is the preferred neural network in processing
time series data, which can reflect the relationship between the current moment and
the previous moment information and has certain short-term memory capabilities. As
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variants of recurrent neural networks (long short-term memory networks (LSTM) and gated
recurrent neural networks (GRU)), they can solve the problems of gradient explosion and
small memory capacity of recurrent neural networks. However, it also has the disadvantage
of processing data serially and having high computational overhead.

Temporal convolutional neural networks can effectively solve the above problems.
Firstly, the TCN can easily obtain stable gradients, which can avoid the gradient explo-
sion problem to a certain extent. Secondly, it can extract time-dependent features and
increase memory capacity by increasing the perceptual field size. Furthermore, it can per-
form large-scale parallel computation, accelerate the computation speed and improve the
computation efficiency.

Temporal convolutional neural networks include the following concepts: causal con-
volution, expansion convolution and residual connection. Causal convolution only utilizes
the sensor time series data before that moment and does not focus on the data information
after that moment. Thus, it can solve the information leakage problem of relying on future
data at that moment. Since causal convolution can only focus on the sensor time data of
the preceding shorter moments, if we want to obtain information features on long-time
scales, we need to add expansion convolution. Expansion convolution obtains more feature
information by injecting voids into the convolution. The dilation convolution has a hyper-
parameter dilation, which refers to the number of intervals performed during sampling.
The hyperparameter dilation = 1 indicates that the sample is required for each data point.
Dilation = 2 suggests that the sample is performed every two data points, and so on. The
causal expansion convolutional structure is shown in Figure 2. Adding residual connec-
tions in TCN can avoid the loss of transportation mode features due to the deepening of
network layers, thus ensuring that the transportation mode recognition accuracy does not
drop significantly.
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The number of filters used in this paper is 32. Therefore, a data tensor with the input of
=(B, 500, 1) can obtain a feature tensor of size (B, 250, 32) after the temporal convolutional
neural network and maximum pooling. At the same time, the internal features of the
eight transportation modes with long-time dependencies are fully explored to improve the
training efficiency when the sensor input data are used.

2.3. Multi-Head Attention Layer

In recent years, the attention mechanism has been widely used [28–30] and has become
one of the research hotspots in deep learning. It uses weight size to measure different feature
information when processing data information, providing a larger weight to important
features and a smaller weight to relatively unimportant features. It improves the efficiency
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of feature learning and can dig out more valuable implicit information from the massive
data. However, the ordinary attention mechanism only extracts the sensor data feature
dependencies from one dimension, which can only learn the feature information with
limitations. In view of this, the multi-headed attention mechanism is introduced to solve
this problem.

The multi-headed attention mechanism first maps the input into b different subspaces
through a fully connected layer (FC). Each subspace contains a query matrix Qj, key matrix
Kj and value matrix Vj, where j = 1, . . . , h. Then, the attention calculation is performed
in parallel in the b subspaces using the scaled dot-product attention function, and the
attention calculation formula is shown in Equation (1).

hj = Attention(Qj, Kj, Vj) = So f tmax(
QjKT

j√
d

)Vj (1)

where hj denotes the attention value of the jth space and d represents the dimension of
the key.

Finally, the obtained attention values are stitched together and the output can be
obtained after the matrix Wo.

WO

h1
...

hb

 (2)

where Wo is the matrix of learnable parameters.
The schematic diagram of the multi-headed attention structure is shown in Figure 3.

According to the above principle, the output result x of TCN is passed through the multi-
head attention module to make the final extracted data feature information more compre-
hensive, which is helpful in improving the accuracy of transportation mode recognition.
The input and output of this layer are all feature tensors of size (B, 250, 32).
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2.4. Convolutional Layer

The convolutional neural network is a feed−forward neural network proposed by
researchers inspired by the concept of perceptual wilderness. The convolutional neural
network is good at mining local features in a small range and extracting characteristic values
of targets and has strong applicability. It is used for target recognition and classification
in complex and diverse environments [31,32]. It has three properties: local connection,
weight sharing and pooling. Local connection means that the neurons in the nth layer
are connected to only some neurons in the (n − 1)th layer, and only local features are
extracted. Weight sharing means that the neurons in the previous layer are scanned with a
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convolution kernel (the values in the convolution kernel are called weights), i.e., the same
set of weights is used to convolve the neurons in the previous layer. The 1D convolution
example in Figure 4 exemplifies the two properties of local connection and weight sharing.
The role of pooling is to perform feature selection and reduce the number of transportation
mode features. Maximum pooling is chosen, which reduces the number of neurons used in
the transportation mode recognition network while maintaining the constancy of the local
features of the fused data.
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In this paper, 10 sensors are first stitched together, and then a convolutional network
with a convolutional kernel of 64 is used for local feature extraction. The maximum
pooling is used to select beneficial features for improving the accuracy of transport mode
recognition. Where poolsize = 2, which in turn yields a feature tensor of size (B, 125, 64).
The global average pooling is calculated by averaging the 64 transportation mode data
feature maps obtained through the convolutional neural network, which can reduce the
dimensionality of the output and prevent overfitting. After averaging pooling, the feature
tensor of the maximum pooling output (B, 125, 64) becomes a tensor of (B, 64).

2.5. Output Layer

Since there are eight transportation mode labels in the dataset, the number of neurons
in the last fully connected layer is set to eight; then, the Softmax activation function (the
function can compress the data range of each neuron in the range of 0 to 1, and the sum of
all data is 1) is used to output the probabilities corresponding to the eight transportation
modes. Finally, the position corresponding to the maximum probability is used as the final
result of transportation mode classification.

3. Experiments and Analysis
3.1. Datasets

Here, experiments are conducted on two public datasets to evaluate the performance
of the TCMH model:

1. SHL dataset. The dataset was recorded in 2017 by three volunteers who placed a
Huawei Mate 9 phone on a part of their body, and it took the volunteers more than
7 months. The SHL dataset contains 272 h of sensor data. The SHL dataset can be used
to analyze transportation conditions and estimate satellite coverage, which this paper
uses for transportation mode recognition. Eight transportation modes are classified
as still, walk, run, bike, car, bus, train and subway. Ten sets of data are selected from
the dataset as raw data: three-axis linear acceleration, three-axis gyroscope, three-axis
magnetometer and barometric pressure sensor.
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2. HTC dataset. The HTC dataset was collected by more than 100 volunteers using HTC
phones in 2012. It contains nine sensor types: acceleration sensors on the X, Y and Z
axes, geomagnetic sensors on the X, Y and Z axes and gyroscopic sensors on the X, Y
and Z axes. The dataset contains 8311 h of sensor data. Unlike the SHL dataset, the
HTC dataset classifies transportation modes into 10 categories. Two transportation
categories, motorcycle and high-speed rail, were dropped to maintain consistency
between the two datasets.

3.2. Data Preprocessing

Since different sensor timing data have different dimensions, the final recognition
effect will be affected if not processed. To eliminate the influence of the magnitude, improve
the convergence speed of the model and to increase the recognition accuracy, we use the
Z-score normalization method to operate on the data. The data processed by this method
conform to the standard normal distribution. The formula of Z-score normalization is
as follows:

X′ =
X− u

σ
(3)

where u is the mean of the original data used for mode recognition and σ is the standard
deviation of the original data used for mode recognition in the dataset.

To better evaluate the model effect, the two datasets, SHL and HTC, are divided into
training, validation and test sets, respectively, and the allocation ratio is 3:1:1.

3.3. Metrics

To verify the effectiveness of the TCMH model, we use the accuracy rate as the main
index to evaluate the model. We use precision, recall and F1-score to assess the recognition
effect of eight transportation modes.

Accuracy is used to describe the proportion of correctly predicted samples to all
samples, i.e., the proportion of correctly classified transportation mode samples to all
samples used for transportation mode classification, as shown in Equation (4):

Accuracy =
∑k

j=1 TPj

N
(4)

where k is the number of classified transportation modes, N is the total number of all exper-
imental samples and TPj is the number of samples correctly classified by transportation
mode j.

Precision is relative to the classification prediction results of transportation mode and
describes the proportion of samples with correct positive predictions to all samples with
positive predictions, as shown in Equation (5):

Precision =
TPj

TPj + FPj
(5)

where FPj is the number of samples that misclassify other transportation modes as mode j.
Recall is the proportion of samples correctly predicted as positive to all actual positive

samples relative to the transportation mode classification samples, as shown in Equation (6):

Recall =
TPj

TPj + FN j
(6)

where FN j is the number of samples that misclassify transportation mode j as other modes.
The F1-score is determined by both precision and recall, as shown in Equation (7):

F1− Score =
2× recall × precision

recall + precision
(7)
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3.4. Experimental Configuration

We adopt the Keras deep learning framework to train the TCMH model. The Adam
optimizer (learning rate is set to 0.001) is selected. For the multi-classification problem, the
cross-entropy loss function is selected. The number of training epochs is set to 100, and the
batch size is set to 32. The experimental configuration is shown in Table 1.

Table 1. Experimental configuration.

Name Configuration

CPU Intel(R) Xeon(R) CPU @ 2.20 GHz
Memory 16 G

GPU Tesla P100
Operating System Ubuntu 18.04.6

Python Environment Python 3.7.15
TensorFlow Version 2.9.2

3.5. Experimental Comparison of Different Algorithms

The RF, DT, SVM, CNN, LSTM, CNN + LSTM and MSRLSTM [13] are used as the
baseline algorithms to evaluate the performance of our proposed TCMH model. Among
these baselines, CNN is a part of the proposed model in this paper, and CNN + LSTM is
composed of the above algorithms, CNN and LSTM. Three machine learning algorithms,
RF, DT and SVM, are implemented using Sklearn. The detailed parameters of the baseline
algorithms are shown in Table 2.

Table 2. Detailed parameters of the baseline algorithms.

Name Architecture

DT criterion = gini
RF n_estimators = 50

SVM Kernel = rbf
CNN C(64)- C(128)-GAP- FC(8)-Softmax
LSTM LSTM(128)-FC(8)-Softmax

CNN + LSTM
TCMH

C(64)-LSTM(128)-FC(8)-Softmax
TCN(32)-MHA(5)-CNN(64)-FC(8)-Softmax

Note: FC denotes fully connected layer; C denotes convolutional neural network; GAP denotes global average pooling.

The accuracy of each algorithm on the SHL and HTC datasets is shown in Figures 5 and 6.
According to the experimental results, the following conclusions can be drawn:

1. Deep learning algorithms show a higher recognition effectiveness than machine
learning algorithms. This is due to the ability of deep learning algorithms to learn
deep potential features from the sensor temporal data, which are more helpful for
transportation mode classification.

2. Among the three machine learning algorithms, compared to DT and SVM algorithms,
RF reduces the risk of overfitting by building many trees and has the highest recogni-
tion accuracy on SHL and HTC datasets, which are 77.23% and 82.27%, respectively.

3. Among the deep learning algorithms, the TCMH model outperforms other baseline al-
gorithms. This is because the temporal convolutional network included in the TCMH
model can capture more transportation mode information without losing information
features, and the multi-headed attention mechanism can fuse the features so that
the final acquired features have a global view. The accuracy of the TCMH model
exceeds the other algorithms on both the SHL dataset and HTC dataset at 90.25%
and 89.55%, respectively, while the accuracy of the other algorithms in transportation
mode recognition is below 86%.
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For each transportation mode recognition case, the precision, recall and F1-score of
each baseline algorithm and the TCMH model are shown in Tables 3 and 4.

Tables 3 and 4 show that the recognition effect of three transportation modes, bus, train
and subway, is poor. Transportation modes’ recognition, such as running and cycling, relies
only on short-time data information, while recognition of the same three transportation
modes relies on longer-time data information. Each baseline algorithm is limited by the
small memory capacity and short-time local features. Therefore, the precision, recall, and
F1-score are all low in these three modes, with an average of about 60%. The TCMH model
has good recognition results on all three transportation modes, with precision, recall and
F1-score higher than 70%, reflecting the advantage of the TCMH model in recognizing
transportation modes that depend on long-time information. Meanwhile, the experimental
results show that the precision, recall and F1-score are higher for all algorithms when
classifying the three transportation modes of walking, running and cycling. The intrinsic
reason is that when people perform these three sports, there are large swaying and regular
movements of the human body, which have more obvious characteristics. Although each
baseline algorithm reflects good classification results on these three transportation modes,
the proposed TCMH model in this paper has an advantage over the recognition results
of each other baseline algorithm. All three metrics are above 89% on the SHL dataset and
above 84% on the HTC dataset. In particular, the transportation mode of running achieves
a precision of 100% on the SHL dataset.
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Table 3. Comparison of evaluation metrics of different algorithms on the SHL dataset.

Algorithm Metrics Still Walk Run Bike Car Bus Train Subway

Precision 61.26% 84.32% 94.05% 78.10% 62.96% 47.34% 48.94% 45.89%
DT Recall 60.15% 81.89% 96.13% 78.55% 61.15% 49.38% 51.45% 43.54%

F1-score 60.70% 83.09% 95.08% 78.32% 62.04% 48.34% 50.16% 44.68%

Precision 75.79% 91.15% 97.25% 88.82% 73.21% 63.23% 64.01% 63.14%
RF Recall 79.69% 91.86% 97.79% 87.54% 83.21% 60.49% 66.15% 48.35%

F1-score 77.69% 91.50% 97.52% 88.18% 77.89% 61.83% 65.06% 54.76%

Precision 46.74% 84.10% 93.07% 83.96% 58.71% 45.77% 63.95% 62.28%
SVM Recall 84.83% 86.09% 96.41% 77.39% 65.47% 36.73% 45.43% 31.23%

F1-score 60.27% 85.08% 94.71% 80.54% 61.90% 40.75% 53.12% 41.60%

Precision 85.61% 93.04% 99.59% 94.42% 88.19% 80.80% 74.29% 68.60%
CNN Recall 90.27% 96.58% 98.77% 93.62% 87.55% 78.02% 75.09% 64.55%

F1-score 87.88% 94.78% 99.17% 94.02% 87.87% 79.39% 74.69% 66.51%

Precision 83.98% 87.94% 99.58% 91.89% 69.50% 64.65% 61.06% 61.46%
LSTM Recall 75.49% 94.30% 97.12% 86.81% 80.95% 59.91% 66.79% 53.64%

F1-score 79.51% 91.01% 98.33% 89.28% 74.79% 62.19% 63.79% 57.28%

Precision 79.24% 92.86% 100.00% 91.60% 83.81% 81.31% 68.99% 68.78%
CNN + LSTM Recall 89.11% 93.92% 98.35% 92.77% 85.35% 75.00% 71.48% 59.09%

F1-score 83.88% 93.38% 99.17% 92.18% 84.57% 78.03% 70.21% 63.57%

Precision 84.07% 95.02% 100.00% 88.98% 84.25% 82.41% 68.31% 63.51%
MSRLSTM Recall 88.33% 94.30% 98.77% 92.77% 84.25% 76.72% 70.04% 60.91%

F1-score 86.15% 94.66% 99.38% 90.83% 84.25% 79.46% 69.16% 62.18%

Precision 89.47% 93.82% 100.00% 96.12% 95.47% 91.23% 81.02% 74.09%
TCMH Recall 92.61% 98.10% 98.77% 94.89% 92.67% 89.66% 80.14% 74.09%

F1-score 91.01% 95.91% 99.38% 95.50% 94.05% 90.43% 80.58% 74.09%

Table 4. Comparison of evaluation metrics of different algorithms on the HTC dataset.

Algorithm Metrics Still Walk Run Bike Car Bus Train Subway

Precision 75.82% 72.26% 92.31% 72.73% 73.07% 40.22% 48.70% 56.73%
DT Recall 79.91% 77.50% 93.66% 76.45% 70.94% 42.53% 46.79% 49.87%

F1-score 77.81% 74.79% 92.98% 74.54% 71.99% 41.34% 47.72% 53.08%

Precision 92.36% 80.65% 95.22% 80.45% 78.88% 80.00% 82.59% 76.03%
RF Recall 83.59% 86.50% 97.07% 85.67% 90.99% 50.57% 66.07% 74.31%

F1-score 87.76% 83.47% 96.14% 82.98% 84.50% 61.97% 73.41% 75.16%

Precision 72.33% 74.59% 93.36% 71.94% 63.10% 56.41% 55.28% 81.91%
SVM Recall 74.51% 79.25% 96.10% 76.11% 84.64% 12.64% 39.29% 58.19%

F1-score 73.40% 76.85% 94.71% 73.96% 72.30% 20.66% 45.93% 68.04%

Precision 91.64% 89.71% 96.95% 89.27% 85.03% 71.30% 74.77% 74.91%
CNN Recall 87.09% 85.16% 93.38% 93.85% 88.63% 62.10% 79.21% 76.32%

F1-score 89.30% 87.37% 95.13% 91.50% 86.79% 66.38% 76.92% 75.61%

Precision 84.36% 78.44% 92.70% 78.61% 80.71% 70.48% 79.40% 75.58%
LSTM Recall 85.76% 82.42% 93.38% 81.03% 87.86% 59.68% 78.22% 61.65%

F1-score 85.06% 80.38% 93.04% 79.80% 84.13% 64.63% 78.80% 67.91%

Precision 86.71% 86.45% 94.78% 87.38% 84.20% 79.00% 83.05% 78.76%
CNN + LSTM Recall 90.73% 84.77% 93.38% 92.31% 90.37% 63.71% 72.77% 76.69%

F1-score 88.67% 85.60% 94.07% 89.78% 87.17% 70.54% 77.57% 77.71%

Precision 83.23% 87.93% 92.81% 84.83% 83.21% 58.74% 75.26% 77.13%
MSRLSTM Recall 88.74% 79.69% 94.85% 91.79% 85.93% 67.74% 72.28% 64.66%

F1-score 85.90% 83.61% 93.82% 88.18% 84.55% 62.92% 73.74% 70.35%

Precision 92.93% 92.31% 98.52% 91.54% 87.34% 73.77% 84.00% 86.80%
TCMH Recall 91.39% 84.38% 97.79% 94.36% 94.41% 72.58% 83.17% 81.58%

F1-score 92.15% 88.16% 98.15% 92.93% 90.74% 73.17% 83.58% 84.11%

3.6. Effect of the Number of Heads of Multi-Headed Attention Modules

The accuracy of the TCMH model is affected by the number of multi-head attention
heads. To explore the optimal number of heads, we set the different numbers to observe the
effect of identification on the SHL and HTC datasets, as shown in Figures 7 and 8, respectively.
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Figures 7 and 8 show that when head = 5, the accuracy is the largest, 90.25% and
89.55% on the SHL and HTC datasets, respectively. When head = 1, there is only one head
in the model, and the accuracies are 88.50% and 88.05%, respectively, which shows the
advantage of multi-headed attention over single-headed attention in transportation mode
recognition. When head = 12, the model has an overfitting phenomenon, and the accuracy
decreases to 87.20% and 88.00%, respectively.

3.7. Self-Contrasting Experiments

To verify the necessity of the temporal convolutional neural network and the multi-
headed attention mechanism of the TCMH model, the removal of the temporal neural
network and the multi-headed attention mechanism are experimentally compared with the
TCMH model, respectively. The precision, recall and F1-score are used as the metrics to
measure the model.

Tables 5 and 6 show that removing the temporal convolutional network part of the
TCMH model leads to a decrease in the precision, recall and F1-score, which reflects the
contribution of the temporal convolutional network to the TCMH model. For subway,
on the SHL dataset, the difference between the TCMH model and TCMH model when
removing the temporal convolutional network part is obvious, with 13.97%, 28.18% and
22.03% difference in precision, recall and F1-score, respectively. On the HTC dataset, the
difference in precision, recall, and F1-score is 19.91%, 17.67% and 18.76%, respectively.
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Table 5. Experimental results of removing temporal convolutional network.

SHL Dataset HTC Dataset
Mode Precision Recall F1-Score Precision Recall F1-Score

Still 75.78% 85.21% 80.22% 79.88% 85.43% 82.56%
Walk 96.77% 91.25% 93.93% 86.25% 80.86% 83.47%
Run 98.77% 98.77% 98.77% 97.73% 94.85% 96.27%
Bike 89.34% 92.77% 91.02% 87.89% 85.64% 86.75%
Car 81.89% 79.49% 80.67% 76.68% 85.55% 80.87%
Bus 73.25% 71.98% 72.61% 63.16% 48.39% 54.79%

Train 58.73% 66.79% 62.50% 72.47% 63.86% 67.89%
Subway 60.12% 45.91% 52.06% 69.58% 68.80% 69.19%

Table 6. Experimental results of the TCMH model.

SHL Dataset HTC Dataset
Mode Recall F1-Score Precision Recall F1-Score Precision

Still 89.47% 92.61% 91.01% 90.45% 94.04% 92.21%
Walk 93.82% 98.10% 95.91% 92.00% 89.84% 90.91%
Run 100.00% 98.77% 99.38% 98.48% 95.59% 97.01%
Bike 96.12% 94.89% 95.50% 93.53% 96.41% 94.95%
Car 95.47% 92.67% 94.05% 87.07% 92.10% 89.51%
Bus 91.23% 89.66% 90.43% 79.82% 70.16% 74.68%

Train 81.02% 80.14% 80.58% 87.23% 81.19% 84.10%
Subway 74.09% 74.09% 74.09% 89.49% 86.47% 87.95%

Tables 6 and 7 show that the TCMH model has lower recognition results than the
removal of the multi-headed attention mechanism part. However, three evaluation indexes
have been improved from the overall classification results of the eight transportation
modes. Especially for still, on the SHL dataset, the precision, recall and F1-score improved
by 4.99%, 1.56% and 3.37%, respectively. On the HTC dataset, the precision, recall and
F1-score enhanced by 3.30%, 1.99% and 2.68%, respectively.

Table 7. Experimental results of removing the multi-headed attention mechanism.

SHL Dataset HTC Dataset
Mode Precision Recall F1-Score Precision Recall F1-Score

Still 84.48% 91.05% 87.64% 87.15% 92.05% 89.53%
Walk 92.34% 96.20% 94.23% 88.40% 86.33% 87.35%
Run 99.59% 98.77% 99.17% 98.50% 96.32% 97.40%
Bike 93.59% 93.19% 93.39% 88.89% 94.36% 91.54%
Car 91.64% 92.31% 91.97% 87.36% 91.91% 89.58%
Bus 95.10% 83.62% 88.99% 80.53% 73.39% 76.79%

Train 77.50% 78.34% 77.92% 86.81% 78.22% 82.29%
Subway 72.56% 70.91% 71.72% 88.40% 83.08% 85.66%

3.8. Experiment of Hyperparameter Adjustment

The primary hyperparameters in the TCMH model are adjusted: the number of filters
and convolutional kernel size in TCN, the dimensional value of keys in multi-headed
attention, and the number of filters and convolutional kernel size in CNN.

According to the variable control method, one hyperparameter value is adjusted each
time, and the results obtained are shown in Tables 8 and 9. It can be seen that the adjustment
of hyperparameters has a certain influence on the recognition precision of transportation
modes. In particular, the precision of recognizing trains on the SHL and HTC datasets
differed by 11.39% and 8.91%, respectively.
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Table 8. Comparison of the precision of different hyperparameters on the SHL dataset.

Hyperparameters Still Walk Run Bike Car Bus Train Subway

TCN(32,3)d(64)CNN(64,3) 89.47% 93.82% 100.00% 96.12% 95.47% 91.23% 81.02% 74.09%
TCN(64,3)d(64)CNN(64,3) 91.03% 95.82% 100.00% 96.93% 91.27% 88.66% 69.63% 72.31%
TCN(32,2)d(64)CNN(64,3) 86.84% 95.56% 99.58% 96.55% 90.97% 91.67% 76.07% 76.80%
TCN(32,3)d(16)CNN(64,3) 90.04% 93.82% 100.00% 97.36% 90.28% 91.03% 76.87% 73.87%
TCN(32,3)d(64)CNN(32,3) 86.38% 92.45% 99.58% 95.07% 92.40% 85.65% 76.26% 62.85%
TCN(32,3)d(64)CNN(64,2) 85.24% 95.51% 100.00% 94.09% 92.91% 92.17% 72.38% 75.40%

Table 9. Comparison of the precision of different hyperparameters on the HTC dataset.

Hyperparameters Still Walk Run Bike Car Bus Train Subway

TCN(32,3)d(64)CNN(64,3) 90.45% 92.00% 98.48% 93.53% 87.07% 79.82% 87.23% 89.49%
TCN(64,3)d(64)CNN(64,3) 93.95% 89.87% 97.06% 88.18% 83.21% 66.10% 82.16% 82.86%
TCN(32,2)d(64)CNN(64,3) 90.06% 90.04% 97.73% 93.43% 87.16% 81.31% 89.01% 86.33%
TCN(32,3)d(16)CNN(64,3) 91.19% 87.75% 97.73% 91.67% 89.41% 67.91% 83.84% 89.02%
TCN(32,3)d(64)CNN(32,3) 90.28% 83.83% 94.85% 91.54% 88.67% 68.55% 80.10% 84.12%
TCN(32,3)d(64)CNN(64,2) 90.55% 91.90% 98.50% 93.14% 87.27% 79.09% 84.97% 85.29%

4. Conclusions

This paper proposes a novel transportation mode recognition model, TCMH. By
combining TCN and MHA, the accuracy of transportation mode recognition is increased,
and the training process is speeded up. The TCMH algorithm is also energy efficient, using
only the multiple lightweight sensors integrated in the smartphone to detect transport
patterns. The experimental results on two datasets show that the proposed model is
significantly better than baseline algorithms such as the RF-, DT-, SVM-, CNN-, LSTM-,
CNN + LSTM- and MSRLSTM-based transportation mode algorithms. It also confirms the
reasonable scalability of TCMH.

There are some limitations in the TCMH model. The accuracy of recognition can
be further improved, and the complexity of the model can be further reduced. In future
scientific work, we will continue to research deep learning models with lower computa-
tional overhead and higher recognition accuracy, and further improve transportation mode
recognition performance in practical application scenarios.
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32. Lopac, N.; Hržić, F.; Vuksanović, I.P.; Lerga, J. Detection of Non-Stationary GW Signals in High Noise from Cohen’s Class of
Time–Frequency Representations Using Deep Learning. IEEE Access 2022, 10, 2408–2428. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TCSVT.2021.3104651
http://doi.org/10.3390/s22031215
http://www.ncbi.nlm.nih.gov/pubmed/35161961
http://doi.org/10.1109/ACCESS.2021.3139850

	Introduction 
	Algorithm 
	Input Layer 
	Temporal Convolutional Layer 
	Multi-Head Attention Layer 
	Convolutional Layer 
	Output Layer 

	Experiments and Analysis 
	Datasets 
	Data Preprocessing 
	Metrics 
	Experimental Configuration 
	Experimental Comparison of Different Algorithms 
	Effect of the Number of Heads of Multi-Headed Attention Modules 
	Self-Contrasting Experiments 
	Experiment of Hyperparameter Adjustment 

	Conclusions 
	References

